
39

OBRE: Offer-Borrow-Reform-Evaluate
Initiatives for Green DBMSs
Amine Roukh1, Ladjel Bellatreche2, Nikos Tziritas3

1 University of Mostaganem, Algeria, roukh.amine@univ-mosta.dz
2 LIAS/ISAE-ENSMA Poitiers, France, bellatreche@ensma.fr
3 Chinese Academy of Sciences Shenzhen, China, nikolaos@siat.ac.cn

*Correspondence: Ladjel
Bellatreche, LIAS/ISAE-
ENSMA Poitiers, France,

bellatreche@ensma.fr

Abstract
In the last few years, we have been seeing a significant increase
in research about the energy efficiency of hardware and software
components by both academic and industry. Today, energy ef-
ficiency is one of the most challenging issues in the area of in-
formation technologies and communication. In data-centric ap-
plications, database management systems are one of the major
energy consumers, in which, a large amount of data is queried
by complex queries running daily. Designing and implementing
of an energy-aware DBMS that enables significant energy con-
servation while processing queries become a necessary need.
Traditionally, existing DBMSs focus to high-performance during
query optimization phase, while totally ignoring the energy con-
sumption of the queries. In this paper, we propose a method-
ology, supported by a tool called EcoProD, focusing on query
optimizers. To show its effectiveness, we implement it in Post-
greSQL DBMS aiming reducing energy consumption without de-
grading query response time. A mathematical cost model is used
to estimate the energy consumption. Its parameters are identified
by a machine learning technique. We conduct intensive experi-
ments using our cost models and a measurement tool dedicated
to compute energy using dataset of TPC-H benchmark. Based
on the obtained results, a probabilistic proof to demonstrate the
confidence bounds of our model and results is given.
CCS Concepts: Information systems - Relational database mod-
el; DBMS engine architectures; Database query processing;
Relational database query languages;

Keywords: Database Design; Query Proc essing; Energy Effi-
ciency

Azerbaijan Journal of High Performance Computing, Vol 2, Issue 1, 2019, pp.39-63
https://doi.org/10.32010/26166127.2019.2.1.39.63

1. Introduction
Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

The COP21 event shows the willingness of countries (Over 145 foreign Heads of
State and Government attended the conference at Le Bourget, Paris), companies,
individuals, government and non government associations, etc. to save the planet.
According to the 2009 Climate Action Plan, electricity is one of the two largest
sources of greenhouse gas (GHG) emissions for the campus and Information
Technology (IT) is currently estimated to be responsible for approximately 10 percent
of that electricity usage. IT has become a critical resource for the mission of the
campus and usage of computing equipment continues to increase.

The continued expansion of the industry means that the energy use by data
centers, and the associated emissions of greenhouse gases and other air pollutants,
will continue to grow. Industry experts, such as the SMARTer 2020, reports that
global data center emissions will grow 7 percent year- on-year through 2020 [5]. In a
typical data center, DBMS is one of the most important consumers of computational
resources among other software deployed, which turn DBMS to be a considerable
energy consumer [15]. Traditionally, the design process of a database considers one
non-functional requirement, which represents the query response time. This
requirement is quite comprehensive since, the end user and decision makers of
database applications are looking for the efficiency of the queries. Note that in the
Beckman report on databases published in last February, energy constrained
processing and scientific data management are considered as challenging issues
[1].

Face to the strong requirement of saving energy, database community did not
stand idly, but from last decade, it continuously proposes initiatives around OBRE
actions (Offer, Borrow, Reform, Evaluate) to deal with energy.

• Offer: the database technology was made available for energy professional for
the analysis usage to enable smarter scheduling of energy consumption of entities
such as smart cities (in MIRABEL project [21]) and electrical vehicles in EDF
(Elecricity De France) project [20].

Borrow: the database technology employs green hardware and platforms
to deploy the target database applications.

• Reform: the database community did several efforts in reforming their software
to integrate energy. These efforts concern mainly the development of cost models to
estimate energy and then use them to generate query plans [24, 10, 11] and select
optimization structures such as materialized views [19].

• Evaluate: to test their efficiency and effectiveness, energy initiatives have to be
evaluated either using real datasets or benchmarks.

These initiatives have shown their performance in reducing energy consumption.
Offering strategic guidelines in terms of competency, knowledge, reuse, etc. may
contribute in boosting researchers and industrials to intensively integrate energy
during the process of building their applications and DBMS.

Note that the landscape of DBMS is very large since it includes several
components: query optimizer, storage manager, etc. In this paper, we focus on query
optimizers, which represents one of the main components of DBMS. There has been
extensive work in query optimization since the early’70 in traditional databases.
Several algorithms and systems have been proposed, such as System-R project,
where its findings have been largely incorporated in many commercial optimizers.
Advanced query optimizers perform two main tasks: (i) enumeration of execution
plans of a given query and (ii) the selection of the best plan. This selection uses cost-
based optimization (CBO). The CBO is a mathematical processor, where it uses
formulas to calculate the cost of each execution plan. This cost may be the number of
inputs outputs required for executing a given execution plan. A CBO approach is
suitable when statistics on tables, indexes, selectivity factors of join and selection
predicates, etc. are available. The existing studies on energy-aware query optimizes
consider mainly the second task, by reforming the cost models by integrating energy.

In this paper, we focus on the query optimization component of the PostgreSQL
DBMS. We propose a design methodology, supported by a tool called EcoProD, that
tries to integrate energy in the query generation phase. This is done by revisiting all
the query optimizer steps and studying their effect on energy consumption. The new
query optimizer will have to deal with two objectives functions, namely: improving
performance and minimizing energy. In our design, the end users can specify
preferences in their profiles by setting weights on different objectives, representing
relative importance. The role of the EcoProD is to minimize the weighted sum over
different cost metrics.

The main technical contributions of this paper are:
• A deep classification of existing solutions for minimizing energy by the means

of two approach: (i) the hardware approaches, (ii) and the software approaches;
• a multi-objective formalization of the query optimization problem including the

query performance and the energy consumption;
a demonstration tool, EcoProD, developed in PostgreSQL that gives to end

users execution plans and energy consumption by their queries using
comprehensive GUI;

• intensive experiments using real tools to study the effectiveness of our
approaches.

• a probabilistic proof is given to demonstrate the confidence bounds of our
model data and results, using high-end configuration experimentation data.

The rest of this paper is organized as follows. We summarize the most important
studies based on OBRE principle in Section 2. In Section 3, we give more details on
undertaken energy initiatives from software and hardware perspectives. Section 4.6
describes our green query optimizers, by detailing all its components. Section 5
presents and interprets our experimental results. Section 6 gives a probabilistic
complexity study to demonstrate the confidence bounds of our finding, while our
conclusions are given in Section 7.

2. Related work

The most existing studies will be discussed according our OBRE principle.
Offer. As we said in the Introduction, the database technology is used in the past

and now to store energetic data from vehicles, smart cities, etc. The MIRABEL Project
[21] is an example of this direction. It consists in developing an approach on a
conceptual and an infrastructural level that allows energy distribution companies
balancing the available supply of renewable energy sources and the current demand
in ad-hoc fashion. It uses a DBMS to store forecasting in order to answer time series
queries, which is an important functionality in energy data management [3, 14].

40

1. Introduction
Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

The COP21 event shows the willingness of countries (Over 145 foreign Heads of
State and Government attended the conference at Le Bourget, Paris), companies,
individuals, government and non government associations, etc. to save the planet.
According to the 2009 Climate Action Plan, electricity is one of the two largest
sources of greenhouse gas (GHG) emissions for the campus and Information
Technology (IT) is currently estimated to be responsible for approximately 10 percent
of that electricity usage. IT has become a critical resource for the mission of the
campus and usage of computing equipment continues to increase.

The continued expansion of the industry means that the energy use by data
centers, and the associated emissions of greenhouse gases and other air pollutants,
will continue to grow. Industry experts, such as the SMARTer 2020, reports that
global data center emissions will grow 7 percent year- on-year through 2020 [5]. In a
typical data center, DBMS is one of the most important consumers of computational
resources among other software deployed, which turn DBMS to be a considerable
energy consumer [15]. Traditionally, the design process of a database considers one
non-functional requirement, which represents the query response time. This
requirement is quite comprehensive since, the end user and decision makers of
database applications are looking for the efficiency of the queries. Note that in the
Beckman report on databases published in last February, energy constrained
processing and scientific data management are considered as challenging issues
[1].

Face to the strong requirement of saving energy, database community did not
stand idly, but from last decade, it continuously proposes initiatives around OBRE
actions (Offer, Borrow, Reform, Evaluate) to deal with energy.

• Offer: the database technology was made available for energy professional for
the analysis usage to enable smarter scheduling of energy consumption of entities
such as smart cities (in MIRABEL project [21]) and electrical vehicles in EDF
(Elecricity De France) project [20].

Borrow: the database technology employs green hardware and platforms
to deploy the target database applications.

• Reform: the database community did several efforts in reforming their software
to integrate energy. These efforts concern mainly the development of cost models to
estimate energy and then use them to generate query plans [24, 10, 11] and select
optimization structures such as materialized views [19].

• Evaluate: to test their efficiency and effectiveness, energy initiatives have to be
evaluated either using real datasets or benchmarks.

These initiatives have shown their performance in reducing energy consumption.
Offering strategic guidelines in terms of competency, knowledge, reuse, etc. may
contribute in boosting researchers and industrials to intensively integrate energy
during the process of building their applications and DBMS.

Note that the landscape of DBMS is very large since it includes several
components: query optimizer, storage manager, etc. In this paper, we focus on query
optimizers, which represents one of the main components of DBMS. There has been
extensive work in query optimization since the early’70 in traditional databases.
Several algorithms and systems have been proposed, such as System-R project,
where its findings have been largely incorporated in many commercial optimizers.
Advanced query optimizers perform two main tasks: (i) enumeration of execution
plans of a given query and (ii) the selection of the best plan. This selection uses cost-
based optimization (CBO). The CBO is a mathematical processor, where it uses
formulas to calculate the cost of each execution plan. This cost may be the number of
inputs outputs required for executing a given execution plan. A CBO approach is
suitable when statistics on tables, indexes, selectivity factors of join and selection
predicates, etc. are available. The existing studies on energy-aware query optimizes
consider mainly the second task, by reforming the cost models by integrating energy.

In this paper, we focus on the query optimization component of the PostgreSQL
DBMS. We propose a design methodology, supported by a tool called EcoProD, that
tries to integrate energy in the query generation phase. This is done by revisiting all
the query optimizer steps and studying their effect on energy consumption. The new
query optimizer will have to deal with two objectives functions, namely: improving
performance and minimizing energy. In our design, the end users can specify
preferences in their profiles by setting weights on different objectives, representing
relative importance. The role of the EcoProD is to minimize the weighted sum over
different cost metrics.

The main technical contributions of this paper are:
• A deep classification of existing solutions for minimizing energy by the means

of two approach: (i) the hardware approaches, (ii) and the software approaches;
• a multi-objective formalization of the query optimization problem including the

query performance and the energy consumption;
a demonstration tool, EcoProD, developed in PostgreSQL that gives to end

users execution plans and energy consumption by their queries using
comprehensive GUI;

• intensive experiments using real tools to study the effectiveness of our
approaches.

• a probabilistic proof is given to demonstrate the confidence bounds of our
model data and results, using high-end configuration experimentation data.

The rest of this paper is organized as follows. We summarize the most important
studies based on OBRE principle in Section 2. In Section 3, we give more details on
undertaken energy initiatives from software and hardware perspectives. Section 4.6
describes our green query optimizers, by detailing all its components. Section 5
presents and interprets our experimental results. Section 6 gives a probabilistic
complexity study to demonstrate the confidence bounds of our finding, while our
conclusions are given in Section 7.

2. Related work

The most existing studies will be discussed according our OBRE principle.
Offer. As we said in the Introduction, the database technology is used in the past

and now to store energetic data from vehicles, smart cities, etc. The MIRABEL Project
[21] is an example of this direction. It consists in developing an approach on a
conceptual and an infrastructural level that allows energy distribution companies
balancing the available supply of renewable energy sources and the current demand
in ad-hoc fashion. It uses a DBMS to store forecasting in order to answer time series
queries, which is an important functionality in energy data management [3, 14].

Amine Roukh, Ladjel Bellatreche and Nikos Tziritas

41

Azerbaijan Journal of High Performance Computing, 2(1), 2019

1. Introduction
Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

The COP21 event shows the willingness of countries (Over 145 foreign Heads of
State and Government attended the conference at Le Bourget, Paris), companies,
individuals, government and non government associations, etc. to save the planet.
According to the 2009 Climate Action Plan, electricity is one of the two largest
sources of greenhouse gas (GHG) emissions for the campus and Information
Technology (IT) is currently estimated to be responsible for approximately 10 percent
of that electricity usage. IT has become a critical resource for the mission of the
campus and usage of computing equipment continues to increase.

The continued expansion of the industry means that the energy use by data
centers, and the associated emissions of greenhouse gases and other air pollutants,
will continue to grow. Industry experts, such as the SMARTer 2020, reports that
global data center emissions will grow 7 percent year- on-year through 2020 [5]. In a
typical data center, DBMS is one of the most important consumers of computational
resources among other software deployed, which turn DBMS to be a considerable
energy consumer [15]. Traditionally, the design process of a database considers one
non-functional requirement, which represents the query response time. This
requirement is quite comprehensive since, the end user and decision makers of
database applications are looking for the efficiency of the queries. Note that in the
Beckman report on databases published in last February, energy constrained
processing and scientific data management are considered as challenging issues
[1].

Face to the strong requirement of saving energy, database community did not
stand idly, but from last decade, it continuously proposes initiatives around OBRE
actions (Offer, Borrow, Reform, Evaluate) to deal with energy.

• Offer: the database technology was made available for energy professional for
the analysis usage to enable smarter scheduling of energy consumption of entities
such as smart cities (in MIRABEL project [21]) and electrical vehicles in EDF
(Elecricity De France) project [20].

Borrow: the database technology employs green hardware and platforms
to deploy the target database applications.

• Reform: the database community did several efforts in reforming their software
to integrate energy. These efforts concern mainly the development of cost models to
estimate energy and then use them to generate query plans [24, 10, 11] and select
optimization structures such as materialized views [19].

• Evaluate: to test their efficiency and effectiveness, energy initiatives have to be
evaluated either using real datasets or benchmarks.

These initiatives have shown their performance in reducing energy consumption.
Offering strategic guidelines in terms of competency, knowledge, reuse, etc. may
contribute in boosting researchers and industrials to intensively integrate energy
during the process of building their applications and DBMS.

Note that the landscape of DBMS is very large since it includes several
components: query optimizer, storage manager, etc. In this paper, we focus on query
optimizers, which represents one of the main components of DBMS. There has been
extensive work in query optimization since the early’70 in traditional databases.
Several algorithms and systems have been proposed, such as System-R project,
where its findings have been largely incorporated in many commercial optimizers.
Advanced query optimizers perform two main tasks: (i) enumeration of execution
plans of a given query and (ii) the selection of the best plan. This selection uses cost-
based optimization (CBO). The CBO is a mathematical processor, where it uses
formulas to calculate the cost of each execution plan. This cost may be the number of
inputs outputs required for executing a given execution plan. A CBO approach is
suitable when statistics on tables, indexes, selectivity factors of join and selection
predicates, etc. are available. The existing studies on energy-aware query optimizes
consider mainly the second task, by reforming the cost models by integrating energy.

In this paper, we focus on the query optimization component of the PostgreSQL
DBMS. We propose a design methodology, supported by a tool called EcoProD, that
tries to integrate energy in the query generation phase. This is done by revisiting all
the query optimizer steps and studying their effect on energy consumption. The new
query optimizer will have to deal with two objectives functions, namely: improving
performance and minimizing energy. In our design, the end users can specify
preferences in their profiles by setting weights on different objectives, representing
relative importance. The role of the EcoProD is to minimize the weighted sum over
different cost metrics.

The main technical contributions of this paper are:
• A deep classification of existing solutions for minimizing energy by the means

of two approach: (i) the hardware approaches, (ii) and the software approaches;
• a multi-objective formalization of the query optimization problem including the

query performance and the energy consumption;
a demonstration tool, EcoProD, developed in PostgreSQL that gives to end

users execution plans and energy consumption by their queries using
comprehensive GUI;

• intensive experiments using real tools to study the effectiveness of our
approaches.

• a probabilistic proof is given to demonstrate the confidence bounds of our
model data and results, using high-end configuration experimentation data.

The rest of this paper is organized as follows. We summarize the most important
studies based on OBRE principle in Section 2. In Section 3, we give more details on
undertaken energy initiatives from software and hardware perspectives. Section 4.6
describes our green query optimizers, by detailing all its components. Section 5
presents and interprets our experimental results. Section 6 gives a probabilistic
complexity study to demonstrate the confidence bounds of our finding, while our
conclusions are given in Section 7.

2. Related work

The most existing studies will be discussed according our OBRE principle.
Offer. As we said in the Introduction, the database technology is used in the past

and now to store energetic data from vehicles, smart cities, etc. The MIRABEL Project
[21] is an example of this direction. It consists in developing an approach on a
conceptual and an infrastructural level that allows energy distribution companies
balancing the available supply of renewable energy sources and the current demand
in ad-hoc fashion. It uses a DBMS to store forecasting in order to answer time series
queries, which is an important functionality in energy data management [3, 14].

42

1. Introduction
Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

The COP21 event shows the willingness of countries (Over 145 foreign Heads of
State and Government attended the conference at Le Bourget, Paris), companies,
individuals, government and non government associations, etc. to save the planet.
According to the 2009 Climate Action Plan, electricity is one of the two largest
sources of greenhouse gas (GHG) emissions for the campus and Information
Technology (IT) is currently estimated to be responsible for approximately 10 percent
of that electricity usage. IT has become a critical resource for the mission of the
campus and usage of computing equipment continues to increase.

The continued expansion of the industry means that the energy use by data
centers, and the associated emissions of greenhouse gases and other air pollutants,
will continue to grow. Industry experts, such as the SMARTer 2020, reports that
global data center emissions will grow 7 percent year- on-year through 2020 [5]. In a
typical data center, DBMS is one of the most important consumers of computational
resources among other software deployed, which turn DBMS to be a considerable
energy consumer [15]. Traditionally, the design process of a database considers one
non-functional requirement, which represents the query response time. This
requirement is quite comprehensive since, the end user and decision makers of
database applications are looking for the efficiency of the queries. Note that in the
Beckman report on databases published in last February, energy constrained
processing and scientific data management are considered as challenging issues
[1].

Face to the strong requirement of saving energy, database community did not
stand idly, but from last decade, it continuously proposes initiatives around OBRE
actions (Offer, Borrow, Reform, Evaluate) to deal with energy.

• Offer: the database technology was made available for energy professional for
the analysis usage to enable smarter scheduling of energy consumption of entities
such as smart cities (in MIRABEL project [21]) and electrical vehicles in EDF
(Elecricity De France) project [20].

Borrow: the database technology employs green hardware and platforms
to deploy the target database applications.

• Reform: the database community did several efforts in reforming their software
to integrate energy. These efforts concern mainly the development of cost models to
estimate energy and then use them to generate query plans [24, 10, 11] and select
optimization structures such as materialized views [19].

• Evaluate: to test their efficiency and effectiveness, energy initiatives have to be
evaluated either using real datasets or benchmarks.

These initiatives have shown their performance in reducing energy consumption.
Offering strategic guidelines in terms of competency, knowledge, reuse, etc. may
contribute in boosting researchers and industrials to intensively integrate energy
during the process of building their applications and DBMS.

Note that the landscape of DBMS is very large since it includes several
components: query optimizer, storage manager, etc. In this paper, we focus on query
optimizers, which represents one of the main components of DBMS. There has been
extensive work in query optimization since the early’70 in traditional databases.
Several algorithms and systems have been proposed, such as System-R project,
where its findings have been largely incorporated in many commercial optimizers.
Advanced query optimizers perform two main tasks: (i) enumeration of execution
plans of a given query and (ii) the selection of the best plan. This selection uses cost-
based optimization (CBO). The CBO is a mathematical processor, where it uses
formulas to calculate the cost of each execution plan. This cost may be the number of
inputs outputs required for executing a given execution plan. A CBO approach is
suitable when statistics on tables, indexes, selectivity factors of join and selection
predicates, etc. are available. The existing studies on energy-aware query optimizes
consider mainly the second task, by reforming the cost models by integrating energy.

In this paper, we focus on the query optimization component of the PostgreSQL
DBMS. We propose a design methodology, supported by a tool called EcoProD, that
tries to integrate energy in the query generation phase. This is done by revisiting all
the query optimizer steps and studying their effect on energy consumption. The new
query optimizer will have to deal with two objectives functions, namely: improving
performance and minimizing energy. In our design, the end users can specify
preferences in their profiles by setting weights on different objectives, representing
relative importance. The role of the EcoProD is to minimize the weighted sum over
different cost metrics.

The main technical contributions of this paper are:
• A deep classification of existing solutions for minimizing energy by the means

of two approach: (i) the hardware approaches, (ii) and the software approaches;
• a multi-objective formalization of the query optimization problem including the

query performance and the energy consumption;
a demonstration tool, EcoProD, developed in PostgreSQL that gives to end

users execution plans and energy consumption by their queries using
comprehensive GUI;

• intensive experiments using real tools to study the effectiveness of our
approaches.

• a probabilistic proof is given to demonstrate the confidence bounds of our
model data and results, using high-end configuration experimentation data.

The rest of this paper is organized as follows. We summarize the most important
studies based on OBRE principle in Section 2. In Section 3, we give more details on
undertaken energy initiatives from software and hardware perspectives. Section 4.6
describes our green query optimizers, by detailing all its components. Section 5
presents and interprets our experimental results. Section 6 gives a probabilistic
complexity study to demonstrate the confidence bounds of our finding, while our
conclusions are given in Section 7.

2. Related work

The most existing studies will be discussed according our OBRE principle.
Offer. As we said in the Introduction, the database technology is used in the past

and now to store energetic data from vehicles, smart cities, etc. The MIRABEL Project
[21] is an example of this direction. It consists in developing an approach on a
conceptual and an infrastructural level that allows energy distribution companies
balancing the available supply of renewable energy sources and the current demand
in ad-hoc fashion. It uses a DBMS to store forecasting in order to answer time series
queries, which is an important functionality in energy data management [3, 14].

Borrow. As other technology, databases never stop borrowing green hardware
and platforms for their applications and DBMS [9].

Reform. This aspect consists in reforming existing software components to
minimize their energy use. They concern mainly two aspects: (1) the definition of cost
models to predict energy and (2) the proposition of optimization techniques to
reduce energy.

Energy cost models.
Prior works have been concentrated on building power cost models to predict

query power consumption. In [24, 23], the authors discussed the opportunities for
energy-based query optimization, and a power cost model is developed in the
conjunction of PostgreSQL’s cost model to predict the query power consumption. A
static power profile for each basic database operation in query processing is
defined. The power cost of a plan can be calculated from the basic SQL operations,
like CPU power cost to access tuple, power cost for reading/writing one page, and so
on, via different access methods and join operations using regression techniques.
The authors adapt their static model to dynamic workloads using a feedback control
mechanism to periodically update model parameters using real-time energy
measurements. The authors of [10] propose a technique for modeling the peak
power of database operations. A pipeline-based model of query execution plans was
developed to identify the sources of the peak power consumption for a query and to
recommend plans with low peak power. For each of these pipelines, a mathematical
function is applied, which takes as input the rates and sizes of the data flowing
through the pipeline operators, and as output an estimation of the peak power
consumption. The authors used piece-wise regression technique to build their cost
model. In the same direction, the work of [11] proposes a framework for energy-
aware database query processing. It augments query plans produced by traditional
query optimizer with an energy consumption prediction for some specific database
operators like select, project and join using linear regression technique. [16] attempts
to model energy and peak power of simple selection queries on single relations using
linear regression. In our previous works [18], we proposed cost models to predict the
power consumption of single and concurrent queries. Our model is based on pipeline
segmenting of the query and predicting their power based on its Inputs- outputs (IO)
and CPU costs, using polynomial regression techniques.

Optimization techniques.
The presence of energy consumption cost models motivate the research

community to propose cost-driven techniques. The work in [12] proposed an
Improved Query Energy-Efficiency (QED) by Introducing Explicit Delays mechanism,
which uses query aggregation to leverage common components of queries in a
workload. The work of [11] showed that processing a query as fast as possible does
not always turn out to be the most energy-efficient way to operate a DBMS. Based on
their proposed framework, they choose query plans that reduce energy consumption.
In [10], cost-based driven approach is proposed to generate query plans minimizing
the peak power. In [19], genetic algorithm with a fitness function based on a energy
consumption cost model, is given to select materialize views reducing energy and
optimizing queries. The work by Xu et al. [23] is close in spirit to our proposal in this
paper. They integrate their cost model into the DBMS to choose query plans with a
low power at the optimization phase. However, they do not study the consumed
energy at each phase of query optimizers. Moreover, they use a simple cost model
that do not capture the relationship between the model parameters.

Evaluate. Energy evaluation is a sensitive point and as a consequence it requires
accurate and transparent evaluation to show its savings. For transparent perspective,
we propose an open platform available at the forge of our laboratory, allowing
researchers, industrials and students to evaluate it.

3. Initiatives for integrating energy in DBMS
The proposed initiatives covers hardware and software. This categorization is

illustrated in Figure 1.

3.1. Hardware solutions
Hardware efforts towards green databases focus on using devices designed with

low energy consumption, or controlling the power mode of hardware by doing a
transition from high-power state to low-power state when the system is not active (idle
mode), is this also known as energy- proportionality [7]. Most modern hardware such
as processors, main memory, and disks come with this technology.

Processing device.
The processing device such as CPU is one of the main active power consumer

[15]. Since the CPU is power-proportional hardware, significant power can be saved
using techniques like Dynamic Voltage and Frequency Scaling (DVFS) with less
performance degradation. This has been well studied and verified in the stat-of-arts
works [22, 12]. The use of Graphics Processing Units (GPUs) in the database has
been shown to incur significant performance benefits. A recent study reported that
using a GPU is more energy efficient when the performance improvement is above a
certain bound, compared to a CPU-only solution [17].

Storage management.
Making storage management systems green in the context of database start to

make it appearance. Switch disks to stand-by mode lead to less energy consumption
compared to active mode. Other works use caching and perfecting techniques or
consolidating the most frequently accessed data via dynamic power management
algorithm to save energy [22]. Using solid state disks (SSDs) as a storage device by
databases to improve energy-efficiency is another worthy direction. Studies such as
[4] claim that using Smart SSD can be benefit from both the performance and the
energy consumption perspectives.

3.2. Software solutions
On the other hand, software-based solutions play an important role in energy

optimization. The basic idea is to redesign current algorithms and software
applications for better energy use.

Cost model.
Perhaps the most important task in this category is the design and the

implementation of an accurate energy cost model. Cost models are used to estimate
the energy consumption of a query plan or an optimization structure. Since they are
used by other software techniques to reduce energy, they shall be accurate enough
to give better results. The crucial issues have to be discussed: (i) the identification of
the relevant parameters that have an impact on energy, such as CPU, I/O and
communication costs and (ii) the relationship between these parameters (e.g:
linear/non-linear). They are usually calculated as the product of a basic operator such
as the number of tuples, disk pages, and network messages.

Amine Roukh, Ladjel Bellatreche and Nikos Tziritas

43

Borrow. As other technology, databases never stop borrowing green hardware
and platforms for their applications and DBMS [9].

Reform. This aspect consists in reforming existing software components to
minimize their energy use. They concern mainly two aspects: (1) the definition of cost
models to predict energy and (2) the proposition of optimization techniques to
reduce energy.

Energy cost models.
Prior works have been concentrated on building power cost models to predict

query power consumption. In [24, 23], the authors discussed the opportunities for
energy-based query optimization, and a power cost model is developed in the
conjunction of PostgreSQL’s cost model to predict the query power consumption. A
static power profile for each basic database operation in query processing is
defined. The power cost of a plan can be calculated from the basic SQL operations,
like CPU power cost to access tuple, power cost for reading/writing one page, and so
on, via different access methods and join operations using regression techniques.
The authors adapt their static model to dynamic workloads using a feedback control
mechanism to periodically update model parameters using real-time energy
measurements. The authors of [10] propose a technique for modeling the peak
power of database operations. A pipeline-based model of query execution plans was
developed to identify the sources of the peak power consumption for a query and to
recommend plans with low peak power. For each of these pipelines, a mathematical
function is applied, which takes as input the rates and sizes of the data flowing
through the pipeline operators, and as output an estimation of the peak power
consumption. The authors used piece-wise regression technique to build their cost
model. In the same direction, the work of [11] proposes a framework for energy-
aware database query processing. It augments query plans produced by traditional
query optimizer with an energy consumption prediction for some specific database
operators like select, project and join using linear regression technique. [16] attempts
to model energy and peak power of simple selection queries on single relations using
linear regression. In our previous works [18], we proposed cost models to predict the
power consumption of single and concurrent queries. Our model is based on pipeline
segmenting of the query and predicting their power based on its Inputs- outputs (IO)
and CPU costs, using polynomial regression techniques.

Optimization techniques.
The presence of energy consumption cost models motivate the research

community to propose cost-driven techniques. The work in [12] proposed an
Improved Query Energy-Efficiency (QED) by Introducing Explicit Delays mechanism,
which uses query aggregation to leverage common components of queries in a
workload. The work of [11] showed that processing a query as fast as possible does
not always turn out to be the most energy-efficient way to operate a DBMS. Based on
their proposed framework, they choose query plans that reduce energy consumption.
In [10], cost-based driven approach is proposed to generate query plans minimizing
the peak power. In [19], genetic algorithm with a fitness function based on a energy
consumption cost model, is given to select materialize views reducing energy and
optimizing queries. The work by Xu et al. [23] is close in spirit to our proposal in this
paper. They integrate their cost model into the DBMS to choose query plans with a
low power at the optimization phase. However, they do not study the consumed
energy at each phase of query optimizers. Moreover, they use a simple cost model
that do not capture the relationship between the model parameters.

Evaluate. Energy evaluation is a sensitive point and as a consequence it requires
accurate and transparent evaluation to show its savings. For transparent perspective,
we propose an open platform available at the forge of our laboratory, allowing
researchers, industrials and students to evaluate it.

3. Initiatives for integrating energy in DBMS
The proposed initiatives covers hardware and software. This categorization is

illustrated in Figure 1.

3.1. Hardware solutions
Hardware efforts towards green databases focus on using devices designed with

low energy consumption, or controlling the power mode of hardware by doing a
transition from high-power state to low-power state when the system is not active (idle
mode), is this also known as energy- proportionality [7]. Most modern hardware such
as processors, main memory, and disks come with this technology.

Processing device.
The processing device such as CPU is one of the main active power consumer

[15]. Since the CPU is power-proportional hardware, significant power can be saved
using techniques like Dynamic Voltage and Frequency Scaling (DVFS) with less
performance degradation. This has been well studied and verified in the stat-of-arts
works [22, 12]. The use of Graphics Processing Units (GPUs) in the database has
been shown to incur significant performance benefits. A recent study reported that
using a GPU is more energy efficient when the performance improvement is above a
certain bound, compared to a CPU-only solution [17].

Storage management.
Making storage management systems green in the context of database start to

make it appearance. Switch disks to stand-by mode lead to less energy consumption
compared to active mode. Other works use caching and perfecting techniques or
consolidating the most frequently accessed data via dynamic power management
algorithm to save energy [22]. Using solid state disks (SSDs) as a storage device by
databases to improve energy-efficiency is another worthy direction. Studies such as
[4] claim that using Smart SSD can be benefit from both the performance and the
energy consumption perspectives.

3.2. Software solutions
On the other hand, software-based solutions play an important role in energy

optimization. The basic idea is to redesign current algorithms and software
applications for better energy use.

Cost model.
Perhaps the most important task in this category is the design and the

implementation of an accurate energy cost model. Cost models are used to estimate
the energy consumption of a query plan or an optimization structure. Since they are
used by other software techniques to reduce energy, they shall be accurate enough
to give better results. The crucial issues have to be discussed: (i) the identification of
the relevant parameters that have an impact on energy, such as CPU, I/O and
communication costs and (ii) the relationship between these parameters (e.g:
linear/non-linear). They are usually calculated as the product of a basic operator such
as the number of tuples, disk pages, and network messages.

Azerbaijan Journal of High Performance Computing, 2(1), 2019

44

Fig. 1: Energy integration levels in DBMS

Borrow. As other technology, databases never stop borrowing green hardware
and platforms for their applications and DBMS [9].

Reform. This aspect consists in reforming existing software components to
minimize their energy use. They concern mainly two aspects: (1) the definition of cost
models to predict energy and (2) the proposition of optimization techniques to
reduce energy.

Energy cost models.
Prior works have been concentrated on building power cost models to predict

query power consumption. In [24, 23], the authors discussed the opportunities for
energy-based query optimization, and a power cost model is developed in the
conjunction of PostgreSQL’s cost model to predict the query power consumption. A
static power profile for each basic database operation in query processing is
defined. The power cost of a plan can be calculated from the basic SQL operations,
like CPU power cost to access tuple, power cost for reading/writing one page, and so
on, via different access methods and join operations using regression techniques.
The authors adapt their static model to dynamic workloads using a feedback control
mechanism to periodically update model parameters using real-time energy
measurements. The authors of [10] propose a technique for modeling the peak
power of database operations. A pipeline-based model of query execution plans was
developed to identify the sources of the peak power consumption for a query and to
recommend plans with low peak power. For each of these pipelines, a mathematical
function is applied, which takes as input the rates and sizes of the data flowing
through the pipeline operators, and as output an estimation of the peak power
consumption. The authors used piece-wise regression technique to build their cost
model. In the same direction, the work of [11] proposes a framework for energy-
aware database query processing. It augments query plans produced by traditional
query optimizer with an energy consumption prediction for some specific database
operators like select, project and join using linear regression technique. [16] attempts
to model energy and peak power of simple selection queries on single relations using
linear regression. In our previous works [18], we proposed cost models to predict the
power consumption of single and concurrent queries. Our model is based on pipeline
segmenting of the query and predicting their power based on its Inputs- outputs (IO)
and CPU costs, using polynomial regression techniques.

Optimization techniques.
The presence of energy consumption cost models motivate the research

community to propose cost-driven techniques. The work in [12] proposed an
Improved Query Energy-Efficiency (QED) by Introducing Explicit Delays mechanism,
which uses query aggregation to leverage common components of queries in a
workload. The work of [11] showed that processing a query as fast as possible does
not always turn out to be the most energy-efficient way to operate a DBMS. Based on
their proposed framework, they choose query plans that reduce energy consumption.
In [10], cost-based driven approach is proposed to generate query plans minimizing
the peak power. In [19], genetic algorithm with a fitness function based on a energy
consumption cost model, is given to select materialize views reducing energy and
optimizing queries. The work by Xu et al. [23] is close in spirit to our proposal in this
paper. They integrate their cost model into the DBMS to choose query plans with a
low power at the optimization phase. However, they do not study the consumed
energy at each phase of query optimizers. Moreover, they use a simple cost model
that do not capture the relationship between the model parameters.

Evaluate. Energy evaluation is a sensitive point and as a consequence it requires
accurate and transparent evaluation to show its savings. For transparent perspective,
we propose an open platform available at the forge of our laboratory, allowing
researchers, industrials and students to evaluate it.

3. Initiatives for integrating energy in DBMS
The proposed initiatives covers hardware and software. This categorization is

illustrated in Figure 1.

3.1. Hardware solutions
Hardware efforts towards green databases focus on using devices designed with

low energy consumption, or controlling the power mode of hardware by doing a
transition from high-power state to low-power state when the system is not active (idle
mode), is this also known as energy- proportionality [7]. Most modern hardware such
as processors, main memory, and disks come with this technology.

Processing device.
The processing device such as CPU is one of the main active power consumer

[15]. Since the CPU is power-proportional hardware, significant power can be saved
using techniques like Dynamic Voltage and Frequency Scaling (DVFS) with less
performance degradation. This has been well studied and verified in the stat-of-arts
works [22, 12]. The use of Graphics Processing Units (GPUs) in the database has
been shown to incur significant performance benefits. A recent study reported that
using a GPU is more energy efficient when the performance improvement is above a
certain bound, compared to a CPU-only solution [17].

Storage management.
Making storage management systems green in the context of database start to

make it appearance. Switch disks to stand-by mode lead to less energy consumption
compared to active mode. Other works use caching and perfecting techniques or
consolidating the most frequently accessed data via dynamic power management
algorithm to save energy [22]. Using solid state disks (SSDs) as a storage device by
databases to improve energy-efficiency is another worthy direction. Studies such as
[4] claim that using Smart SSD can be benefit from both the performance and the
energy consumption perspectives.

3.2. Software solutions
On the other hand, software-based solutions play an important role in energy

optimization. The basic idea is to redesign current algorithms and software
applications for better energy use.

Cost model.
Perhaps the most important task in this category is the design and the

implementation of an accurate energy cost model. Cost models are used to estimate
the energy consumption of a query plan or an optimization structure. Since they are
used by other software techniques to reduce energy, they shall be accurate enough
to give better results. The crucial issues have to be discussed: (i) the identification of
the relevant parameters that have an impact on energy, such as CPU, I/O and
communication costs and (ii) the relationship between these parameters (e.g:
linear/non-linear). They are usually calculated as the product of a basic operator such
as the number of tuples, disk pages, and network messages.

Amine Roukh, Ladjel Bellatreche and Nikos Tziritas

45

Borrow. As other technology, databases never stop borrowing green hardware
and platforms for their applications and DBMS [9].

Reform. This aspect consists in reforming existing software components to
minimize their energy use. They concern mainly two aspects: (1) the definition of cost
models to predict energy and (2) the proposition of optimization techniques to
reduce energy.

Energy cost models.
Prior works have been concentrated on building power cost models to predict

query power consumption. In [24, 23], the authors discussed the opportunities for
energy-based query optimization, and a power cost model is developed in the
conjunction of PostgreSQL’s cost model to predict the query power consumption. A
static power profile for each basic database operation in query processing is
defined. The power cost of a plan can be calculated from the basic SQL operations,
like CPU power cost to access tuple, power cost for reading/writing one page, and so
on, via different access methods and join operations using regression techniques.
The authors adapt their static model to dynamic workloads using a feedback control
mechanism to periodically update model parameters using real-time energy
measurements. The authors of [10] propose a technique for modeling the peak
power of database operations. A pipeline-based model of query execution plans was
developed to identify the sources of the peak power consumption for a query and to
recommend plans with low peak power. For each of these pipelines, a mathematical
function is applied, which takes as input the rates and sizes of the data flowing
through the pipeline operators, and as output an estimation of the peak power
consumption. The authors used piece-wise regression technique to build their cost
model. In the same direction, the work of [11] proposes a framework for energy-
aware database query processing. It augments query plans produced by traditional
query optimizer with an energy consumption prediction for some specific database
operators like select, project and join using linear regression technique. [16] attempts
to model energy and peak power of simple selection queries on single relations using
linear regression. In our previous works [18], we proposed cost models to predict the
power consumption of single and concurrent queries. Our model is based on pipeline
segmenting of the query and predicting their power based on its Inputs- outputs (IO)
and CPU costs, using polynomial regression techniques.

Optimization techniques.
The presence of energy consumption cost models motivate the research

community to propose cost-driven techniques. The work in [12] proposed an
Improved Query Energy-Efficiency (QED) by Introducing Explicit Delays mechanism,
which uses query aggregation to leverage common components of queries in a
workload. The work of [11] showed that processing a query as fast as possible does
not always turn out to be the most energy-efficient way to operate a DBMS. Based on
their proposed framework, they choose query plans that reduce energy consumption.
In [10], cost-based driven approach is proposed to generate query plans minimizing
the peak power. In [19], genetic algorithm with a fitness function based on a energy
consumption cost model, is given to select materialize views reducing energy and
optimizing queries. The work by Xu et al. [23] is close in spirit to our proposal in this
paper. They integrate their cost model into the DBMS to choose query plans with a
low power at the optimization phase. However, they do not study the consumed
energy at each phase of query optimizers. Moreover, they use a simple cost model
that do not capture the relationship between the model parameters.

Evaluate. Energy evaluation is a sensitive point and as a consequence it requires
accurate and transparent evaluation to show its savings. For transparent perspective,
we propose an open platform available at the forge of our laboratory, allowing
researchers, industrials and students to evaluate it.

3. Initiatives for integrating energy in DBMS
The proposed initiatives covers hardware and software. This categorization is

illustrated in Figure 1.

3.1. Hardware solutions
Hardware efforts towards green databases focus on using devices designed with

low energy consumption, or controlling the power mode of hardware by doing a
transition from high-power state to low-power state when the system is not active (idle
mode), is this also known as energy- proportionality [7]. Most modern hardware such
as processors, main memory, and disks come with this technology.

Processing device.
The processing device such as CPU is one of the main active power consumer

[15]. Since the CPU is power-proportional hardware, significant power can be saved
using techniques like Dynamic Voltage and Frequency Scaling (DVFS) with less
performance degradation. This has been well studied and verified in the stat-of-arts
works [22, 12]. The use of Graphics Processing Units (GPUs) in the database has
been shown to incur significant performance benefits. A recent study reported that
using a GPU is more energy efficient when the performance improvement is above a
certain bound, compared to a CPU-only solution [17].

Storage management.
Making storage management systems green in the context of database start to

make it appearance. Switch disks to stand-by mode lead to less energy consumption
compared to active mode. Other works use caching and perfecting techniques or
consolidating the most frequently accessed data via dynamic power management
algorithm to save energy [22]. Using solid state disks (SSDs) as a storage device by
databases to improve energy-efficiency is another worthy direction. Studies such as
[4] claim that using Smart SSD can be benefit from both the performance and the
energy consumption perspectives.

3.2. Software solutions
On the other hand, software-based solutions play an important role in energy

optimization. The basic idea is to redesign current algorithms and software
applications for better energy use.

Cost model.
Perhaps the most important task in this category is the design and the

implementation of an accurate energy cost model. Cost models are used to estimate
the energy consumption of a query plan or an optimization structure. Since they are
used by other software techniques to reduce energy, they shall be accurate enough
to give better results. The crucial issues have to be discussed: (i) the identification of
the relevant parameters that have an impact on energy, such as CPU, I/O and
communication costs and (ii) the relationship between these parameters (e.g:
linear/non-linear). They are usually calculated as the product of a basic operator such
as the number of tuples, disk pages, and network messages.

 Query optimization.
The most used non-functional requirement by query optimizers represents the

workload performance. Choosing query plans with low-energy consumption without
sacrificing the performance was the motivation of several research studies [23, 10,
11]. Their main results show the existence of power-performance trade-off in
database query optimization. Up to 22% total power saving has been reported in
[23].

Buffer management.
New caching and replacement policies will be needed to reflect energy costs for

accessing and storing data in memory. Usually, queries have some common
components, such as common subexpressions, we can use multi-query optimization
techniques to optimize the workload. This technique can be exploited further to
improve the average per-query energy consumption [12].

Physical design.
Several studies have recommended the integration of energy in the physical

design of database [6, 8]. Recently, in [19], a energy-driven method for selecting
materialized views leads to up to 38% total power saving.

In this work, we consider software approach, specifically the query optimization
technique to incorporate the energy dimension.

4. Our green-query optimizer
In order to build energy-aware query optimizers, we first propose an audit of each

component to understand whether it is energy-sensitive or not. After our audit, we
present in details our methodology to construct our optimizer.

4.1. An Audit of Query Optimizers
Recall that a query optimizer is the responsible to execute queries respecting one

or several non functional requirements such as response time. The process of
executing a given query passes through four main steps: (i) parsing, (ii) rewriting, (iii)
planning and optimizing and (iv) executing (cf. Figure 2). To illustrate these steps, we
consider PostgreSQL DBMS as a case study.

4.2. Parse
The parser has to check the query string for valid syntax using a set of grammar

rules. If the syntax is correct a parse tree is built up and handed back. After the
parser completes, the transformation process takes the parse tree as input and does
the semantic interpretation needed to understand which tables, functions, and
operators are referenced by the query. The data structure that is built to represent
this information is called the query tree. The cost of this phase is generally ignored by
the DBMS since its finish very quickly. We follow the same logic and suppose that the
energy consumption is negligent.

4.3. Rewrite
The query rewrite processes the tree handed back by the parser stage and it

rewrites the tree to an alternate using a set of rules. The rules are system or user
defined. This rules-based phase is also used in materialization views query rewriting.
As for the previous step, the cost is ignored due to the fast completion.

4.4. Plan/Optimize
The task of the planner/optimizer is to create an optimal execution plan. A given

SQL query can be actually executed in different ways, each of which will produce the
same set of results. The optimizer’s task is to estimate the cost of executing each
plan using a cost-based approach and find out which one is expected to run the
fastest.

4.4.1. Plan.
The planner starts by generating plans for scanning each individual relation

(table) used in the query. The possible plans are determined by the available indexes
on each relation. There is always the possibility of performing a sequential scan on a
relation, so a sequential scan plan is always created. If the query requires joining two
or more relations, plans for joining relations are considered after all feasible plans
have been found for scanning single relations. The available join strategies are:
nested loop join, merge join, hash join. When the query involves more than two
relations, the final result must be built up by a tree of join steps, each with two inputs.
The planner examines different possible join sequences to find the cheapest one. If
the query uses less than a certain defined threshold, a near-exhaustive search is
conducted to find the best join sequences, otherwise, a heuristics based genetic
algorithm is used.

To study the effects of such searching strategies, let us consider the query Q8 of
the TPC-H benchmark. This a complex query which involves the join of 7 tables. We
modify the planner of PostgreSQL in three manners: (i) searching for plan with actual
DBMS strategy (ii) using the genetic algorithm, and (iii) manually by forcing the
planner to choose a certain plan. For each strategy, we calculate its execution time,
and the total energy consumption during query execution against 10GB datasets.
Results are presented in Table 1.

From the table, we can see that setting the query plan manually gives the betters
results, in both time and energy. While the default searching algorithms (semi-
exhaustive) leads to a slightly more execution time and energy consumption. The
genetic algorithm gives the worst results in this example, perhaps due to the small
number of tables in the query, since this strategy is used by the DBMS where there is
more than 12 tables. Considering this small number of tables, if we go in real
operational databases where there is a hundred of tables, the searching strategy
used by the planner can leads a noticeable energy consumption. Setting the query
plan of queries manually by the database administrator is recommended in large
databases to gain in energy efficiency.

4.4.2. Optimize.
To evaluate the response time for each execution plan, cost functions are defined

for each basic SQL operator. The general formula to estimate the cost of operator op
can be expressed as:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶%& = 	𝛼𝛼	 × 	𝐼𝐼/𝑂𝑂	 ⊕ 	𝛽𝛽	 × 	𝐶𝐶𝐶𝐶𝐶𝐶	 ⊕ 	𝛾𝛾	 × 	𝑁𝑁𝑁𝑁𝑁𝑁 (1)
Where I/O, CPU and Net are the estimated pages numbers, tuples numbers,

communication messages, respectively, required to execute op. They are usually
calculated using database statistics and selectivity formulas. The coefficients a/3 and
7 are used to convert estimations to the desired unit (e.g: time, energy). 0 represents
the relationship between the parameters (linear, non-linear). The coefficients
parameters and relationship can be obtained using various techniques such as
calibration, regression and statistics. Thus, energy cost model must be defined at this
stage with the relevant parameters.

Azerbaijan Journal of High Performance Computing, 2(1), 2019

46

Query optimization.
The most used non-functional requirement by query optimizers represents the

workload performance. Choosing query plans with low-energy consumption without
sacrificing the performance was the motivation of several research studies [23, 10,
11]. Their main results show the existence of power-performance trade-off in
database query optimization. Up to 22% total power saving has been reported in
[23].

Buffer management.
New caching and replacement policies will be needed to reflect energy costs for

accessing and storing data in memory. Usually, queries have some common
components, such as common subexpressions, we can use multi-query optimization
techniques to optimize the workload. This technique can be exploited further to
improve the average per-query energy consumption [12].

Physical design.
Several studies have recommended the integration of energy in the physical

design of database [6, 8]. Recently, in [19], a energy-driven method for selecting
materialized views leads to up to 38% total power saving.

In this work, we consider software approach, specifically the query optimization
technique to incorporate the energy dimension.

4. Our green-query optimizer
In order to build energy-aware query optimizers, we first propose an audit of each

component to understand whether it is energy-sensitive or not. After our audit, we
present in details our methodology to construct our optimizer.

4.1. An Audit of Query Optimizers
Recall that a query optimizer is the responsible to execute queries respecting one

or several non functional requirements such as response time. The process of
executing a given query passes through four main steps: (i) parsing, (ii) rewriting, (iii)
planning and optimizing and (iv) executing (cf. Figure 2). To illustrate these steps, we
consider PostgreSQL DBMS as a case study.

4.2. Parse
The parser has to check the query string for valid syntax using a set of grammar

rules. If the syntax is correct a parse tree is built up and handed back. After the
parser completes, the transformation process takes the parse tree as input and does
the semantic interpretation needed to understand which tables, functions, and
operators are referenced by the query. The data structure that is built to represent
this information is called the query tree. The cost of this phase is generally ignored by
the DBMS since its finish very quickly. We follow the same logic and suppose that the
energy consumption is negligent.

4.3. Rewrite
The query rewrite processes the tree handed back by the parser stage and it

rewrites the tree to an alternate using a set of rules. The rules are system or user
defined. This rules-based phase is also used in materialization views query rewriting.
As for the previous step, the cost is ignored due to the fast completion.

4.4. Plan/Optimize
The task of the planner/optimizer is to create an optimal execution plan. A given

SQL query can be actually executed in different ways, each of which will produce the
same set of results. The optimizer’s task is to estimate the cost of executing each
plan using a cost-based approach and find out which one is expected to run the
fastest.

4.4.1. Plan.
The planner starts by generating plans for scanning each individual relation

(table) used in the query. The possible plans are determined by the available indexes
on each relation. There is always the possibility of performing a sequential scan on a
relation, so a sequential scan plan is always created. If the query requires joining two
or more relations, plans for joining relations are considered after all feasible plans
have been found for scanning single relations. The available join strategies are:
nested loop join, merge join, hash join. When the query involves more than two
relations, the final result must be built up by a tree of join steps, each with two inputs.
The planner examines different possible join sequences to find the cheapest one. If
the query uses less than a certain defined threshold, a near-exhaustive search is
conducted to find the best join sequences, otherwise, a heuristics based genetic
algorithm is used.

To study the effects of such searching strategies, let us consider the query Q8 of
the TPC-H benchmark. This a complex query which involves the join of 7 tables. We
modify the planner of PostgreSQL in three manners: (i) searching for plan with actual
DBMS strategy (ii) using the genetic algorithm, and (iii) manually by forcing the
planner to choose a certain plan. For each strategy, we calculate its execution time,
and the total energy consumption during query execution against 10GB datasets.
Results are presented in Table 1.

From the table, we can see that setting the query plan manually gives the betters
results, in both time and energy. While the default searching algorithms (semi-
exhaustive) leads to a slightly more execution time and energy consumption. The
genetic algorithm gives the worst results in this example, perhaps due to the small
number of tables in the query, since this strategy is used by the DBMS where there is
more than 12 tables. Considering this small number of tables, if we go in real
operational databases where there is a hundred of tables, the searching strategy
used by the planner can leads a noticeable energy consumption. Setting the query
plan of queries manually by the database administrator is recommended in large
databases to gain in energy efficiency.

4.4.2. Optimize.
To evaluate the response time for each execution plan, cost functions are defined

for each basic SQL operator. The general formula to estimate the cost of operator op
can be expressed as:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶%& = 	𝛼𝛼	 × 	𝐼𝐼/𝑂𝑂	 ⊕ 	𝛽𝛽	 × 	𝐶𝐶𝐶𝐶𝐶𝐶	 ⊕ 	𝛾𝛾	 × 	𝑁𝑁𝑁𝑁𝑁𝑁 (1)
Where I/O, CPU and Net are the estimated pages numbers, tuples numbers,

communication messages, respectively, required to execute op. They are usually
calculated using database statistics and selectivity formulas. The coefficients a/3 and
7 are used to convert estimations to the desired unit (e.g: time, energy). 0 represents
the relationship between the parameters (linear, non-linear). The coefficients
parameters and relationship can be obtained using various techniques such as
calibration, regression and statistics. Thus, energy cost model must be defined at this
stage with the relevant parameters.

Query optimization.
The most used non-functional requirement by query optimizers represents the

workload performance. Choosing query plans with low-energy consumption without
sacrificing the performance was the motivation of several research studies [23, 10,
11]. Their main results show the existence of power-performance trade-off in
database query optimization. Up to 22% total power saving has been reported in
[23].

Buffer management.
New caching and replacement policies will be needed to reflect energy costs for

accessing and storing data in memory. Usually, queries have some common
components, such as common subexpressions, we can use multi-query optimization
techniques to optimize the workload. This technique can be exploited further to
improve the average per-query energy consumption [12].

Physical design.
Several studies have recommended the integration of energy in the physical

design of database [6, 8]. Recently, in [19], a energy-driven method for selecting
materialized views leads to up to 38% total power saving.

In this work, we consider software approach, specifically the query optimization
technique to incorporate the energy dimension.

4. Our green-query optimizer
In order to build energy-aware query optimizers, we first propose an audit of each

component to understand whether it is energy-sensitive or not. After our audit, we
present in details our methodology to construct our optimizer.

4.1. An Audit of Query Optimizers
Recall that a query optimizer is the responsible to execute queries respecting one

or several non functional requirements such as response time. The process of
executing a given query passes through four main steps: (i) parsing, (ii) rewriting, (iii)
planning and optimizing and (iv) executing (cf. Figure 2). To illustrate these steps, we
consider PostgreSQL DBMS as a case study.

4.2. Parse
The parser has to check the query string for valid syntax using a set of grammar

rules. If the syntax is correct a parse tree is built up and handed back. After the
parser completes, the transformation process takes the parse tree as input and does
the semantic interpretation needed to understand which tables, functions, and
operators are referenced by the query. The data structure that is built to represent
this information is called the query tree. The cost of this phase is generally ignored by
the DBMS since its finish very quickly. We follow the same logic and suppose that the
energy consumption is negligent.

4.3. Rewrite
The query rewrite processes the tree handed back by the parser stage and it

rewrites the tree to an alternate using a set of rules. The rules are system or user
defined. This rules-based phase is also used in materialization views query rewriting.
As for the previous step, the cost is ignored due to the fast completion.

4.4. Plan/Optimize
The task of the planner/optimizer is to create an optimal execution plan. A given

SQL query can be actually executed in different ways, each of which will produce the
same set of results. The optimizer’s task is to estimate the cost of executing each
plan using a cost-based approach and find out which one is expected to run the
fastest.

4.4.1. Plan.
The planner starts by generating plans for scanning each individual relation

(table) used in the query. The possible plans are determined by the available indexes
on each relation. There is always the possibility of performing a sequential scan on a
relation, so a sequential scan plan is always created. If the query requires joining two
or more relations, plans for joining relations are considered after all feasible plans
have been found for scanning single relations. The available join strategies are:
nested loop join, merge join, hash join. When the query involves more than two
relations, the final result must be built up by a tree of join steps, each with two inputs.
The planner examines different possible join sequences to find the cheapest one. If
the query uses less than a certain defined threshold, a near-exhaustive search is
conducted to find the best join sequences, otherwise, a heuristics based genetic
algorithm is used.

To study the effects of such searching strategies, let us consider the query Q8 of
the TPC-H benchmark. This a complex query which involves the join of 7 tables. We
modify the planner of PostgreSQL in three manners: (i) searching for plan with actual
DBMS strategy (ii) using the genetic algorithm, and (iii) manually by forcing the
planner to choose a certain plan. For each strategy, we calculate its execution time,
and the total energy consumption during query execution against 10GB datasets.
Results are presented in Table 1.

From the table, we can see that setting the query plan manually gives the betters
results, in both time and energy. While the default searching algorithms (semi-
exhaustive) leads to a slightly more execution time and energy consumption. The
genetic algorithm gives the worst results in this example, perhaps due to the small
number of tables in the query, since this strategy is used by the DBMS where there is
more than 12 tables. Considering this small number of tables, if we go in real
operational databases where there is a hundred of tables, the searching strategy
used by the planner can leads a noticeable energy consumption. Setting the query
plan of queries manually by the database administrator is recommended in large
databases to gain in energy efficiency.

4.4.2. Optimize.
To evaluate the response time for each execution plan, cost functions are defined

for each basic SQL operator. The general formula to estimate the cost of operator op
can be expressed as:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶%& = 	𝛼𝛼	 × 	𝐼𝐼/𝑂𝑂	 ⊕ 	𝛽𝛽	 × 	𝐶𝐶𝐶𝐶𝐶𝐶	 ⊕ 	𝛾𝛾	 × 	𝑁𝑁𝑁𝑁𝑁𝑁 (1)
Where I/O, CPU and Net are the estimated pages numbers, tuples numbers,

communication messages, respectively, required to execute op. They are usually
calculated using database statistics and selectivity formulas. The coefficients a/3 and
7 are used to convert estimations to the desired unit (e.g: time, energy). 0 represents
the relationship between the parameters (linear, non-linear). The coefficients
parameters and relationship can be obtained using various techniques such as
calibration, regression and statistics. Thus, energy cost model must be defined at this
stage with the relevant parameters.

Fig. 2: Query optimizer steps

Amine Roukh, Ladjel Bellatreche and Nikos Tziritas

47

Query optimization.
The most used non-functional requirement by query optimizers represents the

workload performance. Choosing query plans with low-energy consumption without
sacrificing the performance was the motivation of several research studies [23, 10,
11]. Their main results show the existence of power-performance trade-off in
database query optimization. Up to 22% total power saving has been reported in
[23].

Buffer management.
New caching and replacement policies will be needed to reflect energy costs for

accessing and storing data in memory. Usually, queries have some common
components, such as common subexpressions, we can use multi-query optimization
techniques to optimize the workload. This technique can be exploited further to
improve the average per-query energy consumption [12].

Physical design.
Several studies have recommended the integration of energy in the physical

design of database [6, 8]. Recently, in [19], a energy-driven method for selecting
materialized views leads to up to 38% total power saving.

In this work, we consider software approach, specifically the query optimization
technique to incorporate the energy dimension.

4. Our green-query optimizer
In order to build energy-aware query optimizers, we first propose an audit of each

component to understand whether it is energy-sensitive or not. After our audit, we
present in details our methodology to construct our optimizer.

4.1. An Audit of Query Optimizers
Recall that a query optimizer is the responsible to execute queries respecting one

or several non functional requirements such as response time. The process of
executing a given query passes through four main steps: (i) parsing, (ii) rewriting, (iii)
planning and optimizing and (iv) executing (cf. Figure 2). To illustrate these steps, we
consider PostgreSQL DBMS as a case study.

4.2. Parse
The parser has to check the query string for valid syntax using a set of grammar

rules. If the syntax is correct a parse tree is built up and handed back. After the
parser completes, the transformation process takes the parse tree as input and does
the semantic interpretation needed to understand which tables, functions, and
operators are referenced by the query. The data structure that is built to represent
this information is called the query tree. The cost of this phase is generally ignored by
the DBMS since its finish very quickly. We follow the same logic and suppose that the
energy consumption is negligent.

4.3. Rewrite
The query rewrite processes the tree handed back by the parser stage and it

rewrites the tree to an alternate using a set of rules. The rules are system or user
defined. This rules-based phase is also used in materialization views query rewriting.
As for the previous step, the cost is ignored due to the fast completion.

4.4. Plan/Optimize
The task of the planner/optimizer is to create an optimal execution plan. A given

SQL query can be actually executed in different ways, each of which will produce the
same set of results. The optimizer’s task is to estimate the cost of executing each
plan using a cost-based approach and find out which one is expected to run the
fastest.

4.4.1. Plan.
The planner starts by generating plans for scanning each individual relation

(table) used in the query. The possible plans are determined by the available indexes
on each relation. There is always the possibility of performing a sequential scan on a
relation, so a sequential scan plan is always created. If the query requires joining two
or more relations, plans for joining relations are considered after all feasible plans
have been found for scanning single relations. The available join strategies are:
nested loop join, merge join, hash join. When the query involves more than two
relations, the final result must be built up by a tree of join steps, each with two inputs.
The planner examines different possible join sequences to find the cheapest one. If
the query uses less than a certain defined threshold, a near-exhaustive search is
conducted to find the best join sequences, otherwise, a heuristics based genetic
algorithm is used.

To study the effects of such searching strategies, let us consider the query Q8 of
the TPC-H benchmark. This a complex query which involves the join of 7 tables. We
modify the planner of PostgreSQL in three manners: (i) searching for plan with actual
DBMS strategy (ii) using the genetic algorithm, and (iii) manually by forcing the
planner to choose a certain plan. For each strategy, we calculate its execution time,
and the total energy consumption during query execution against 10GB datasets.
Results are presented in Table 1.

From the table, we can see that setting the query plan manually gives the betters
results, in both time and energy. While the default searching algorithms (semi-
exhaustive) leads to a slightly more execution time and energy consumption. The
genetic algorithm gives the worst results in this example, perhaps due to the small
number of tables in the query, since this strategy is used by the DBMS where there is
more than 12 tables. Considering this small number of tables, if we go in real
operational databases where there is a hundred of tables, the searching strategy
used by the planner can leads a noticeable energy consumption. Setting the query
plan of queries manually by the database administrator is recommended in large
databases to gain in energy efficiency.

4.4.2. Optimize.
To evaluate the response time for each execution plan, cost functions are defined

for each basic SQL operator. The general formula to estimate the cost of operator op
can be expressed as:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶%& = 	𝛼𝛼	 × 	𝐼𝐼/𝑂𝑂	 ⊕ 	𝛽𝛽	 × 	𝐶𝐶𝐶𝐶𝐶𝐶	 ⊕ 	𝛾𝛾	 × 	𝑁𝑁𝑁𝑁𝑁𝑁 (1)
Where I/O, CPU and Net are the estimated pages numbers, tuples numbers,

communication messages, respectively, required to execute op. They are usually
calculated using database statistics and selectivity formulas. The coefficients a/3 and
7 are used to convert estimations to the desired unit (e.g: time, energy). 0 represents
the relationship between the parameters (linear, non-linear). The coefficients
parameters and relationship can be obtained using various techniques such as
calibration, regression and statistics. Thus, energy cost model must be defined at this
stage with the relevant parameters.

Query optimization.
The most used non-functional requirement by query optimizers represents the

workload performance. Choosing query plans with low-energy consumption without
sacrificing the performance was the motivation of several research studies [23, 10,
11]. Their main results show the existence of power-performance trade-off in
database query optimization. Up to 22% total power saving has been reported in
[23].

Buffer management.
New caching and replacement policies will be needed to reflect energy costs for

accessing and storing data in memory. Usually, queries have some common
components, such as common subexpressions, we can use multi-query optimization
techniques to optimize the workload. This technique can be exploited further to
improve the average per-query energy consumption [12].

Physical design.
Several studies have recommended the integration of energy in the physical

design of database [6, 8]. Recently, in [19], a energy-driven method for selecting
materialized views leads to up to 38% total power saving.

In this work, we consider software approach, specifically the query optimization
technique to incorporate the energy dimension.

4. Our green-query optimizer
In order to build energy-aware query optimizers, we first propose an audit of each

component to understand whether it is energy-sensitive or not. After our audit, we
present in details our methodology to construct our optimizer.

4.1. An Audit of Query Optimizers
Recall that a query optimizer is the responsible to execute queries respecting one

or several non functional requirements such as response time. The process of
executing a given query passes through four main steps: (i) parsing, (ii) rewriting, (iii)
planning and optimizing and (iv) executing (cf. Figure 2). To illustrate these steps, we
consider PostgreSQL DBMS as a case study.

4.2. Parse
The parser has to check the query string for valid syntax using a set of grammar

rules. If the syntax is correct a parse tree is built up and handed back. After the
parser completes, the transformation process takes the parse tree as input and does
the semantic interpretation needed to understand which tables, functions, and
operators are referenced by the query. The data structure that is built to represent
this information is called the query tree. The cost of this phase is generally ignored by
the DBMS since its finish very quickly. We follow the same logic and suppose that the
energy consumption is negligent.

4.3. Rewrite
The query rewrite processes the tree handed back by the parser stage and it

rewrites the tree to an alternate using a set of rules. The rules are system or user
defined. This rules-based phase is also used in materialization views query rewriting.
As for the previous step, the cost is ignored due to the fast completion.

4.4. Plan/Optimize
The task of the planner/optimizer is to create an optimal execution plan. A given

SQL query can be actually executed in different ways, each of which will produce the
same set of results. The optimizer’s task is to estimate the cost of executing each
plan using a cost-based approach and find out which one is expected to run the
fastest.

4.4.1. Plan.
The planner starts by generating plans for scanning each individual relation

(table) used in the query. The possible plans are determined by the available indexes
on each relation. There is always the possibility of performing a sequential scan on a
relation, so a sequential scan plan is always created. If the query requires joining two
or more relations, plans for joining relations are considered after all feasible plans
have been found for scanning single relations. The available join strategies are:
nested loop join, merge join, hash join. When the query involves more than two
relations, the final result must be built up by a tree of join steps, each with two inputs.
The planner examines different possible join sequences to find the cheapest one. If
the query uses less than a certain defined threshold, a near-exhaustive search is
conducted to find the best join sequences, otherwise, a heuristics based genetic
algorithm is used.

To study the effects of such searching strategies, let us consider the query Q8 of
the TPC-H benchmark. This a complex query which involves the join of 7 tables. We
modify the planner of PostgreSQL in three manners: (i) searching for plan with actual
DBMS strategy (ii) using the genetic algorithm, and (iii) manually by forcing the
planner to choose a certain plan. For each strategy, we calculate its execution time,
and the total energy consumption during query execution against 10GB datasets.
Results are presented in Table 1.

From the table, we can see that setting the query plan manually gives the betters
results, in both time and energy. While the default searching algorithms (semi-
exhaustive) leads to a slightly more execution time and energy consumption. The
genetic algorithm gives the worst results in this example, perhaps due to the small
number of tables in the query, since this strategy is used by the DBMS where there is
more than 12 tables. Considering this small number of tables, if we go in real
operational databases where there is a hundred of tables, the searching strategy
used by the planner can leads a noticeable energy consumption. Setting the query
plan of queries manually by the database administrator is recommended in large
databases to gain in energy efficiency.

4.4.2. Optimize.
To evaluate the response time for each execution plan, cost functions are defined

for each basic SQL operator. The general formula to estimate the cost of operator op
can be expressed as:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶%& = 	𝛼𝛼	 × 	𝐼𝐼/𝑂𝑂	 ⊕ 	𝛽𝛽	 × 	𝐶𝐶𝐶𝐶𝐶𝐶	 ⊕ 	𝛾𝛾	 × 	𝑁𝑁𝑁𝑁𝑁𝑁 (1)
Where I/O, CPU and Net are the estimated pages numbers, tuples numbers,

communication messages, respectively, required to execute op. They are usually
calculated using database statistics and selectivity formulas. The coefficients a/3 and
7 are used to convert estimations to the desired unit (e.g: time, energy). 0 represents
the relationship between the parameters (linear, non-linear). The coefficients
parameters and relationship can be obtained using various techniques such as
calibration, regression and statistics. Thus, energy cost model must be defined at this
stage with the relevant parameters.

Table 1: Planning step for TPC-H Q8 with different searching strategies.

Search Algo Planning Time (s) Energy (j)
Default 0.110006 5200.362
GA 0.977013 5387.648
Manual 0.092054 5160.036

Azerbaijan Journal of High Performance Computing, 2(1), 2019

48

Query optimization.
The most used non-functional requirement by query optimizers represents the

workload performance. Choosing query plans with low-energy consumption without
sacrificing the performance was the motivation of several research studies [23, 10,
11]. Their main results show the existence of power-performance trade-off in
database query optimization. Up to 22% total power saving has been reported in
[23].

Buffer management.
New caching and replacement policies will be needed to reflect energy costs for

accessing and storing data in memory. Usually, queries have some common
components, such as common subexpressions, we can use multi-query optimization
techniques to optimize the workload. This technique can be exploited further to
improve the average per-query energy consumption [12].

Physical design.
Several studies have recommended the integration of energy in the physical

design of database [6, 8]. Recently, in [19], a energy-driven method for selecting
materialized views leads to up to 38% total power saving.

In this work, we consider software approach, specifically the query optimization
technique to incorporate the energy dimension.

4. Our green-query optimizer
In order to build energy-aware query optimizers, we first propose an audit of each

component to understand whether it is energy-sensitive or not. After our audit, we
present in details our methodology to construct our optimizer.

4.1. An Audit of Query Optimizers
Recall that a query optimizer is the responsible to execute queries respecting one

or several non functional requirements such as response time. The process of
executing a given query passes through four main steps: (i) parsing, (ii) rewriting, (iii)
planning and optimizing and (iv) executing (cf. Figure 2). To illustrate these steps, we
consider PostgreSQL DBMS as a case study.

4.2. Parse
The parser has to check the query string for valid syntax using a set of grammar

rules. If the syntax is correct a parse tree is built up and handed back. After the
parser completes, the transformation process takes the parse tree as input and does
the semantic interpretation needed to understand which tables, functions, and
operators are referenced by the query. The data structure that is built to represent
this information is called the query tree. The cost of this phase is generally ignored by
the DBMS since its finish very quickly. We follow the same logic and suppose that the
energy consumption is negligent.

4.3. Rewrite
The query rewrite processes the tree handed back by the parser stage and it

rewrites the tree to an alternate using a set of rules. The rules are system or user
defined. This rules-based phase is also used in materialization views query rewriting.
As for the previous step, the cost is ignored due to the fast completion.

4.4. Plan/Optimize
The task of the planner/optimizer is to create an optimal execution plan. A given

SQL query can be actually executed in different ways, each of which will produce the
same set of results. The optimizer’s task is to estimate the cost of executing each
plan using a cost-based approach and find out which one is expected to run the
fastest.

4.4.1. Plan.
The planner starts by generating plans for scanning each individual relation

(table) used in the query. The possible plans are determined by the available indexes
on each relation. There is always the possibility of performing a sequential scan on a
relation, so a sequential scan plan is always created. If the query requires joining two
or more relations, plans for joining relations are considered after all feasible plans
have been found for scanning single relations. The available join strategies are:
nested loop join, merge join, hash join. When the query involves more than two
relations, the final result must be built up by a tree of join steps, each with two inputs.
The planner examines different possible join sequences to find the cheapest one. If
the query uses less than a certain defined threshold, a near-exhaustive search is
conducted to find the best join sequences, otherwise, a heuristics based genetic
algorithm is used.

To study the effects of such searching strategies, let us consider the query Q8 of
the TPC-H benchmark. This a complex query which involves the join of 7 tables. We
modify the planner of PostgreSQL in three manners: (i) searching for plan with actual
DBMS strategy (ii) using the genetic algorithm, and (iii) manually by forcing the
planner to choose a certain plan. For each strategy, we calculate its execution time,
and the total energy consumption during query execution against 10GB datasets.
Results are presented in Table 1.

From the table, we can see that setting the query plan manually gives the betters
results, in both time and energy. While the default searching algorithms (semi-
exhaustive) leads to a slightly more execution time and energy consumption. The
genetic algorithm gives the worst results in this example, perhaps due to the small
number of tables in the query, since this strategy is used by the DBMS where there is
more than 12 tables. Considering this small number of tables, if we go in real
operational databases where there is a hundred of tables, the searching strategy
used by the planner can leads a noticeable energy consumption. Setting the query
plan of queries manually by the database administrator is recommended in large
databases to gain in energy efficiency.

4.4.2. Optimize.
To evaluate the response time for each execution plan, cost functions are defined

for each basic SQL operator. The general formula to estimate the cost of operator op
can be expressed as:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶%& = 	𝛼𝛼	 × 	𝐼𝐼/𝑂𝑂	 ⊕ 	𝛽𝛽	 × 	𝐶𝐶𝐶𝐶𝐶𝐶	 ⊕ 	𝛾𝛾	 × 	𝑁𝑁𝑁𝑁𝑁𝑁 (1)
Where I/O, CPU and Net are the estimated pages numbers, tuples numbers,

communication messages, respectively, required to execute op. They are usually
calculated using database statistics and selectivity formulas. The coefficients a/3 and
7 are used to convert estimations to the desired unit (e.g: time, energy). 0 represents
the relationship between the parameters (linear, non-linear). The coefficients
parameters and relationship can be obtained using various techniques such as
calibration, regression and statistics. Thus, energy cost model must be defined at this
stage with the relevant parameters.

The finished plan tree consists of sequential or index scans of the base relations,
plus nested-loop, merge or hash join nodes as needed, plus any auxiliary steps, such
as sort nodes or aggregate-function calculation nodes.

4.5. Executor
The executor takes the plan created by the planner/optimizer and recursively

processes it to extract the required set of rows. This is essentially a demand-pull
pipeline mechanism. Each time a plan node is called, it must deliver one more row, or
report that it is done delivering rows. Complex queries can involve many levels of
plan nodes, but the general approach is the same: each node computes and returns
its next output row each time it is called. Each node is also responsible for applying
any selection or projection expressions that were assigned to it by the planner.

To study the effect of the execution step on designing green-query optimizer, we
consider an example of query Q22 from the TPC-H benchmark. Figure 3 presents the
execution plan returned by the PostgreSQL query optimizer. As we shown in [18], the
power consumption is directly influenced by execution model of the DBMS.
Therefore, the execution plan can divided into a set of segments, we refer to these
segments as pipelines, the pipelines are the concurrent execution of a contiguous
sequence of operators. The pipeline segmentation of the optimizer plan for query
Q22 is shown in Figure 3, there are 4 pipelines, and a partial order of the execution of
these pipelines is enforced by their terminal blocking operators (e.g., PL3 cannot
begin until PL2 is complete).

In our previous study, we showed that when a query switches from one pipeline to
another, its power consumption also changes. During the execution of a pipeline, the
power consumption usually tends to be approximately constant [18]. Therefore, the
pipelining execution is very important and has a direct impact on power consumption
during query execution. The design of power cost model should take into
consideration the execution strategy, which is unfortunately ignored by Xu et al. [23].

4.6. Our Methodology
In this section, we describe the design and the implementation of our proposal

into PostgreSQL database. As we mentioned above, the planner/optimizer and the
executor stages have an impact on energy consumption and should considered in
designing any green-query optimizer. We extended the cost model, the query
optimizer and the communication interface of PostgreSQL to include the energy
dimension.

Inspired by the observation made in the previous section, we designed our cost-
based power model. The basic idea of this model is to decompose an execution plan
into a set of power independent pipelines delimited by blocking/semi- blocking
operators. Then for each pipeline, we estimate its power consumption based on its
CPU and I/O cost.

The work-flow of our methodology is described in Figure

4.7. Power Cost Model
In this section, we present our methodology for estimating energy consumption.

The characteristics of our model include: (i) the segmentation of an execution plan
into a set of pipelines, (ii) the utilization of the pipeline cost to build the regression
model, and (iii) the estimation of the power of future pipeline based on pipeline cost
and the regression equation.

4.7.1. Pipeline Segmentation.
When a query is submitted to the DBMS, the query optimizer chooses an

execution plan (cf. Figure 3). A physical operator can be either blocking or
nonblocking. An operator is blocking if it cannot produce any output tuple without
reading as least one of its inputs (e.g., sort operator). Based on the notion of
blocking/nonblocking operators, we decompose a plan in a set of pipelines delimited
by blocking operators. Thus, a pipeline consists of a set of concurrently running
operators [2]. As in previous work [2], the pipelines are created in an inductive
manner, starting from the leaf operators of the plan. Whenever we encounter a
blocking operator, the current pipeline ends, and a new pipeline starts. As a result,
the original execution plan can be viewed as a tree of pipelines, as showed in Figure
3.

4.7.2. Model Parameters.
Given a certain query, the query optimizer is responsible for estimating CPU and

I/O costs. Our strategy for pipeline modeling is to extend the cost models that are
built into the PostgreSQL database systems for query optimization. To process a
query, each operator in a pipeline needs to perform CPU and/or I/O tasks. The cost
of these tasks represents the “cost of the pipeline”, which is the active power to be
consumed in order to finish the takes. In this paper, we focus on a single server setup
and leave the study of distributed databases as future work. Thus, the
communication cost can be ignored. More formally, for a given query Q composed of
p pipelines {PL1, PL2, . . . , PLp}. The power cost Power(Q) of the query Q is given by
the following equation:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑄𝑄) = ∑ ;<
=>? %@AB(;C=)⋅EFGA(;C=)

EFGA(H)
 (2)

The time variable represents the pipelines and the query estimated time to finish
the execution. Unlike Xu et al. study which ignore the execution time [24], in our
model, the time is an important factor in determining the CPU or I/O dominated
pipeline in a query. The DBMS statistics module provide us with this information. Let
a pipeline PLi composed of n algebraic operations {OP1, OP2, …, OPn}. The power
cost Power (PLi) of the pipeline PLi is the sum of CPU and I/O costs of all its
operators:

𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑟𝑟(𝑃𝑃𝐿𝐿F) = 𝛽𝛽J&K ∑ 𝐶𝐶𝐶𝐶𝐶𝐶L=
MNO _𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝛽𝛽F%T 𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶M

L=
MNO (3)

Where 𝛽𝛽J&K and 𝛽𝛽F% are the model parameter (i.e., unit power costs) for the
pipelines. For a given query, the optimizer uses the query plan, cardinality estimates,
and cost equations for the operators in the plan to generate counts for various types
of I/O and CPU operations. It then converts these counts to time by using system-
specific parameters such as CPU speed and I/O transfer speed. Therefore, in our
model, we take I/O and CPU estimations already available in PostgreSQL before
converting it to time. The IO-COST is the predicted number of I/O it will require for
DBMS to run the specified operator. The CPU-COST is the predicted number of CPU
Tuples it will require for DBMS to run the specified operator.

4.7.3. Parameters Calibration.
The key challenge in equation (3) is to find model parameters 𝛽𝛽J&K and 𝛽𝛽F%. Simple

linear regression technique, as used in [24, 10, 11], did not work well in our
experiments, especially when data size change, this is because the relationships
between data size and power are not linear. In other words, processing large files
does not always translate in high power consumption. It depends more on the type of
queries (I/O or CPU intensive) and their execution time. Therefore, we employed

The finished plan tree consists of sequential or index scans of the base relations,
plus nested-loop, merge or hash join nodes as needed, plus any auxiliary steps, such
as sort nodes or aggregate-function calculation nodes.

4.5. Executor
The executor takes the plan created by the planner/optimizer and recursively

processes it to extract the required set of rows. This is essentially a demand-pull
pipeline mechanism. Each time a plan node is called, it must deliver one more row, or
report that it is done delivering rows. Complex queries can involve many levels of
plan nodes, but the general approach is the same: each node computes and returns
its next output row each time it is called. Each node is also responsible for applying
any selection or projection expressions that were assigned to it by the planner.

To study the effect of the execution step on designing green-query optimizer, we
consider an example of query Q22 from the TPC-H benchmark. Figure 3 presents the
execution plan returned by the PostgreSQL query optimizer. As we shown in [18], the
power consumption is directly influenced by execution model of the DBMS.
Therefore, the execution plan can divided into a set of segments, we refer to these
segments as pipelines, the pipelines are the concurrent execution of a contiguous
sequence of operators. The pipeline segmentation of the optimizer plan for query
Q22 is shown in Figure 3, there are 4 pipelines, and a partial order of the execution of
these pipelines is enforced by their terminal blocking operators (e.g., PL3 cannot
begin until PL2 is complete).

In our previous study, we showed that when a query switches from one pipeline to
another, its power consumption also changes. During the execution of a pipeline, the
power consumption usually tends to be approximately constant [18]. Therefore, the
pipelining execution is very important and has a direct impact on power consumption
during query execution. The design of power cost model should take into
consideration the execution strategy, which is unfortunately ignored by Xu et al. [23].

4.6. Our Methodology
In this section, we describe the design and the implementation of our proposal

into PostgreSQL database. As we mentioned above, the planner/optimizer and the
executor stages have an impact on energy consumption and should considered in
designing any green-query optimizer. We extended the cost model, the query
optimizer and the communication interface of PostgreSQL to include the energy
dimension.

Inspired by the observation made in the previous section, we designed our cost-
based power model. The basic idea of this model is to decompose an execution plan
into a set of power independent pipelines delimited by blocking/semi- blocking
operators. Then for each pipeline, we estimate its power consumption based on its
CPU and I/O cost.

The work-flow of our methodology is described in Figure

4.7. Power Cost Model
In this section, we present our methodology for estimating energy consumption.

The characteristics of our model include: (i) the segmentation of an execution plan
into a set of pipelines, (ii) the utilization of the pipeline cost to build the regression
model, and (iii) the estimation of the power of future pipeline based on pipeline cost
and the regression equation.

4.7.1. Pipeline Segmentation.
When a query is submitted to the DBMS, the query optimizer chooses an

execution plan (cf. Figure 3). A physical operator can be either blocking or
nonblocking. An operator is blocking if it cannot produce any output tuple without
reading as least one of its inputs (e.g., sort operator). Based on the notion of
blocking/nonblocking operators, we decompose a plan in a set of pipelines delimited
by blocking operators. Thus, a pipeline consists of a set of concurrently running
operators [2]. As in previous work [2], the pipelines are created in an inductive
manner, starting from the leaf operators of the plan. Whenever we encounter a
blocking operator, the current pipeline ends, and a new pipeline starts. As a result,
the original execution plan can be viewed as a tree of pipelines, as showed in Figure
3.

4.7.2. Model Parameters.
Given a certain query, the query optimizer is responsible for estimating CPU and

I/O costs. Our strategy for pipeline modeling is to extend the cost models that are
built into the PostgreSQL database systems for query optimization. To process a
query, each operator in a pipeline needs to perform CPU and/or I/O tasks. The cost
of these tasks represents the “cost of the pipeline”, which is the active power to be
consumed in order to finish the takes. In this paper, we focus on a single server setup
and leave the study of distributed databases as future work. Thus, the
communication cost can be ignored. More formally, for a given query Q composed of
p pipelines {PL1, PL2, . . . , PLp}. The power cost Power(Q) of the query Q is given by
the following equation:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑄𝑄) = ∑ ;<
=>? %@AB(;C=)⋅EFGA(;C=)

EFGA(H)
 (2)

The time variable represents the pipelines and the query estimated time to finish
the execution. Unlike Xu et al. study which ignore the execution time [24], in our
model, the time is an important factor in determining the CPU or I/O dominated
pipeline in a query. The DBMS statistics module provide us with this information. Let
a pipeline PLi composed of n algebraic operations {OP1, OP2, …, OPn}. The power
cost Power (PLi) of the pipeline PLi is the sum of CPU and I/O costs of all its
operators:

𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑟𝑟(𝑃𝑃𝐿𝐿F) = 𝛽𝛽J&K ∑ 𝐶𝐶𝐶𝐶𝐶𝐶L=
MNO _𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝛽𝛽F%T 𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶M

L=
MNO (3)

Where 𝛽𝛽J&K and 𝛽𝛽F% are the model parameter (i.e., unit power costs) for the
pipelines. For a given query, the optimizer uses the query plan, cardinality estimates,
and cost equations for the operators in the plan to generate counts for various types
of I/O and CPU operations. It then converts these counts to time by using system-
specific parameters such as CPU speed and I/O transfer speed. Therefore, in our
model, we take I/O and CPU estimations already available in PostgreSQL before
converting it to time. The IO-COST is the predicted number of I/O it will require for
DBMS to run the specified operator. The CPU-COST is the predicted number of CPU
Tuples it will require for DBMS to run the specified operator.

4.7.3. Parameters Calibration.
The key challenge in equation (3) is to find model parameters 𝛽𝛽J&K and 𝛽𝛽F%. Simple

linear regression technique, as used in [24, 10, 11], did not work well in our
experiments, especially when data size change, this is because the relationships
between data size and power are not linear. In other words, processing large files
does not always translate in high power consumption. It depends more on the type of
queries (I/O or CPU intensive) and their execution time. Therefore, we employed

Fig. 3: execution plan of TPC-H benchmark query Q22 with corresponding pipeline
annotation.

Amine Roukh, Ladjel Bellatreche and Nikos Tziritas

49

The finished plan tree consists of sequential or index scans of the base relations,
plus nested-loop, merge or hash join nodes as needed, plus any auxiliary steps, such
as sort nodes or aggregate-function calculation nodes.

4.5. Executor
The executor takes the plan created by the planner/optimizer and recursively

processes it to extract the required set of rows. This is essentially a demand-pull
pipeline mechanism. Each time a plan node is called, it must deliver one more row, or
report that it is done delivering rows. Complex queries can involve many levels of
plan nodes, but the general approach is the same: each node computes and returns
its next output row each time it is called. Each node is also responsible for applying
any selection or projection expressions that were assigned to it by the planner.

To study the effect of the execution step on designing green-query optimizer, we
consider an example of query Q22 from the TPC-H benchmark. Figure 3 presents the
execution plan returned by the PostgreSQL query optimizer. As we shown in [18], the
power consumption is directly influenced by execution model of the DBMS.
Therefore, the execution plan can divided into a set of segments, we refer to these
segments as pipelines, the pipelines are the concurrent execution of a contiguous
sequence of operators. The pipeline segmentation of the optimizer plan for query
Q22 is shown in Figure 3, there are 4 pipelines, and a partial order of the execution of
these pipelines is enforced by their terminal blocking operators (e.g., PL3 cannot
begin until PL2 is complete).

In our previous study, we showed that when a query switches from one pipeline to
another, its power consumption also changes. During the execution of a pipeline, the
power consumption usually tends to be approximately constant [18]. Therefore, the
pipelining execution is very important and has a direct impact on power consumption
during query execution. The design of power cost model should take into
consideration the execution strategy, which is unfortunately ignored by Xu et al. [23].

4.6. Our Methodology
In this section, we describe the design and the implementation of our proposal

into PostgreSQL database. As we mentioned above, the planner/optimizer and the
executor stages have an impact on energy consumption and should considered in
designing any green-query optimizer. We extended the cost model, the query
optimizer and the communication interface of PostgreSQL to include the energy
dimension.

Inspired by the observation made in the previous section, we designed our cost-
based power model. The basic idea of this model is to decompose an execution plan
into a set of power independent pipelines delimited by blocking/semi- blocking
operators. Then for each pipeline, we estimate its power consumption based on its
CPU and I/O cost.

The work-flow of our methodology is described in Figure

4.7. Power Cost Model
In this section, we present our methodology for estimating energy consumption.

The characteristics of our model include: (i) the segmentation of an execution plan
into a set of pipelines, (ii) the utilization of the pipeline cost to build the regression
model, and (iii) the estimation of the power of future pipeline based on pipeline cost
and the regression equation.

4.7.1. Pipeline Segmentation.
When a query is submitted to the DBMS, the query optimizer chooses an

execution plan (cf. Figure 3). A physical operator can be either blocking or
nonblocking. An operator is blocking if it cannot produce any output tuple without
reading as least one of its inputs (e.g., sort operator). Based on the notion of
blocking/nonblocking operators, we decompose a plan in a set of pipelines delimited
by blocking operators. Thus, a pipeline consists of a set of concurrently running
operators [2]. As in previous work [2], the pipelines are created in an inductive
manner, starting from the leaf operators of the plan. Whenever we encounter a
blocking operator, the current pipeline ends, and a new pipeline starts. As a result,
the original execution plan can be viewed as a tree of pipelines, as showed in Figure
3.

4.7.2. Model Parameters.
Given a certain query, the query optimizer is responsible for estimating CPU and

I/O costs. Our strategy for pipeline modeling is to extend the cost models that are
built into the PostgreSQL database systems for query optimization. To process a
query, each operator in a pipeline needs to perform CPU and/or I/O tasks. The cost
of these tasks represents the “cost of the pipeline”, which is the active power to be
consumed in order to finish the takes. In this paper, we focus on a single server setup
and leave the study of distributed databases as future work. Thus, the
communication cost can be ignored. More formally, for a given query Q composed of
p pipelines {PL1, PL2, . . . , PLp}. The power cost Power(Q) of the query Q is given by
the following equation:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑄𝑄) = ∑ ;<
=>? %@AB(;C=)⋅EFGA(;C=)

EFGA(H)
 (2)

The time variable represents the pipelines and the query estimated time to finish
the execution. Unlike Xu et al. study which ignore the execution time [24], in our
model, the time is an important factor in determining the CPU or I/O dominated
pipeline in a query. The DBMS statistics module provide us with this information. Let
a pipeline PLi composed of n algebraic operations {OP1, OP2, …, OPn}. The power
cost Power (PLi) of the pipeline PLi is the sum of CPU and I/O costs of all its
operators:

𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑟𝑟(𝑃𝑃𝐿𝐿F) = 𝛽𝛽J&K ∑ 𝐶𝐶𝐶𝐶𝐶𝐶L=
MNO _𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝛽𝛽F%T 𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶M

L=
MNO (3)

Where 𝛽𝛽J&K and 𝛽𝛽F% are the model parameter (i.e., unit power costs) for the
pipelines. For a given query, the optimizer uses the query plan, cardinality estimates,
and cost equations for the operators in the plan to generate counts for various types
of I/O and CPU operations. It then converts these counts to time by using system-
specific parameters such as CPU speed and I/O transfer speed. Therefore, in our
model, we take I/O and CPU estimations already available in PostgreSQL before
converting it to time. The IO-COST is the predicted number of I/O it will require for
DBMS to run the specified operator. The CPU-COST is the predicted number of CPU
Tuples it will require for DBMS to run the specified operator.

4.7.3. Parameters Calibration.
The key challenge in equation (3) is to find model parameters 𝛽𝛽J&K and 𝛽𝛽F%. Simple

linear regression technique, as used in [24, 10, 11], did not work well in our
experiments, especially when data size change, this is because the relationships
between data size and power are not linear. In other words, processing large files
does not always translate in high power consumption. It depends more on the type of
queries (I/O or CPU intensive) and their execution time. Therefore, we employed

Fig. 4: The Design Methodology

Azerbaijan Journal of High Performance Computing, 2(1), 2019

50

The finished plan tree consists of sequential or index scans of the base relations,
plus nested-loop, merge or hash join nodes as needed, plus any auxiliary steps, such
as sort nodes or aggregate-function calculation nodes.

4.5. Executor
The executor takes the plan created by the planner/optimizer and recursively

processes it to extract the required set of rows. This is essentially a demand-pull
pipeline mechanism. Each time a plan node is called, it must deliver one more row, or
report that it is done delivering rows. Complex queries can involve many levels of
plan nodes, but the general approach is the same: each node computes and returns
its next output row each time it is called. Each node is also responsible for applying
any selection or projection expressions that were assigned to it by the planner.

To study the effect of the execution step on designing green-query optimizer, we
consider an example of query Q22 from the TPC-H benchmark. Figure 3 presents the
execution plan returned by the PostgreSQL query optimizer. As we shown in [18], the
power consumption is directly influenced by execution model of the DBMS.
Therefore, the execution plan can divided into a set of segments, we refer to these
segments as pipelines, the pipelines are the concurrent execution of a contiguous
sequence of operators. The pipeline segmentation of the optimizer plan for query
Q22 is shown in Figure 3, there are 4 pipelines, and a partial order of the execution of
these pipelines is enforced by their terminal blocking operators (e.g., PL3 cannot
begin until PL2 is complete).

In our previous study, we showed that when a query switches from one pipeline to
another, its power consumption also changes. During the execution of a pipeline, the
power consumption usually tends to be approximately constant [18]. Therefore, the
pipelining execution is very important and has a direct impact on power consumption
during query execution. The design of power cost model should take into
consideration the execution strategy, which is unfortunately ignored by Xu et al. [23].

4.6. Our Methodology
In this section, we describe the design and the implementation of our proposal

into PostgreSQL database. As we mentioned above, the planner/optimizer and the
executor stages have an impact on energy consumption and should considered in
designing any green-query optimizer. We extended the cost model, the query
optimizer and the communication interface of PostgreSQL to include the energy
dimension.

Inspired by the observation made in the previous section, we designed our cost-
based power model. The basic idea of this model is to decompose an execution plan
into a set of power independent pipelines delimited by blocking/semi- blocking
operators. Then for each pipeline, we estimate its power consumption based on its
CPU and I/O cost.

The work-flow of our methodology is described in Figure

4.7. Power Cost Model
In this section, we present our methodology for estimating energy consumption.

The characteristics of our model include: (i) the segmentation of an execution plan
into a set of pipelines, (ii) the utilization of the pipeline cost to build the regression
model, and (iii) the estimation of the power of future pipeline based on pipeline cost
and the regression equation.

4.7.1. Pipeline Segmentation.
When a query is submitted to the DBMS, the query optimizer chooses an

execution plan (cf. Figure 3). A physical operator can be either blocking or
nonblocking. An operator is blocking if it cannot produce any output tuple without
reading as least one of its inputs (e.g., sort operator). Based on the notion of
blocking/nonblocking operators, we decompose a plan in a set of pipelines delimited
by blocking operators. Thus, a pipeline consists of a set of concurrently running
operators [2]. As in previous work [2], the pipelines are created in an inductive
manner, starting from the leaf operators of the plan. Whenever we encounter a
blocking operator, the current pipeline ends, and a new pipeline starts. As a result,
the original execution plan can be viewed as a tree of pipelines, as showed in Figure
3.

4.7.2. Model Parameters.
Given a certain query, the query optimizer is responsible for estimating CPU and

I/O costs. Our strategy for pipeline modeling is to extend the cost models that are
built into the PostgreSQL database systems for query optimization. To process a
query, each operator in a pipeline needs to perform CPU and/or I/O tasks. The cost
of these tasks represents the “cost of the pipeline”, which is the active power to be
consumed in order to finish the takes. In this paper, we focus on a single server setup
and leave the study of distributed databases as future work. Thus, the
communication cost can be ignored. More formally, for a given query Q composed of
p pipelines {PL1, PL2, . . . , PLp}. The power cost Power(Q) of the query Q is given by
the following equation:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑄𝑄) = ∑ ;<
=>? %@AB(;C=)⋅EFGA(;C=)

EFGA(H)
 (2)

The time variable represents the pipelines and the query estimated time to finish
the execution. Unlike Xu et al. study which ignore the execution time [24], in our
model, the time is an important factor in determining the CPU or I/O dominated
pipeline in a query. The DBMS statistics module provide us with this information. Let
a pipeline PLi composed of n algebraic operations {OP1, OP2, …, OPn}. The power
cost Power (PLi) of the pipeline PLi is the sum of CPU and I/O costs of all its
operators:

𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑟𝑟(𝑃𝑃𝐿𝐿F) = 𝛽𝛽J&K ∑ 𝐶𝐶𝐶𝐶𝐶𝐶L=
MNO _𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝛽𝛽F%T 𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶M

L=
MNO (3)

Where 𝛽𝛽J&K and 𝛽𝛽F% are the model parameter (i.e., unit power costs) for the
pipelines. For a given query, the optimizer uses the query plan, cardinality estimates,
and cost equations for the operators in the plan to generate counts for various types
of I/O and CPU operations. It then converts these counts to time by using system-
specific parameters such as CPU speed and I/O transfer speed. Therefore, in our
model, we take I/O and CPU estimations already available in PostgreSQL before
converting it to time. The IO-COST is the predicted number of I/O it will require for
DBMS to run the specified operator. The CPU-COST is the predicted number of CPU
Tuples it will require for DBMS to run the specified operator.

4.7.3. Parameters Calibration.
The key challenge in equation (3) is to find model parameters 𝛽𝛽J&K and 𝛽𝛽F%. Simple

linear regression technique, as used in [24, 10, 11], did not work well in our
experiments, especially when data size change, this is because the relationships
between data size and power are not linear. In other words, processing large files
does not always translate in high power consumption. It depends more on the type of
queries (I/O or CPU intensive) and their execution time. Therefore, we employed

Amine Roukh, Ladjel Bellatreche and Nikos Tziritas

51

The finished plan tree consists of sequential or index scans of the base relations,
plus nested-loop, merge or hash join nodes as needed, plus any auxiliary steps, such
as sort nodes or aggregate-function calculation nodes.

4.5. Executor
The executor takes the plan created by the planner/optimizer and recursively

processes it to extract the required set of rows. This is essentially a demand-pull
pipeline mechanism. Each time a plan node is called, it must deliver one more row, or
report that it is done delivering rows. Complex queries can involve many levels of
plan nodes, but the general approach is the same: each node computes and returns
its next output row each time it is called. Each node is also responsible for applying
any selection or projection expressions that were assigned to it by the planner.

To study the effect of the execution step on designing green-query optimizer, we
consider an example of query Q22 from the TPC-H benchmark. Figure 3 presents the
execution plan returned by the PostgreSQL query optimizer. As we shown in [18], the
power consumption is directly influenced by execution model of the DBMS.
Therefore, the execution plan can divided into a set of segments, we refer to these
segments as pipelines, the pipelines are the concurrent execution of a contiguous
sequence of operators. The pipeline segmentation of the optimizer plan for query
Q22 is shown in Figure 3, there are 4 pipelines, and a partial order of the execution of
these pipelines is enforced by their terminal blocking operators (e.g., PL3 cannot
begin until PL2 is complete).

In our previous study, we showed that when a query switches from one pipeline to
another, its power consumption also changes. During the execution of a pipeline, the
power consumption usually tends to be approximately constant [18]. Therefore, the
pipelining execution is very important and has a direct impact on power consumption
during query execution. The design of power cost model should take into
consideration the execution strategy, which is unfortunately ignored by Xu et al. [23].

4.6. Our Methodology
In this section, we describe the design and the implementation of our proposal

into PostgreSQL database. As we mentioned above, the planner/optimizer and the
executor stages have an impact on energy consumption and should considered in
designing any green-query optimizer. We extended the cost model, the query
optimizer and the communication interface of PostgreSQL to include the energy
dimension.

Inspired by the observation made in the previous section, we designed our cost-
based power model. The basic idea of this model is to decompose an execution plan
into a set of power independent pipelines delimited by blocking/semi- blocking
operators. Then for each pipeline, we estimate its power consumption based on its
CPU and I/O cost.

The work-flow of our methodology is described in Figure

4.7. Power Cost Model
In this section, we present our methodology for estimating energy consumption.

The characteristics of our model include: (i) the segmentation of an execution plan
into a set of pipelines, (ii) the utilization of the pipeline cost to build the regression
model, and (iii) the estimation of the power of future pipeline based on pipeline cost
and the regression equation.

4.7.1. Pipeline Segmentation.
When a query is submitted to the DBMS, the query optimizer chooses an

execution plan (cf. Figure 3). A physical operator can be either blocking or
nonblocking. An operator is blocking if it cannot produce any output tuple without
reading as least one of its inputs (e.g., sort operator). Based on the notion of
blocking/nonblocking operators, we decompose a plan in a set of pipelines delimited
by blocking operators. Thus, a pipeline consists of a set of concurrently running
operators [2]. As in previous work [2], the pipelines are created in an inductive
manner, starting from the leaf operators of the plan. Whenever we encounter a
blocking operator, the current pipeline ends, and a new pipeline starts. As a result,
the original execution plan can be viewed as a tree of pipelines, as showed in Figure
3.

4.7.2. Model Parameters.
Given a certain query, the query optimizer is responsible for estimating CPU and

I/O costs. Our strategy for pipeline modeling is to extend the cost models that are
built into the PostgreSQL database systems for query optimization. To process a
query, each operator in a pipeline needs to perform CPU and/or I/O tasks. The cost
of these tasks represents the “cost of the pipeline”, which is the active power to be
consumed in order to finish the takes. In this paper, we focus on a single server setup
and leave the study of distributed databases as future work. Thus, the
communication cost can be ignored. More formally, for a given query Q composed of
p pipelines {PL1, PL2, . . . , PLp}. The power cost Power(Q) of the query Q is given by
the following equation:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑄𝑄) = ∑ ;<
=>? %@AB(;C=)⋅EFGA(;C=)

EFGA(H)
 (2)

The time variable represents the pipelines and the query estimated time to finish
the execution. Unlike Xu et al. study which ignore the execution time [24], in our
model, the time is an important factor in determining the CPU or I/O dominated
pipeline in a query. The DBMS statistics module provide us with this information. Let
a pipeline PLi composed of n algebraic operations {OP1, OP2, …, OPn}. The power
cost Power (PLi) of the pipeline PLi is the sum of CPU and I/O costs of all its
operators:

𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑟𝑟(𝑃𝑃𝐿𝐿F) = 𝛽𝛽J&K ∑ 𝐶𝐶𝐶𝐶𝐶𝐶L=
MNO _𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝛽𝛽F%T 𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶M

L=
MNO (3)

Where 𝛽𝛽J&K and 𝛽𝛽F% are the model parameter (i.e., unit power costs) for the
pipelines. For a given query, the optimizer uses the query plan, cardinality estimates,
and cost equations for the operators in the plan to generate counts for various types
of I/O and CPU operations. It then converts these counts to time by using system-
specific parameters such as CPU speed and I/O transfer speed. Therefore, in our
model, we take I/O and CPU estimations already available in PostgreSQL before
converting it to time. The IO-COST is the predicted number of I/O it will require for
DBMS to run the specified operator. The CPU-COST is the predicted number of CPU
Tuples it will require for DBMS to run the specified operator.

4.7.3. Parameters Calibration.
The key challenge in equation (3) is to find model parameters 𝛽𝛽J&K and 𝛽𝛽F%. Simple

linear regression technique, as used in [24, 10, 11], did not work well in our
experiments, especially when data size change, this is because the relationships
between data size and power are not linear. In other words, processing large files
does not always translate in high power consumption. It depends more on the type of
queries (I/O or CPU intensive) and their execution time. Therefore, we employed

(a) Performance oriented
plan

(b) Power oriented plan (c) Performance/power
traed-o oriented plan

Figure 5: The optimal plan for TPC-H query Q3 when changing user preferences.

multiple polynomial regression techniques. This method is suitable when there is a
nonlinear relationship between the independents variables and the corresponding
dependent variable. Based on our experiments, the order m=4 gives us the best
results (the residual sum of squares is the smallest). The power cost Power (PLi) of
the pipeline PLi is computed as:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃𝐿𝐿F) = 𝛽𝛽U + 𝛽𝛽O(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) + 𝛽𝛽V(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝑆𝑆𝑇𝑇) + 𝛽𝛽W(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶V) +
𝛽𝛽X(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶V) +	𝛽𝛽Y(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) +⋯+ 𝛽𝛽OW[𝐼𝐼𝑂𝑂\]^EX_ +

																																												+𝛽𝛽OX(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇X) + 𝜀𝜀 (4)
Where IO-COST, CPU-COST denote the pipeline I/O and CPU costs respectively,

these costs are calculated using the DBMS cost model functions, and e is a noise
term that can account for measurement error. The 𝛽𝛽 parameters are regression
coefficients that will be estimated while learning the model from training data. Thus,
the regression models are solved by estimating the model parameters 𝛽𝛽, and this is
typically done by finding the least-squares solution [13].

4.8. Plans Evaluation
The query optimizer evaluates each possible execution path and takes the fastest.

Adding energy criterion, we must adjust the comparison functions to reflect the
tradeoffs between energy cost and processing time. In order to give the database
administrator a solution with the desired trade-off, we propose to use the weighted
sum of the cost functions method. In this scalarization method, we calculate the
weighted sum of the cost functions so as to aggregate criterion’s and have an
equivalent single criterion to be minimized. This method is defined as follows:

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = ∑ 𝑤𝑤F𝑓𝑓F(𝑥𝑥)f
FNO (5)

g𝑤𝑤F

f

FNO

= 1

Where wj are the weighting coefficients representing the relative importance of the
𝑘𝑘 cost functions. 𝑓𝑓(𝑥𝑥) represents power cost function and performance cost function
respectively. We implemented these two coefficients as an external parameter in the
DBMS, so the database administrator or users can change them in the fly.

Figure 5 shows the optimal query plan returned by the modified query
planner/optimizer for TPC-H query Q3 and how it changes when user preferences
vary. Initially, we used a performance only optimization goal, the total estimated cost
is 371080 and the estimated total power is 153. Changing the goal to be only power,
the estimated cost increased to 626035 but the power cut down to 120. In the trade-
off configuration, the estimated cost is 377426 and the power is 134. In Figure 5a the
nested loop operator draws the high amount of power in the query (33 watts) but the
plan is chosen by the optimizer because it is very fast. In Figure 5b, we realise that
the merge join operator is the slowest in query, its estimated cost is 539200 but the
power is minimal. The two hash join operators used in Figure 5c give a good trade-
off, for a 1.7% of performance degradation, we get 12.4% of power saving.

4.9. EcoProD GUI
In this section, we describe the graphical user interface part of EcoProD. The GUI

helps manipulating EcoProD, changing parameters and showing in real time their
impact on the power consumption.

The EcoProD GUI interface is used to facilitates users manipulating the framework
settings and seeing their effect on the system. The interface is implemented using
C+-b programing language and Qt library. Figure 6 gives an overview of the main
GUI, which comprises several component modules:

4.9.1. Configuration.
This module is responsible for the connexion establishment with the DBMS server.

Users can also specify the path for the power meter driver in order to capture
realtime power consumption. The most important part here is the power/performance
settings, which decide the optimization goals to be performance or power oriented.

4.9.2. SQL Query.
In this module, users can give their SQL query to be executed. Queries supported

varies from simple transactional operations to very complex reporting operations
involving many tables with large data size. The execution is done in a separate
thread and the results are displayed in a tree table widget.

4.9.3. Power Time-line.
When the user execute a query, EcoProD dynamically displays via the power

meter the real time power consumption. After the query finished executing, the total
energy that has been consumed during query execution time is computed and
showed. This can gives users a real observation of the energy that has been saved
using the desired trade-off parameters. Also, users can compare between the
estimated and the real values to check model accuracy or further refine it.

4.9.4. Execution Plan.
When the user submit a query, the query optimizer will select their best execution

plan in respect to the pre-defined trade-off. The execution plan is displayed with
various informations, such as estimated cost, power consumption, I/O and CPU costs
for every physical operator through mouse-hovering events. Also, the pipeline
notation is demonstrated, as shown in Figure 6 (4), the pipeline trees are grouped
with the same color. The GUI shows how the trade-off parameters affect the
generated plan. Thus, we can help users better understand and interpret runtime
optimization informations and pipeline notation.

5. Experiments and results
To evaluate the effectiveness of our proposal, we conduct several experiments.

Next we present our experimental machine to compute the energy and the used
datasets and simulator.

5.1. Experiment Setup
We use a similar setup used in the state-of-arts [11, 24, 10]. Our machine is

equipped with a “Watts UP? Pro ES” power meter with one second as a maximum
resolution. The device is directly placed between the power supply and the database
workstation under test to measure the workstation’s overall power consumption. The
power values are logged and processed in a separate monitor machine.

We used a Dell PowerEdge R310 workstation having a Xeon X3430 2.40GHz
processor and 32GB of DDR3 memory. To validate our model using di_erent low-end
hardware con_guration, we created another setup with a Dell Precision T1500
workstation equipped with an Intel Core i5 2.27GHz processor and 4GB of memory.
Our workstation machine is installed with our modi_ed version of PostgreSQL 9.4.5
DBMS under Ubuntu 14.04 LTS with kernel 3.13. We use TPC-H datasets and queries
with 10GB and 100GB scale factor. The TPC-H benchmark illustrates decision
support systems that examine large volumes of data, execute di_erent types of

Azerbaijan Journal of High Performance Computing, 2(1), 2019

52

multiple polynomial regression techniques. This method is suitable when there is a
nonlinear relationship between the independents variables and the corresponding
dependent variable. Based on our experiments, the order m=4 gives us the best
results (the residual sum of squares is the smallest). The power cost Power (PLi) of
the pipeline PLi is computed as:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃𝐿𝐿F) = 𝛽𝛽U + 𝛽𝛽O(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) + 𝛽𝛽V(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝑆𝑆𝑇𝑇) + 𝛽𝛽W(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶V) +
𝛽𝛽X(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶V) +	𝛽𝛽Y(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) +⋯+ 𝛽𝛽OW[𝐼𝐼𝑂𝑂\]^EX_ +

																																												+𝛽𝛽OX(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇X) + 𝜀𝜀 (4)
Where IO-COST, CPU-COST denote the pipeline I/O and CPU costs respectively,

these costs are calculated using the DBMS cost model functions, and e is a noise
term that can account for measurement error. The 𝛽𝛽 parameters are regression
coefficients that will be estimated while learning the model from training data. Thus,
the regression models are solved by estimating the model parameters 𝛽𝛽, and this is
typically done by finding the least-squares solution [13].

4.8. Plans Evaluation
The query optimizer evaluates each possible execution path and takes the fastest.

Adding energy criterion, we must adjust the comparison functions to reflect the
tradeoffs between energy cost and processing time. In order to give the database
administrator a solution with the desired trade-off, we propose to use the weighted
sum of the cost functions method. In this scalarization method, we calculate the
weighted sum of the cost functions so as to aggregate criterion’s and have an
equivalent single criterion to be minimized. This method is defined as follows:

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = ∑ 𝑤𝑤F𝑓𝑓F(𝑥𝑥)f
FNO (5)

g𝑤𝑤F

f

FNO

= 1

Where wj are the weighting coefficients representing the relative importance of the
𝑘𝑘 cost functions. 𝑓𝑓(𝑥𝑥) represents power cost function and performance cost function
respectively. We implemented these two coefficients as an external parameter in the
DBMS, so the database administrator or users can change them in the fly.

Figure 5 shows the optimal query plan returned by the modified query
planner/optimizer for TPC-H query Q3 and how it changes when user preferences
vary. Initially, we used a performance only optimization goal, the total estimated cost
is 371080 and the estimated total power is 153. Changing the goal to be only power,
the estimated cost increased to 626035 but the power cut down to 120. In the trade-
off configuration, the estimated cost is 377426 and the power is 134. In Figure 5a the
nested loop operator draws the high amount of power in the query (33 watts) but the
plan is chosen by the optimizer because it is very fast. In Figure 5b, we realise that
the merge join operator is the slowest in query, its estimated cost is 539200 but the
power is minimal. The two hash join operators used in Figure 5c give a good trade-
off, for a 1.7% of performance degradation, we get 12.4% of power saving.

4.9. EcoProD GUI
In this section, we describe the graphical user interface part of EcoProD. The GUI

helps manipulating EcoProD, changing parameters and showing in real time their
impact on the power consumption.

The EcoProD GUI interface is used to facilitates users manipulating the framework
settings and seeing their effect on the system. The interface is implemented using
C+-b programing language and Qt library. Figure 6 gives an overview of the main
GUI, which comprises several component modules:

4.9.1. Configuration.
This module is responsible for the connexion establishment with the DBMS server.

Users can also specify the path for the power meter driver in order to capture
realtime power consumption. The most important part here is the power/performance
settings, which decide the optimization goals to be performance or power oriented.

4.9.2. SQL Query.
In this module, users can give their SQL query to be executed. Queries supported

varies from simple transactional operations to very complex reporting operations
involving many tables with large data size. The execution is done in a separate
thread and the results are displayed in a tree table widget.

4.9.3. Power Time-line.
When the user execute a query, EcoProD dynamically displays via the power

meter the real time power consumption. After the query finished executing, the total
energy that has been consumed during query execution time is computed and
showed. This can gives users a real observation of the energy that has been saved
using the desired trade-off parameters. Also, users can compare between the
estimated and the real values to check model accuracy or further refine it.

4.9.4. Execution Plan.
When the user submit a query, the query optimizer will select their best execution

plan in respect to the pre-defined trade-off. The execution plan is displayed with
various informations, such as estimated cost, power consumption, I/O and CPU costs
for every physical operator through mouse-hovering events. Also, the pipeline
notation is demonstrated, as shown in Figure 6 (4), the pipeline trees are grouped
with the same color. The GUI shows how the trade-off parameters affect the
generated plan. Thus, we can help users better understand and interpret runtime
optimization informations and pipeline notation.

5. Experiments and results
To evaluate the effectiveness of our proposal, we conduct several experiments.

Next we present our experimental machine to compute the energy and the used
datasets and simulator.

5.1. Experiment Setup
We use a similar setup used in the state-of-arts [11, 24, 10]. Our machine is

equipped with a “Watts UP? Pro ES” power meter with one second as a maximum
resolution. The device is directly placed between the power supply and the database
workstation under test to measure the workstation’s overall power consumption. The
power values are logged and processed in a separate monitor machine.

We used a Dell PowerEdge R310 workstation having a Xeon X3430 2.40GHz
processor and 32GB of DDR3 memory. To validate our model using di_erent low-end
hardware con_guration, we created another setup with a Dell Precision T1500
workstation equipped with an Intel Core i5 2.27GHz processor and 4GB of memory.
Our workstation machine is installed with our modi_ed version of PostgreSQL 9.4.5
DBMS under Ubuntu 14.04 LTS with kernel 3.13. We use TPC-H datasets and queries
with 10GB and 100GB scale factor. The TPC-H benchmark illustrates decision
support systems that examine large volumes of data, execute di_erent types of

Amine Roukh, Ladjel Bellatreche and Nikos Tziritas

53

multiple polynomial regression techniques. This method is suitable when there is a
nonlinear relationship between the independents variables and the corresponding
dependent variable. Based on our experiments, the order m=4 gives us the best
results (the residual sum of squares is the smallest). The power cost Power (PLi) of
the pipeline PLi is computed as:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃𝐿𝐿F) = 𝛽𝛽U + 𝛽𝛽O(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) + 𝛽𝛽V(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝑆𝑆𝑇𝑇) + 𝛽𝛽W(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶V) +
𝛽𝛽X(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶V) +	𝛽𝛽Y(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) +⋯+ 𝛽𝛽OW[𝐼𝐼𝑂𝑂\]^EX_ +

																																												+𝛽𝛽OX(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇X) + 𝜀𝜀 (4)
Where IO-COST, CPU-COST denote the pipeline I/O and CPU costs respectively,

these costs are calculated using the DBMS cost model functions, and e is a noise
term that can account for measurement error. The 𝛽𝛽 parameters are regression
coefficients that will be estimated while learning the model from training data. Thus,
the regression models are solved by estimating the model parameters 𝛽𝛽, and this is
typically done by finding the least-squares solution [13].

4.8. Plans Evaluation
The query optimizer evaluates each possible execution path and takes the fastest.

Adding energy criterion, we must adjust the comparison functions to reflect the
tradeoffs between energy cost and processing time. In order to give the database
administrator a solution with the desired trade-off, we propose to use the weighted
sum of the cost functions method. In this scalarization method, we calculate the
weighted sum of the cost functions so as to aggregate criterion’s and have an
equivalent single criterion to be minimized. This method is defined as follows:

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = ∑ 𝑤𝑤F𝑓𝑓F(𝑥𝑥)f
FNO (5)

g𝑤𝑤F

f

FNO

= 1

Where wj are the weighting coefficients representing the relative importance of the
𝑘𝑘 cost functions. 𝑓𝑓(𝑥𝑥) represents power cost function and performance cost function
respectively. We implemented these two coefficients as an external parameter in the
DBMS, so the database administrator or users can change them in the fly.

Figure 5 shows the optimal query plan returned by the modified query
planner/optimizer for TPC-H query Q3 and how it changes when user preferences
vary. Initially, we used a performance only optimization goal, the total estimated cost
is 371080 and the estimated total power is 153. Changing the goal to be only power,
the estimated cost increased to 626035 but the power cut down to 120. In the trade-
off configuration, the estimated cost is 377426 and the power is 134. In Figure 5a the
nested loop operator draws the high amount of power in the query (33 watts) but the
plan is chosen by the optimizer because it is very fast. In Figure 5b, we realise that
the merge join operator is the slowest in query, its estimated cost is 539200 but the
power is minimal. The two hash join operators used in Figure 5c give a good trade-
off, for a 1.7% of performance degradation, we get 12.4% of power saving.

4.9. EcoProD GUI
In this section, we describe the graphical user interface part of EcoProD. The GUI

helps manipulating EcoProD, changing parameters and showing in real time their
impact on the power consumption.

The EcoProD GUI interface is used to facilitates users manipulating the framework
settings and seeing their effect on the system. The interface is implemented using
C+-b programing language and Qt library. Figure 6 gives an overview of the main
GUI, which comprises several component modules:

4.9.1. Configuration.
This module is responsible for the connexion establishment with the DBMS server.

Users can also specify the path for the power meter driver in order to capture
realtime power consumption. The most important part here is the power/performance
settings, which decide the optimization goals to be performance or power oriented.

4.9.2. SQL Query.
In this module, users can give their SQL query to be executed. Queries supported

varies from simple transactional operations to very complex reporting operations
involving many tables with large data size. The execution is done in a separate
thread and the results are displayed in a tree table widget.

4.9.3. Power Time-line.
When the user execute a query, EcoProD dynamically displays via the power

meter the real time power consumption. After the query finished executing, the total
energy that has been consumed during query execution time is computed and
showed. This can gives users a real observation of the energy that has been saved
using the desired trade-off parameters. Also, users can compare between the
estimated and the real values to check model accuracy or further refine it.

4.9.4. Execution Plan.
When the user submit a query, the query optimizer will select their best execution

plan in respect to the pre-defined trade-off. The execution plan is displayed with
various informations, such as estimated cost, power consumption, I/O and CPU costs
for every physical operator through mouse-hovering events. Also, the pipeline
notation is demonstrated, as shown in Figure 6 (4), the pipeline trees are grouped
with the same color. The GUI shows how the trade-off parameters affect the
generated plan. Thus, we can help users better understand and interpret runtime
optimization informations and pipeline notation.

5. Experiments and results
To evaluate the effectiveness of our proposal, we conduct several experiments.

Next we present our experimental machine to compute the energy and the used
datasets and simulator.

5.1. Experiment Setup
We use a similar setup used in the state-of-arts [11, 24, 10]. Our machine is

equipped with a “Watts UP? Pro ES” power meter with one second as a maximum
resolution. The device is directly placed between the power supply and the database
workstation under test to measure the workstation’s overall power consumption. The
power values are logged and processed in a separate monitor machine.

We used a Dell PowerEdge R310 workstation having a Xeon X3430 2.40GHz
processor and 32GB of DDR3 memory. To validate our model using di_erent low-end
hardware con_guration, we created another setup with a Dell Precision T1500
workstation equipped with an Intel Core i5 2.27GHz processor and 4GB of memory.
Our workstation machine is installed with our modi_ed version of PostgreSQL 9.4.5
DBMS under Ubuntu 14.04 LTS with kernel 3.13. We use TPC-H datasets and queries
with 10GB and 100GB scale factor. The TPC-H benchmark illustrates decision
support systems that examine large volumes of data, execute di_erent types of

Azerbaijan Journal of High Performance Computing, 2(1), 2019

54

multiple polynomial regression techniques. This method is suitable when there is a
nonlinear relationship between the independents variables and the corresponding
dependent variable. Based on our experiments, the order m=4 gives us the best
results (the residual sum of squares is the smallest). The power cost Power (PLi) of
the pipeline PLi is computed as:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃𝐿𝐿F) = 𝛽𝛽U + 𝛽𝛽O(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) + 𝛽𝛽V(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝑆𝑆𝑇𝑇) + 𝛽𝛽W(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶V) +
𝛽𝛽X(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶V) +	𝛽𝛽Y(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) +⋯+ 𝛽𝛽OW[𝐼𝐼𝑂𝑂\]^EX_ +

																																												+𝛽𝛽OX(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇X) + 𝜀𝜀 (4)
Where IO-COST, CPU-COST denote the pipeline I/O and CPU costs respectively,

these costs are calculated using the DBMS cost model functions, and e is a noise
term that can account for measurement error. The 𝛽𝛽 parameters are regression
coefficients that will be estimated while learning the model from training data. Thus,
the regression models are solved by estimating the model parameters 𝛽𝛽, and this is
typically done by finding the least-squares solution [13].

4.8. Plans Evaluation
The query optimizer evaluates each possible execution path and takes the fastest.

Adding energy criterion, we must adjust the comparison functions to reflect the
tradeoffs between energy cost and processing time. In order to give the database
administrator a solution with the desired trade-off, we propose to use the weighted
sum of the cost functions method. In this scalarization method, we calculate the
weighted sum of the cost functions so as to aggregate criterion’s and have an
equivalent single criterion to be minimized. This method is defined as follows:

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = ∑ 𝑤𝑤F𝑓𝑓F(𝑥𝑥)f
FNO (5)

g𝑤𝑤F

f

FNO

= 1

Where wj are the weighting coefficients representing the relative importance of the
𝑘𝑘 cost functions. 𝑓𝑓(𝑥𝑥) represents power cost function and performance cost function
respectively. We implemented these two coefficients as an external parameter in the
DBMS, so the database administrator or users can change them in the fly.

Figure 5 shows the optimal query plan returned by the modified query
planner/optimizer for TPC-H query Q3 and how it changes when user preferences
vary. Initially, we used a performance only optimization goal, the total estimated cost
is 371080 and the estimated total power is 153. Changing the goal to be only power,
the estimated cost increased to 626035 but the power cut down to 120. In the trade-
off configuration, the estimated cost is 377426 and the power is 134. In Figure 5a the
nested loop operator draws the high amount of power in the query (33 watts) but the
plan is chosen by the optimizer because it is very fast. In Figure 5b, we realise that
the merge join operator is the slowest in query, its estimated cost is 539200 but the
power is minimal. The two hash join operators used in Figure 5c give a good trade-
off, for a 1.7% of performance degradation, we get 12.4% of power saving.

4.9. EcoProD GUI
In this section, we describe the graphical user interface part of EcoProD. The GUI

helps manipulating EcoProD, changing parameters and showing in real time their
impact on the power consumption.

The EcoProD GUI interface is used to facilitates users manipulating the framework
settings and seeing their effect on the system. The interface is implemented using
C+-b programing language and Qt library. Figure 6 gives an overview of the main
GUI, which comprises several component modules:

4.9.1. Configuration.
This module is responsible for the connexion establishment with the DBMS server.

Users can also specify the path for the power meter driver in order to capture
realtime power consumption. The most important part here is the power/performance
settings, which decide the optimization goals to be performance or power oriented.

4.9.2. SQL Query.
In this module, users can give their SQL query to be executed. Queries supported

varies from simple transactional operations to very complex reporting operations
involving many tables with large data size. The execution is done in a separate
thread and the results are displayed in a tree table widget.

4.9.3. Power Time-line.
When the user execute a query, EcoProD dynamically displays via the power

meter the real time power consumption. After the query finished executing, the total
energy that has been consumed during query execution time is computed and
showed. This can gives users a real observation of the energy that has been saved
using the desired trade-off parameters. Also, users can compare between the
estimated and the real values to check model accuracy or further refine it.

4.9.4. Execution Plan.
When the user submit a query, the query optimizer will select their best execution

plan in respect to the pre-defined trade-off. The execution plan is displayed with
various informations, such as estimated cost, power consumption, I/O and CPU costs
for every physical operator through mouse-hovering events. Also, the pipeline
notation is demonstrated, as shown in Figure 6 (4), the pipeline trees are grouped
with the same color. The GUI shows how the trade-off parameters affect the
generated plan. Thus, we can help users better understand and interpret runtime
optimization informations and pipeline notation.

5. Experiments and results
To evaluate the effectiveness of our proposal, we conduct several experiments.

Next we present our experimental machine to compute the energy and the used
datasets and simulator.

5.1. Experiment Setup
We use a similar setup used in the state-of-arts [11, 24, 10]. Our machine is

equipped with a “Watts UP? Pro ES” power meter with one second as a maximum
resolution. The device is directly placed between the power supply and the database
workstation under test to measure the workstation’s overall power consumption. The
power values are logged and processed in a separate monitor machine.

We used a Dell PowerEdge R310 workstation having a Xeon X3430 2.40GHz
processor and 32GB of DDR3 memory. To validate our model using di_erent low-end
hardware con_guration, we created another setup with a Dell Precision T1500
workstation equipped with an Intel Core i5 2.27GHz processor and 4GB of memory.
Our workstation machine is installed with our modi_ed version of PostgreSQL 9.4.5
DBMS under Ubuntu 14.04 LTS with kernel 3.13. We use TPC-H datasets and queries
with 10GB and 100GB scale factor. The TPC-H benchmark illustrates decision
support systems that examine large volumes of data, execute di_erent types of

Fig. 6: EcoProD main GUI and its component module panels.

queries with a high degree of complexity. The queries are executed in an isolated
way. In our experiments, we consider three types of PostgreSQL con_guration: (1)

Power-PG, which is the con_guration that gives the minimal power cost, (2) Time-
PG, is the con_guration with minimal time cost, (3) Tradeo_-PG, using weighted sum
method with 𝜔𝜔O = 0.5, 𝜔𝜔V = 0.5

5.2. Power Model Building
As mentioned above, the _ parameters are estimated while learning the model

from training data. We then perform series of observations in which queries are well-
chosen, and the power values consumed by the system are collected using
measuring equipment while running these queries. In the same time, for each training
instance, we calculate their costs. To generate training instances, we create our
custom query workload based on TPC-H datasets. The workload containing queries
divided into two main categories: (i) queries with operations that exhaust the system
processor (CPU intensive queries) and (ii) queries with exhaustive storage subsystem
resource operations (I/O intensive queries). Note that the considered queries include:
queries with a single table scan, queries with multiple joins with different predicates.
They also contain sorting/grouping conditions and simple and advanced aggregation
functions as in [10]. After collecting power consumption training queries, we apply
the regression equation (4) using the R language software9 to find our model
parameters. Once we get them, an estimation of new queries is obtained without the
use of our measurement equipment.

5.3. Results
In this section, we present the results of our various experiments.

5.3.1. Cost Model Quality.
The results of the training phase in our two setup con_gurations, against the _tted

values from polynomial models (cf. Equation 4) are plotted in Figure 7. As we can
see, the predicted and actual power consumption approximate the diagonal lines
closely using our cost model in both congurations. Otherwise, in the server
conguration we can see some variance between the predicted and the observed
power for some training queries. Much of this can be attributed to the errors made by
the DBMS query optimizer in estimating IO and CPU costs for these queries when
there is a large working memory. This problem has been faced by query optimizers
for a long time, and all the performance models proposed so far suffer from this
problem, which is inherited from the cardinality estimation errors. In fact, the
estimation errors in the low levels pipeline are propagated to the upper level and may
significantly degrade the prediction accuracy.

5.3.2. Cost Model Estimation Error.
In this type of experiment, given the estimated power cost predicted by our model

(𝐸𝐸)., we compare it with the actually observed system active power consumption
(𝑀𝑀). To quantify the model accuracy, we used the following error ratio metric:

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
|𝑀𝑀 − 𝐸𝐸|
𝑀𝑀

To test our model with large datasets, we run all 22 queries of the TPC-H
benchmark against two database scale factor: 10GB and 100GB. Most of the queries
contain more than 4 pipelines. The results are shown in Table 2. We not that some
queries were aborted since they exceeded 72 hours of execution in our current test
environment.

As we can see from the table, the average error is typically small (0.1% in both
100GB and 10GB datasets), and the maximum error is usually below 5%. The
experiment shows the accuracy of our prediction model, indicating that is sufficiently
accurate for the intended applications.

5.3.3. Query Characterization.
To study the characterization of the TPC-H 22 query, we conduct a series of tests

using the modified PostgreSQL. In such tests and for every configurations (Time-PG,
Power- PG, Tradeoff-PG) we run all the TPC-H queries and collect the estimated
performance cost and power cost returned by the query optimizer. From Figure 8
(values are plotted on logarithmic scale) we can see that 16 of 22 queries have the
potential for power saving in the Power-PG configuration. Normally, the benefit of
power saving for these queries have a negative impact on the processing time cost
as shown in the same figure. However choosing the trade-off configuration can lead
to a good power saving values with less performance degradation. These queries are
characterized by an important number of SQL operators and various I/O and CPU
operations, which gives the query optimizer a variety of plans to choose from.
Therefore, we can achieve a good power saving queries from those plans. On the
other hand, the rest of queries that doesn’t show opportunities for power saving, are
simple queries with a few tables and SQL operators. This leads the query optimizer to
choose the same plan in every PostgreSQL configuration, duo to the small search
space of the plans.

5.3.4. Power Saving.
The purpose of this set of experiments is to investigate the benefit of our approach

in term of energy efficiency. We configured the DBMS to evaluate the performance
and power consumption cost models for the three configurations (Time- PG, Power-
PG, Tradeoff-PG). We repeat the same experiments under two different database
sizes: 10GB, and 100GB using TPC-H benchmark.

In Figure 9 we present the results of the experiments. We can clearly see that
workloads consume significantly lower power when we choose a query optimizer
configuration that favors low-power plans. When we compare the power-only (Power-
PG) with the performance-only (Time-PG) results, we observe a large margin in
power savings, the benefit is remarkably considerable in small database size,
perhaps this is due to the large amount of I/O operations and data processing
required by queries of big database size which translate in more power consumption
regardless of plan chosen by query optimizer. As expected, the savings of the
Tradeoff- PG configuration are smaller than those obtained by the power-only
experiment, but it still acceptable, especially, in 100GB datasets they are
approximate. On the other hand, the power-only configuration takes more time to
finish executing all the queries, which translate in a noticeable performance
degradation, this not surprising, if we gain in power we automatically lose in
performance. In the Tradeoff-PG configuration, the performance degradation is
actually acceptable if we consider the power gain achieved.

Note that all results of our experiments only considered direct power savings in a
single database server. This number could be even higher if we consider large-scale
data centers with thousands of servers and cooling systems.

6. Confidence bounds
In this section we will prove the confidence in our model data and results, using

Amine Roukh, Ladjel Bellatreche and Nikos Tziritas

55

Fig. 7: Training workload power consumption and regressions t.
(a) Regression Model t using high-end conguration
(b) Regression Model t using low-end conguration

queries with a high degree of complexity. The queries are executed in an isolated
way. In our experiments, we consider three types of PostgreSQL con_guration: (1)

Power-PG, which is the con_guration that gives the minimal power cost, (2) Time-
PG, is the con_guration with minimal time cost, (3) Tradeo_-PG, using weighted sum
method with 𝜔𝜔O = 0.5, 𝜔𝜔V = 0.5

5.2. Power Model Building
As mentioned above, the _ parameters are estimated while learning the model

from training data. We then perform series of observations in which queries are well-
chosen, and the power values consumed by the system are collected using
measuring equipment while running these queries. In the same time, for each training
instance, we calculate their costs. To generate training instances, we create our
custom query workload based on TPC-H datasets. The workload containing queries
divided into two main categories: (i) queries with operations that exhaust the system
processor (CPU intensive queries) and (ii) queries with exhaustive storage subsystem
resource operations (I/O intensive queries). Note that the considered queries include:
queries with a single table scan, queries with multiple joins with different predicates.
They also contain sorting/grouping conditions and simple and advanced aggregation
functions as in [10]. After collecting power consumption training queries, we apply
the regression equation (4) using the R language software9 to find our model
parameters. Once we get them, an estimation of new queries is obtained without the
use of our measurement equipment.

5.3. Results
In this section, we present the results of our various experiments.

5.3.1. Cost Model Quality.
The results of the training phase in our two setup con_gurations, against the _tted

values from polynomial models (cf. Equation 4) are plotted in Figure 7. As we can
see, the predicted and actual power consumption approximate the diagonal lines
closely using our cost model in both congurations. Otherwise, in the server
conguration we can see some variance between the predicted and the observed
power for some training queries. Much of this can be attributed to the errors made by
the DBMS query optimizer in estimating IO and CPU costs for these queries when
there is a large working memory. This problem has been faced by query optimizers
for a long time, and all the performance models proposed so far suffer from this
problem, which is inherited from the cardinality estimation errors. In fact, the
estimation errors in the low levels pipeline are propagated to the upper level and may
significantly degrade the prediction accuracy.

5.3.2. Cost Model Estimation Error.
In this type of experiment, given the estimated power cost predicted by our model

(𝐸𝐸)., we compare it with the actually observed system active power consumption
(𝑀𝑀). To quantify the model accuracy, we used the following error ratio metric:

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
|𝑀𝑀 − 𝐸𝐸|
𝑀𝑀

To test our model with large datasets, we run all 22 queries of the TPC-H
benchmark against two database scale factor: 10GB and 100GB. Most of the queries
contain more than 4 pipelines. The results are shown in Table 2. We not that some
queries were aborted since they exceeded 72 hours of execution in our current test
environment.

As we can see from the table, the average error is typically small (0.1% in both
100GB and 10GB datasets), and the maximum error is usually below 5%. The
experiment shows the accuracy of our prediction model, indicating that is sufficiently
accurate for the intended applications.

5.3.3. Query Characterization.
To study the characterization of the TPC-H 22 query, we conduct a series of tests

using the modified PostgreSQL. In such tests and for every configurations (Time-PG,
Power- PG, Tradeoff-PG) we run all the TPC-H queries and collect the estimated
performance cost and power cost returned by the query optimizer. From Figure 8
(values are plotted on logarithmic scale) we can see that 16 of 22 queries have the
potential for power saving in the Power-PG configuration. Normally, the benefit of
power saving for these queries have a negative impact on the processing time cost
as shown in the same figure. However choosing the trade-off configuration can lead
to a good power saving values with less performance degradation. These queries are
characterized by an important number of SQL operators and various I/O and CPU
operations, which gives the query optimizer a variety of plans to choose from.
Therefore, we can achieve a good power saving queries from those plans. On the
other hand, the rest of queries that doesn’t show opportunities for power saving, are
simple queries with a few tables and SQL operators. This leads the query optimizer to
choose the same plan in every PostgreSQL configuration, duo to the small search
space of the plans.

5.3.4. Power Saving.
The purpose of this set of experiments is to investigate the benefit of our approach

in term of energy efficiency. We configured the DBMS to evaluate the performance
and power consumption cost models for the three configurations (Time- PG, Power-
PG, Tradeoff-PG). We repeat the same experiments under two different database
sizes: 10GB, and 100GB using TPC-H benchmark.

In Figure 9 we present the results of the experiments. We can clearly see that
workloads consume significantly lower power when we choose a query optimizer
configuration that favors low-power plans. When we compare the power-only (Power-
PG) with the performance-only (Time-PG) results, we observe a large margin in
power savings, the benefit is remarkably considerable in small database size,
perhaps this is due to the large amount of I/O operations and data processing
required by queries of big database size which translate in more power consumption
regardless of plan chosen by query optimizer. As expected, the savings of the
Tradeoff- PG configuration are smaller than those obtained by the power-only
experiment, but it still acceptable, especially, in 100GB datasets they are
approximate. On the other hand, the power-only configuration takes more time to
finish executing all the queries, which translate in a noticeable performance
degradation, this not surprising, if we gain in power we automatically lose in
performance. In the Tradeoff-PG configuration, the performance degradation is
actually acceptable if we consider the power gain achieved.

Note that all results of our experiments only considered direct power savings in a
single database server. This number could be even higher if we consider large-scale
data centers with thousands of servers and cooling systems.

6. Confidence bounds
In this section we will prove the confidence in our model data and results, using

Azerbaijan Journal of High Performance Computing, 2(1), 2019

56

queries with a high degree of complexity. The queries are executed in an isolated
way. In our experiments, we consider three types of PostgreSQL con_guration: (1)

Power-PG, which is the con_guration that gives the minimal power cost, (2) Time-
PG, is the con_guration with minimal time cost, (3) Tradeo_-PG, using weighted sum
method with 𝜔𝜔O = 0.5, 𝜔𝜔V = 0.5

5.2. Power Model Building
As mentioned above, the _ parameters are estimated while learning the model

from training data. We then perform series of observations in which queries are well-
chosen, and the power values consumed by the system are collected using
measuring equipment while running these queries. In the same time, for each training
instance, we calculate their costs. To generate training instances, we create our
custom query workload based on TPC-H datasets. The workload containing queries
divided into two main categories: (i) queries with operations that exhaust the system
processor (CPU intensive queries) and (ii) queries with exhaustive storage subsystem
resource operations (I/O intensive queries). Note that the considered queries include:
queries with a single table scan, queries with multiple joins with different predicates.
They also contain sorting/grouping conditions and simple and advanced aggregation
functions as in [10]. After collecting power consumption training queries, we apply
the regression equation (4) using the R language software9 to find our model
parameters. Once we get them, an estimation of new queries is obtained without the
use of our measurement equipment.

5.3. Results
In this section, we present the results of our various experiments.

5.3.1. Cost Model Quality.
The results of the training phase in our two setup con_gurations, against the _tted

values from polynomial models (cf. Equation 4) are plotted in Figure 7. As we can
see, the predicted and actual power consumption approximate the diagonal lines
closely using our cost model in both congurations. Otherwise, in the server
conguration we can see some variance between the predicted and the observed
power for some training queries. Much of this can be attributed to the errors made by
the DBMS query optimizer in estimating IO and CPU costs for these queries when
there is a large working memory. This problem has been faced by query optimizers
for a long time, and all the performance models proposed so far suffer from this
problem, which is inherited from the cardinality estimation errors. In fact, the
estimation errors in the low levels pipeline are propagated to the upper level and may
significantly degrade the prediction accuracy.

5.3.2. Cost Model Estimation Error.
In this type of experiment, given the estimated power cost predicted by our model

(𝐸𝐸)., we compare it with the actually observed system active power consumption
(𝑀𝑀). To quantify the model accuracy, we used the following error ratio metric:

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
|𝑀𝑀 − 𝐸𝐸|
𝑀𝑀

To test our model with large datasets, we run all 22 queries of the TPC-H
benchmark against two database scale factor: 10GB and 100GB. Most of the queries
contain more than 4 pipelines. The results are shown in Table 2. We not that some
queries were aborted since they exceeded 72 hours of execution in our current test
environment.

As we can see from the table, the average error is typically small (0.1% in both
100GB and 10GB datasets), and the maximum error is usually below 5%. The
experiment shows the accuracy of our prediction model, indicating that is sufficiently
accurate for the intended applications.

5.3.3. Query Characterization.
To study the characterization of the TPC-H 22 query, we conduct a series of tests

using the modified PostgreSQL. In such tests and for every configurations (Time-PG,
Power- PG, Tradeoff-PG) we run all the TPC-H queries and collect the estimated
performance cost and power cost returned by the query optimizer. From Figure 8
(values are plotted on logarithmic scale) we can see that 16 of 22 queries have the
potential for power saving in the Power-PG configuration. Normally, the benefit of
power saving for these queries have a negative impact on the processing time cost
as shown in the same figure. However choosing the trade-off configuration can lead
to a good power saving values with less performance degradation. These queries are
characterized by an important number of SQL operators and various I/O and CPU
operations, which gives the query optimizer a variety of plans to choose from.
Therefore, we can achieve a good power saving queries from those plans. On the
other hand, the rest of queries that doesn’t show opportunities for power saving, are
simple queries with a few tables and SQL operators. This leads the query optimizer to
choose the same plan in every PostgreSQL configuration, duo to the small search
space of the plans.

5.3.4. Power Saving.
The purpose of this set of experiments is to investigate the benefit of our approach

in term of energy efficiency. We configured the DBMS to evaluate the performance
and power consumption cost models for the three configurations (Time- PG, Power-
PG, Tradeoff-PG). We repeat the same experiments under two different database
sizes: 10GB, and 100GB using TPC-H benchmark.

In Figure 9 we present the results of the experiments. We can clearly see that
workloads consume significantly lower power when we choose a query optimizer
configuration that favors low-power plans. When we compare the power-only (Power-
PG) with the performance-only (Time-PG) results, we observe a large margin in
power savings, the benefit is remarkably considerable in small database size,
perhaps this is due to the large amount of I/O operations and data processing
required by queries of big database size which translate in more power consumption
regardless of plan chosen by query optimizer. As expected, the savings of the
Tradeoff- PG configuration are smaller than those obtained by the power-only
experiment, but it still acceptable, especially, in 100GB datasets they are
approximate. On the other hand, the power-only configuration takes more time to
finish executing all the queries, which translate in a noticeable performance
degradation, this not surprising, if we gain in power we automatically lose in
performance. In the Tradeoff-PG configuration, the performance degradation is
actually acceptable if we consider the power gain achieved.

Note that all results of our experiments only considered direct power savings in a
single database server. This number could be even higher if we consider large-scale
data centers with thousands of servers and cooling systems.

6. Confidence bounds
In this section we will prove the confidence in our model data and results, using

Table 2: Estimation errors in TPC-H benchmark queries with different database sizes.

Query 10GB 100GB Query 10GB 100GB
Q1 0.01 0.002 Q11 0.04 -

Q2 - - Q12 0.009 0.00029
Q3 0.01 0.01 Q13 0.04 0.04
Q 4 0.006 0.005 Q14 0.02 0.02
Q5 0.01 0.03 Q15 0.004 0.02
Q6 0.04 0.02 Q16 0.05 0.0003
Q7 0.004 0.01 Q18 0.004 -
QS 0.0007 0.01 Q19 0.01 0.009
Q10 0.006 0.003 Q22 0.01 0.004

Amine Roukh, Ladjel Bellatreche and Nikos Tziritas

57

queries with a high degree of complexity. The queries are executed in an isolated
way. In our experiments, we consider three types of PostgreSQL con_guration: (1)

Power-PG, which is the con_guration that gives the minimal power cost, (2) Time-
PG, is the con_guration with minimal time cost, (3) Tradeo_-PG, using weighted sum
method with 𝜔𝜔O = 0.5, 𝜔𝜔V = 0.5

5.2. Power Model Building
As mentioned above, the _ parameters are estimated while learning the model

from training data. We then perform series of observations in which queries are well-
chosen, and the power values consumed by the system are collected using
measuring equipment while running these queries. In the same time, for each training
instance, we calculate their costs. To generate training instances, we create our
custom query workload based on TPC-H datasets. The workload containing queries
divided into two main categories: (i) queries with operations that exhaust the system
processor (CPU intensive queries) and (ii) queries with exhaustive storage subsystem
resource operations (I/O intensive queries). Note that the considered queries include:
queries with a single table scan, queries with multiple joins with different predicates.
They also contain sorting/grouping conditions and simple and advanced aggregation
functions as in [10]. After collecting power consumption training queries, we apply
the regression equation (4) using the R language software9 to find our model
parameters. Once we get them, an estimation of new queries is obtained without the
use of our measurement equipment.

5.3. Results
In this section, we present the results of our various experiments.

5.3.1. Cost Model Quality.
The results of the training phase in our two setup con_gurations, against the _tted

values from polynomial models (cf. Equation 4) are plotted in Figure 7. As we can
see, the predicted and actual power consumption approximate the diagonal lines
closely using our cost model in both congurations. Otherwise, in the server
conguration we can see some variance between the predicted and the observed
power for some training queries. Much of this can be attributed to the errors made by
the DBMS query optimizer in estimating IO and CPU costs for these queries when
there is a large working memory. This problem has been faced by query optimizers
for a long time, and all the performance models proposed so far suffer from this
problem, which is inherited from the cardinality estimation errors. In fact, the
estimation errors in the low levels pipeline are propagated to the upper level and may
significantly degrade the prediction accuracy.

5.3.2. Cost Model Estimation Error.
In this type of experiment, given the estimated power cost predicted by our model

(𝐸𝐸)., we compare it with the actually observed system active power consumption
(𝑀𝑀). To quantify the model accuracy, we used the following error ratio metric:

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
|𝑀𝑀 − 𝐸𝐸|
𝑀𝑀

To test our model with large datasets, we run all 22 queries of the TPC-H
benchmark against two database scale factor: 10GB and 100GB. Most of the queries
contain more than 4 pipelines. The results are shown in Table 2. We not that some
queries were aborted since they exceeded 72 hours of execution in our current test
environment.

As we can see from the table, the average error is typically small (0.1% in both
100GB and 10GB datasets), and the maximum error is usually below 5%. The
experiment shows the accuracy of our prediction model, indicating that is sufficiently
accurate for the intended applications.

5.3.3. Query Characterization.
To study the characterization of the TPC-H 22 query, we conduct a series of tests

using the modified PostgreSQL. In such tests and for every configurations (Time-PG,
Power- PG, Tradeoff-PG) we run all the TPC-H queries and collect the estimated
performance cost and power cost returned by the query optimizer. From Figure 8
(values are plotted on logarithmic scale) we can see that 16 of 22 queries have the
potential for power saving in the Power-PG configuration. Normally, the benefit of
power saving for these queries have a negative impact on the processing time cost
as shown in the same figure. However choosing the trade-off configuration can lead
to a good power saving values with less performance degradation. These queries are
characterized by an important number of SQL operators and various I/O and CPU
operations, which gives the query optimizer a variety of plans to choose from.
Therefore, we can achieve a good power saving queries from those plans. On the
other hand, the rest of queries that doesn’t show opportunities for power saving, are
simple queries with a few tables and SQL operators. This leads the query optimizer to
choose the same plan in every PostgreSQL configuration, duo to the small search
space of the plans.

5.3.4. Power Saving.
The purpose of this set of experiments is to investigate the benefit of our approach

in term of energy efficiency. We configured the DBMS to evaluate the performance
and power consumption cost models for the three configurations (Time- PG, Power-
PG, Tradeoff-PG). We repeat the same experiments under two different database
sizes: 10GB, and 100GB using TPC-H benchmark.

In Figure 9 we present the results of the experiments. We can clearly see that
workloads consume significantly lower power when we choose a query optimizer
configuration that favors low-power plans. When we compare the power-only (Power-
PG) with the performance-only (Time-PG) results, we observe a large margin in
power savings, the benefit is remarkably considerable in small database size,
perhaps this is due to the large amount of I/O operations and data processing
required by queries of big database size which translate in more power consumption
regardless of plan chosen by query optimizer. As expected, the savings of the
Tradeoff- PG configuration are smaller than those obtained by the power-only
experiment, but it still acceptable, especially, in 100GB datasets they are
approximate. On the other hand, the power-only configuration takes more time to
finish executing all the queries, which translate in a noticeable performance
degradation, this not surprising, if we gain in power we automatically lose in
performance. In the Tradeoff-PG configuration, the performance degradation is
actually acceptable if we consider the power gain achieved.

Note that all results of our experiments only considered direct power savings in a
single database server. This number could be even higher if we consider large-scale
data centers with thousands of servers and cooling systems.

6. Confidence bounds
In this section we will prove the confidence in our model data and results, using

Fig. 8: Performance and power for TPC-H queries using dierent PostgreSQL
congurations.

Fig. 9: Performance and power saving with dierent PostgreSQL congurations using
TPC-H benchmark.

queries with a high degree of complexity. The queries are executed in an isolated
way. In our experiments, we consider three types of PostgreSQL con_guration: (1)

Power-PG, which is the con_guration that gives the minimal power cost, (2) Time-
PG, is the con_guration with minimal time cost, (3) Tradeo_-PG, using weighted sum
method with 𝜔𝜔O = 0.5, 𝜔𝜔V = 0.5

5.2. Power Model Building
As mentioned above, the _ parameters are estimated while learning the model

from training data. We then perform series of observations in which queries are well-
chosen, and the power values consumed by the system are collected using
measuring equipment while running these queries. In the same time, for each training
instance, we calculate their costs. To generate training instances, we create our
custom query workload based on TPC-H datasets. The workload containing queries
divided into two main categories: (i) queries with operations that exhaust the system
processor (CPU intensive queries) and (ii) queries with exhaustive storage subsystem
resource operations (I/O intensive queries). Note that the considered queries include:
queries with a single table scan, queries with multiple joins with different predicates.
They also contain sorting/grouping conditions and simple and advanced aggregation
functions as in [10]. After collecting power consumption training queries, we apply
the regression equation (4) using the R language software9 to find our model
parameters. Once we get them, an estimation of new queries is obtained without the
use of our measurement equipment.

5.3. Results
In this section, we present the results of our various experiments.

5.3.1. Cost Model Quality.
The results of the training phase in our two setup con_gurations, against the _tted

values from polynomial models (cf. Equation 4) are plotted in Figure 7. As we can
see, the predicted and actual power consumption approximate the diagonal lines
closely using our cost model in both congurations. Otherwise, in the server
conguration we can see some variance between the predicted and the observed
power for some training queries. Much of this can be attributed to the errors made by
the DBMS query optimizer in estimating IO and CPU costs for these queries when
there is a large working memory. This problem has been faced by query optimizers
for a long time, and all the performance models proposed so far suffer from this
problem, which is inherited from the cardinality estimation errors. In fact, the
estimation errors in the low levels pipeline are propagated to the upper level and may
significantly degrade the prediction accuracy.

5.3.2. Cost Model Estimation Error.
In this type of experiment, given the estimated power cost predicted by our model

(𝐸𝐸)., we compare it with the actually observed system active power consumption
(𝑀𝑀). To quantify the model accuracy, we used the following error ratio metric:

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
|𝑀𝑀 − 𝐸𝐸|
𝑀𝑀

To test our model with large datasets, we run all 22 queries of the TPC-H
benchmark against two database scale factor: 10GB and 100GB. Most of the queries
contain more than 4 pipelines. The results are shown in Table 2. We not that some
queries were aborted since they exceeded 72 hours of execution in our current test
environment.

As we can see from the table, the average error is typically small (0.1% in both
100GB and 10GB datasets), and the maximum error is usually below 5%. The
experiment shows the accuracy of our prediction model, indicating that is sufficiently
accurate for the intended applications.

5.3.3. Query Characterization.
To study the characterization of the TPC-H 22 query, we conduct a series of tests

using the modified PostgreSQL. In such tests and for every configurations (Time-PG,
Power- PG, Tradeoff-PG) we run all the TPC-H queries and collect the estimated
performance cost and power cost returned by the query optimizer. From Figure 8
(values are plotted on logarithmic scale) we can see that 16 of 22 queries have the
potential for power saving in the Power-PG configuration. Normally, the benefit of
power saving for these queries have a negative impact on the processing time cost
as shown in the same figure. However choosing the trade-off configuration can lead
to a good power saving values with less performance degradation. These queries are
characterized by an important number of SQL operators and various I/O and CPU
operations, which gives the query optimizer a variety of plans to choose from.
Therefore, we can achieve a good power saving queries from those plans. On the
other hand, the rest of queries that doesn’t show opportunities for power saving, are
simple queries with a few tables and SQL operators. This leads the query optimizer to
choose the same plan in every PostgreSQL configuration, duo to the small search
space of the plans.

5.3.4. Power Saving.
The purpose of this set of experiments is to investigate the benefit of our approach

in term of energy efficiency. We configured the DBMS to evaluate the performance
and power consumption cost models for the three configurations (Time- PG, Power-
PG, Tradeoff-PG). We repeat the same experiments under two different database
sizes: 10GB, and 100GB using TPC-H benchmark.

In Figure 9 we present the results of the experiments. We can clearly see that
workloads consume significantly lower power when we choose a query optimizer
configuration that favors low-power plans. When we compare the power-only (Power-
PG) with the performance-only (Time-PG) results, we observe a large margin in
power savings, the benefit is remarkably considerable in small database size,
perhaps this is due to the large amount of I/O operations and data processing
required by queries of big database size which translate in more power consumption
regardless of plan chosen by query optimizer. As expected, the savings of the
Tradeoff- PG configuration are smaller than those obtained by the power-only
experiment, but it still acceptable, especially, in 100GB datasets they are
approximate. On the other hand, the power-only configuration takes more time to
finish executing all the queries, which translate in a noticeable performance
degradation, this not surprising, if we gain in power we automatically lose in
performance. In the Tradeoff-PG configuration, the performance degradation is
actually acceptable if we consider the power gain achieved.

Note that all results of our experiments only considered direct power savings in a
single database server. This number could be even higher if we consider large-scale
data centers with thousands of servers and cooling systems.

6. Confidence bounds
In this section we will prove the confidence in our model data and results, using

Azerbaijan Journal of High Performance Computing, 2(1), 2019

58

high-end configuration experimentation data. To find the lower and upper bounds of
population, we use Chebyshev’s inequality (6). The inequality is based on population
mean (denoted by 𝜇𝜇) and population standard deviation (denoted by 𝜎𝜎).
Unfortunately, 𝜇𝜇 and 𝜎𝜎 are unknown parameters. Therefore, we must found their
upper and lower bounds with some degree of confidence to calculate Chebyshev’s
inequality. To do the above, we (a) test whether the samples comes from a
population that follows the normal distribution; (b) find the lower and upper bounds of
the population mean, with the degree of confidence being 99%; (c) find the lower and
upper bounds of the population standard deviation, with the degree of confidence
being 99%.

6.1. Testing whether the population follows the normal distribution
The sample mean equals 116.4554, which is denoted by 𝑥̅𝑥; while the sample

standard deviation equals 2.1822, which is denoted by s. The number of samples
equals 131 and is denoted by 𝑛𝑛. We perform hypothesis testing to identify whether
the samples comes from a normally distributed population or not. The hypothesis
testing is conducted by applying the chi-squared test for normal distribution. The null
hypothesis (𝐻𝐻U) is defined as “The population probability distribution is normal”. On
the other extreme, the alternative hypothesis (𝐻𝐻{) is defined as “The population
probability distribution is not normal”.

We first divide the standard normal distribution 𝑁𝑁(0,1) into a set 𝐴𝐴O𝑡𝑡	containing
eight proportionally equal parts, with each part being equal to 1/8; and then we find a
set 𝐵𝐵O	 containing eight parts in a one-to-one correspondence with the ones
belonging to set 𝐵𝐵O	 such that each sample is assigned onto one of the parts
belonging to 𝐵𝐵O. We find the right-most split point of standard normal distribution,
which equals 1.15, by subtracting 1/8=0.125 from 1 and then looking into the normal
distribution table. By following the aforementioned procedure we result in the
following set (named 𝐴𝐴V) of split points -1.15, -0.675, -0.32, 0, 0.32, 0.675, 1.15
representing Z values. According to the aforementioned split points, we find seven
new split points in one- to-one correspondence with the previous ones. Specifically,
we apply Equation 6 for each point of 𝐴𝐴V, resulting in the following set (named 𝐵𝐵V) of
split points 113.946, 114.9825, 115.7572, 116.4554, 117.1537, 117.9284, 118.9649.

By taking into consideration the above, we can reformulate the null hypothesis
and the alternative hypothesis as follows:

• 𝐻𝐻U: All the parts of 𝐵𝐵Oare proportionally equal.
• 𝐻𝐻{: At least one of the parts of 𝐵𝐵O is not proportionally equal with the rest

ones.
Z = �Ä�Å

Ç
⇔ x = xÅ + Z ∗ s (6)

XáV =g (àâÄäâ)ã

äâ

å

jNO
 (7)

Next we find how many (estimated) points belong to each of the parts of 𝐴𝐴O. For
the first part of 𝐴𝐴O, we find that it contains 𝑛𝑛𝑛𝑛O = 131 ∗

O
å
= 16.375 (estimated) points,

with 𝑝𝑝O representing the probability of first part. Because all the parts have the same
probability, we conclude that each part contains 16.375 (estimated) points. The
observed points belonging to the parts of 𝐵𝐵O are found as follows. Each point that is
less than or equal to the left-most point of 𝐵𝐵V belongs to the first part of 𝐵𝐵O. The points
that are greater than the left-most point of 𝐵𝐵V	and less than or equal to the second
left-most point of 𝐵𝐵V belong to the second part of 𝐵𝐵O. The assignment process
proceeds in a similar way for the rest parts. Table 3 contains the aforementioned
information as well as information for calculating Equation 7 which asymptotically
approaches chi-squared distribution 𝑋𝑋V.

The critical region of the null hypothesis represents the region that the null
hypothesis is rejected. To calculate that region we first need to choose (a) the
significance level a, which is normally between 5% and 10%; and (b) the degrees of
freedom 𝑑𝑑𝑑𝑑 = 𝑘𝑘 −𝑚𝑚 − 1, with k and m denoting the number of groups and the
number of model parameters, respectively. In our case, we choose 𝑎𝑎 = 0.5; the
number of groups equals eight; while the number of model parameters equals two
(mean and standard deviation). Therefore, 𝑑𝑑𝑑𝑑 = 8 − 2 − 1 = 5. The critical region is
the region beyond 𝑋𝑋U.YV = 11.07, which is denoted as critical value and calculated
from the chi-squared distribution table. According to Equation 7 and Table 3, we
observe that 𝑋𝑋V = 8.42, which is less than the critical value 11.07. As a result the null
hypothesis is not rejected and we can safely assume that the population follows the
normal distribution. Note that the bigger 𝑋𝑋V, the stronger the evidence to reject the
null hypothesis.

6.2. Finding the lower and upper bounds of the population mean with 99%

confidence
The population mean is denoted by µ, while the population standard deviation is

defined as 𝜎𝜎. We find the lower and upper bounds (𝜇𝜇O and 𝜇𝜇K) of the population
mean under 𝑃𝑃% probability or equivalently P% degree of confidence. We first need
first to specify the significance level 𝑎𝑎 = (100 − 𝑃𝑃)/100. Note that the greater the
degree of confidence, the greater the interval between the lower and upper bounds.
For our problem, we will calculate the lower and upper bounds of population mean
with 99% degree of confidence, which is a common value. As a result, the
significance level is	𝑎𝑎 = OUUÄùù

OUU
= 0.01. Because the population follows the normal

distribution and the deviation σ is not known, we use Equation 8 to calculate the
bounds of population mean. Note that 𝑡𝑡{/V represents the power t distribution, with a
denoting the significance level. The degrees of freedom df equal 𝑛𝑛 − 1, we calculate
𝑡𝑡U.UUY = 2.58. Therefore, according to Equation 8, we can observe that with 99%
degree of confidence that 𝜇𝜇O = 115.96,and 𝜇𝜇V = 116.94.

x£ ± t•∕V ∗
å
√®

 (8)

6.3. Finding the lower and upper bounds of the population standard deviation with

99% confidence
Since we demand 99% confidence, the significance level is a	=	0.01. The lower

and upper bounds of population standard deviation are expressed by Equation 9 and
Equation 10, respectively. By looking into the chi-squared distribution table we
observe that 𝑋𝑋U.UUYV = 175.3 and 𝑋𝑋U.ùùYV = 92.2. Therefore, 𝜎𝜎O = 1.88 and 𝜎𝜎K = 2.59.

𝜎𝜎™ = 𝑠𝑠´
LÄO
¨≠∕ã
ã (9)

𝜎𝜎K = 𝑠𝑠´
LÄO
¨?Æ≠/ã
ã (10)

6.4. Finding probabilistically the lower and upper bounds of the population
From Chebyshev’s inequality (Equation 11) we can find probabilistically bounds

for the population. Specifically, to find the lower bound of the population, we assume
that 𝑋𝑋 − 𝜇𝜇 ≤ 0. 𝜇𝜇 = 𝜇𝜇™ and 𝜎𝜎 = 𝜎𝜎K.According to the above, inequality 11 becomes
Inequality 12. For 𝑘𝑘 = 3 we have that 𝑃𝑃𝑃𝑃	(𝑋𝑋 ≤ 108.19) ≤ 0.11. To find the upper
bound of the population, we assume that 𝑋𝑋 − 𝜇𝜇 ≥ 0, 𝜇𝜇 = 𝜇𝜇K and 𝜎𝜎 = 𝜎𝜎K. According to

queries with a high degree of complexity. The queries are executed in an isolated
way. In our experiments, we consider three types of PostgreSQL con_guration: (1)

Power-PG, which is the con_guration that gives the minimal power cost, (2) Time-
PG, is the con_guration with minimal time cost, (3) Tradeo_-PG, using weighted sum
method with 𝜔𝜔O = 0.5, 𝜔𝜔V = 0.5

5.2. Power Model Building
As mentioned above, the _ parameters are estimated while learning the model

from training data. We then perform series of observations in which queries are well-
chosen, and the power values consumed by the system are collected using
measuring equipment while running these queries. In the same time, for each training
instance, we calculate their costs. To generate training instances, we create our
custom query workload based on TPC-H datasets. The workload containing queries
divided into two main categories: (i) queries with operations that exhaust the system
processor (CPU intensive queries) and (ii) queries with exhaustive storage subsystem
resource operations (I/O intensive queries). Note that the considered queries include:
queries with a single table scan, queries with multiple joins with different predicates.
They also contain sorting/grouping conditions and simple and advanced aggregation
functions as in [10]. After collecting power consumption training queries, we apply
the regression equation (4) using the R language software9 to find our model
parameters. Once we get them, an estimation of new queries is obtained without the
use of our measurement equipment.

5.3. Results
In this section, we present the results of our various experiments.

5.3.1. Cost Model Quality.
The results of the training phase in our two setup con_gurations, against the _tted

values from polynomial models (cf. Equation 4) are plotted in Figure 7. As we can
see, the predicted and actual power consumption approximate the diagonal lines
closely using our cost model in both congurations. Otherwise, in the server
conguration we can see some variance between the predicted and the observed
power for some training queries. Much of this can be attributed to the errors made by
the DBMS query optimizer in estimating IO and CPU costs for these queries when
there is a large working memory. This problem has been faced by query optimizers
for a long time, and all the performance models proposed so far suffer from this
problem, which is inherited from the cardinality estimation errors. In fact, the
estimation errors in the low levels pipeline are propagated to the upper level and may
significantly degrade the prediction accuracy.

5.3.2. Cost Model Estimation Error.
In this type of experiment, given the estimated power cost predicted by our model

(𝐸𝐸)., we compare it with the actually observed system active power consumption
(𝑀𝑀). To quantify the model accuracy, we used the following error ratio metric:

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
|𝑀𝑀 − 𝐸𝐸|
𝑀𝑀

To test our model with large datasets, we run all 22 queries of the TPC-H
benchmark against two database scale factor: 10GB and 100GB. Most of the queries
contain more than 4 pipelines. The results are shown in Table 2. We not that some
queries were aborted since they exceeded 72 hours of execution in our current test
environment.

As we can see from the table, the average error is typically small (0.1% in both
100GB and 10GB datasets), and the maximum error is usually below 5%. The
experiment shows the accuracy of our prediction model, indicating that is sufficiently
accurate for the intended applications.

5.3.3. Query Characterization.
To study the characterization of the TPC-H 22 query, we conduct a series of tests

using the modified PostgreSQL. In such tests and for every configurations (Time-PG,
Power- PG, Tradeoff-PG) we run all the TPC-H queries and collect the estimated
performance cost and power cost returned by the query optimizer. From Figure 8
(values are plotted on logarithmic scale) we can see that 16 of 22 queries have the
potential for power saving in the Power-PG configuration. Normally, the benefit of
power saving for these queries have a negative impact on the processing time cost
as shown in the same figure. However choosing the trade-off configuration can lead
to a good power saving values with less performance degradation. These queries are
characterized by an important number of SQL operators and various I/O and CPU
operations, which gives the query optimizer a variety of plans to choose from.
Therefore, we can achieve a good power saving queries from those plans. On the
other hand, the rest of queries that doesn’t show opportunities for power saving, are
simple queries with a few tables and SQL operators. This leads the query optimizer to
choose the same plan in every PostgreSQL configuration, duo to the small search
space of the plans.

5.3.4. Power Saving.
The purpose of this set of experiments is to investigate the benefit of our approach

in term of energy efficiency. We configured the DBMS to evaluate the performance
and power consumption cost models for the three configurations (Time- PG, Power-
PG, Tradeoff-PG). We repeat the same experiments under two different database
sizes: 10GB, and 100GB using TPC-H benchmark.

In Figure 9 we present the results of the experiments. We can clearly see that
workloads consume significantly lower power when we choose a query optimizer
configuration that favors low-power plans. When we compare the power-only (Power-
PG) with the performance-only (Time-PG) results, we observe a large margin in
power savings, the benefit is remarkably considerable in small database size,
perhaps this is due to the large amount of I/O operations and data processing
required by queries of big database size which translate in more power consumption
regardless of plan chosen by query optimizer. As expected, the savings of the
Tradeoff- PG configuration are smaller than those obtained by the power-only
experiment, but it still acceptable, especially, in 100GB datasets they are
approximate. On the other hand, the power-only configuration takes more time to
finish executing all the queries, which translate in a noticeable performance
degradation, this not surprising, if we gain in power we automatically lose in
performance. In the Tradeoff-PG configuration, the performance degradation is
actually acceptable if we consider the power gain achieved.

Note that all results of our experiments only considered direct power savings in a
single database server. This number could be even higher if we consider large-scale
data centers with thousands of servers and cooling systems.

6. Confidence bounds
In this section we will prove the confidence in our model data and results, using

Amine Roukh, Ladjel Bellatreche and Nikos Tziritas

59

high-end configuration experimentation data. To find the lower and upper bounds of
population, we use Chebyshev’s inequality (6). The inequality is based on population
mean (denoted by 𝜇𝜇) and population standard deviation (denoted by 𝜎𝜎).
Unfortunately, 𝜇𝜇 and 𝜎𝜎 are unknown parameters. Therefore, we must found their
upper and lower bounds with some degree of confidence to calculate Chebyshev’s
inequality. To do the above, we (a) test whether the samples comes from a
population that follows the normal distribution; (b) find the lower and upper bounds of
the population mean, with the degree of confidence being 99%; (c) find the lower and
upper bounds of the population standard deviation, with the degree of confidence
being 99%.

6.1. Testing whether the population follows the normal distribution
The sample mean equals 116.4554, which is denoted by 𝑥̅𝑥; while the sample

standard deviation equals 2.1822, which is denoted by s. The number of samples
equals 131 and is denoted by 𝑛𝑛. We perform hypothesis testing to identify whether
the samples comes from a normally distributed population or not. The hypothesis
testing is conducted by applying the chi-squared test for normal distribution. The null
hypothesis (𝐻𝐻U) is defined as “The population probability distribution is normal”. On
the other extreme, the alternative hypothesis (𝐻𝐻{) is defined as “The population
probability distribution is not normal”.

We first divide the standard normal distribution 𝑁𝑁(0,1) into a set 𝐴𝐴O𝑡𝑡	containing
eight proportionally equal parts, with each part being equal to 1/8; and then we find a
set 𝐵𝐵O	 containing eight parts in a one-to-one correspondence with the ones
belonging to set 𝐵𝐵O	 such that each sample is assigned onto one of the parts
belonging to 𝐵𝐵O. We find the right-most split point of standard normal distribution,
which equals 1.15, by subtracting 1/8=0.125 from 1 and then looking into the normal
distribution table. By following the aforementioned procedure we result in the
following set (named 𝐴𝐴V) of split points -1.15, -0.675, -0.32, 0, 0.32, 0.675, 1.15
representing Z values. According to the aforementioned split points, we find seven
new split points in one- to-one correspondence with the previous ones. Specifically,
we apply Equation 6 for each point of 𝐴𝐴V, resulting in the following set (named 𝐵𝐵V) of
split points 113.946, 114.9825, 115.7572, 116.4554, 117.1537, 117.9284, 118.9649.

By taking into consideration the above, we can reformulate the null hypothesis
and the alternative hypothesis as follows:

• 𝐻𝐻U: All the parts of 𝐵𝐵Oare proportionally equal.
• 𝐻𝐻{: At least one of the parts of 𝐵𝐵O is not proportionally equal with the rest

ones.
Z = �Ä�Å

Ç
⇔ x = xÅ + Z ∗ s (6)

XáV =g (àâÄäâ)ã

äâ

å

jNO
 (7)

Next we find how many (estimated) points belong to each of the parts of 𝐴𝐴O. For
the first part of 𝐴𝐴O, we find that it contains 𝑛𝑛𝑛𝑛O = 131 ∗

O
å
= 16.375 (estimated) points,

with 𝑝𝑝O representing the probability of first part. Because all the parts have the same
probability, we conclude that each part contains 16.375 (estimated) points. The
observed points belonging to the parts of 𝐵𝐵O are found as follows. Each point that is
less than or equal to the left-most point of 𝐵𝐵V belongs to the first part of 𝐵𝐵O. The points
that are greater than the left-most point of 𝐵𝐵V	and less than or equal to the second
left-most point of 𝐵𝐵V belong to the second part of 𝐵𝐵O. The assignment process
proceeds in a similar way for the rest parts. Table 3 contains the aforementioned
information as well as information for calculating Equation 7 which asymptotically
approaches chi-squared distribution 𝑋𝑋V.

The critical region of the null hypothesis represents the region that the null
hypothesis is rejected. To calculate that region we first need to choose (a) the
significance level a, which is normally between 5% and 10%; and (b) the degrees of
freedom 𝑑𝑑𝑑𝑑 = 𝑘𝑘 −𝑚𝑚 − 1, with k and m denoting the number of groups and the
number of model parameters, respectively. In our case, we choose 𝑎𝑎 = 0.5; the
number of groups equals eight; while the number of model parameters equals two
(mean and standard deviation). Therefore, 𝑑𝑑𝑑𝑑 = 8 − 2 − 1 = 5. The critical region is
the region beyond 𝑋𝑋U.YV = 11.07, which is denoted as critical value and calculated
from the chi-squared distribution table. According to Equation 7 and Table 3, we
observe that 𝑋𝑋V = 8.42, which is less than the critical value 11.07. As a result the null
hypothesis is not rejected and we can safely assume that the population follows the
normal distribution. Note that the bigger 𝑋𝑋V, the stronger the evidence to reject the
null hypothesis.

6.2. Finding the lower and upper bounds of the population mean with 99%

confidence
The population mean is denoted by µ, while the population standard deviation is

defined as 𝜎𝜎. We find the lower and upper bounds (𝜇𝜇O and 𝜇𝜇K) of the population
mean under 𝑃𝑃% probability or equivalently P% degree of confidence. We first need
first to specify the significance level 𝑎𝑎 = (100 − 𝑃𝑃)/100. Note that the greater the
degree of confidence, the greater the interval between the lower and upper bounds.
For our problem, we will calculate the lower and upper bounds of population mean
with 99% degree of confidence, which is a common value. As a result, the
significance level is	𝑎𝑎 = OUUÄùù

OUU
= 0.01. Because the population follows the normal

distribution and the deviation σ is not known, we use Equation 8 to calculate the
bounds of population mean. Note that 𝑡𝑡{/V represents the power t distribution, with a
denoting the significance level. The degrees of freedom df equal 𝑛𝑛 − 1, we calculate
𝑡𝑡U.UUY = 2.58. Therefore, according to Equation 8, we can observe that with 99%
degree of confidence that 𝜇𝜇O = 115.96,and 𝜇𝜇V = 116.94.

x£ ± t•∕V ∗
å
√®

 (8)

6.3. Finding the lower and upper bounds of the population standard deviation with

99% confidence
Since we demand 99% confidence, the significance level is a	=	0.01. The lower

and upper bounds of population standard deviation are expressed by Equation 9 and
Equation 10, respectively. By looking into the chi-squared distribution table we
observe that 𝑋𝑋U.UUYV = 175.3 and 𝑋𝑋U.ùùYV = 92.2. Therefore, 𝜎𝜎O = 1.88 and 𝜎𝜎K = 2.59.

𝜎𝜎™ = 𝑠𝑠´
LÄO
¨≠∕ã
ã (9)

𝜎𝜎K = 𝑠𝑠´
LÄO
¨?Æ≠/ã
ã (10)

6.4. Finding probabilistically the lower and upper bounds of the population
From Chebyshev’s inequality (Equation 11) we can find probabilistically bounds

for the population. Specifically, to find the lower bound of the population, we assume
that 𝑋𝑋 − 𝜇𝜇 ≤ 0. 𝜇𝜇 = 𝜇𝜇™ and 𝜎𝜎 = 𝜎𝜎K.According to the above, inequality 11 becomes
Inequality 12. For 𝑘𝑘 = 3 we have that 𝑃𝑃𝑃𝑃	(𝑋𝑋 ≤ 108.19) ≤ 0.11. To find the upper
bound of the population, we assume that 𝑋𝑋 − 𝜇𝜇 ≥ 0, 𝜇𝜇 = 𝜇𝜇K and 𝜎𝜎 = 𝜎𝜎K. According to

Azerbaijan Journal of High Performance Computing, 2(1), 2019

60

high-end configuration experimentation data. To find the lower and upper bounds of
population, we use Chebyshev’s inequality (6). The inequality is based on population
mean (denoted by 𝜇𝜇) and population standard deviation (denoted by 𝜎𝜎).
Unfortunately, 𝜇𝜇 and 𝜎𝜎 are unknown parameters. Therefore, we must found their
upper and lower bounds with some degree of confidence to calculate Chebyshev’s
inequality. To do the above, we (a) test whether the samples comes from a
population that follows the normal distribution; (b) find the lower and upper bounds of
the population mean, with the degree of confidence being 99%; (c) find the lower and
upper bounds of the population standard deviation, with the degree of confidence
being 99%.

6.1. Testing whether the population follows the normal distribution
The sample mean equals 116.4554, which is denoted by 𝑥̅𝑥; while the sample

standard deviation equals 2.1822, which is denoted by s. The number of samples
equals 131 and is denoted by 𝑛𝑛. We perform hypothesis testing to identify whether
the samples comes from a normally distributed population or not. The hypothesis
testing is conducted by applying the chi-squared test for normal distribution. The null
hypothesis (𝐻𝐻U) is defined as “The population probability distribution is normal”. On
the other extreme, the alternative hypothesis (𝐻𝐻{) is defined as “The population
probability distribution is not normal”.

We first divide the standard normal distribution 𝑁𝑁(0,1) into a set 𝐴𝐴O𝑡𝑡	containing
eight proportionally equal parts, with each part being equal to 1/8; and then we find a
set 𝐵𝐵O	 containing eight parts in a one-to-one correspondence with the ones
belonging to set 𝐵𝐵O	 such that each sample is assigned onto one of the parts
belonging to 𝐵𝐵O. We find the right-most split point of standard normal distribution,
which equals 1.15, by subtracting 1/8=0.125 from 1 and then looking into the normal
distribution table. By following the aforementioned procedure we result in the
following set (named 𝐴𝐴V) of split points -1.15, -0.675, -0.32, 0, 0.32, 0.675, 1.15
representing Z values. According to the aforementioned split points, we find seven
new split points in one- to-one correspondence with the previous ones. Specifically,
we apply Equation 6 for each point of 𝐴𝐴V, resulting in the following set (named 𝐵𝐵V) of
split points 113.946, 114.9825, 115.7572, 116.4554, 117.1537, 117.9284, 118.9649.

By taking into consideration the above, we can reformulate the null hypothesis
and the alternative hypothesis as follows:

• 𝐻𝐻U: All the parts of 𝐵𝐵Oare proportionally equal.
• 𝐻𝐻{: At least one of the parts of 𝐵𝐵O is not proportionally equal with the rest

ones.
Z = �Ä�Å

Ç
⇔ x = xÅ + Z ∗ s (6)

XáV =g (àâÄäâ)ã

äâ

å

jNO
 (7)

Next we find how many (estimated) points belong to each of the parts of 𝐴𝐴O. For
the first part of 𝐴𝐴O, we find that it contains 𝑛𝑛𝑛𝑛O = 131 ∗

O
å
= 16.375 (estimated) points,

with 𝑝𝑝O representing the probability of first part. Because all the parts have the same
probability, we conclude that each part contains 16.375 (estimated) points. The
observed points belonging to the parts of 𝐵𝐵O are found as follows. Each point that is
less than or equal to the left-most point of 𝐵𝐵V belongs to the first part of 𝐵𝐵O. The points
that are greater than the left-most point of 𝐵𝐵V	and less than or equal to the second
left-most point of 𝐵𝐵V belong to the second part of 𝐵𝐵O. The assignment process
proceeds in a similar way for the rest parts. Table 3 contains the aforementioned
information as well as information for calculating Equation 7 which asymptotically
approaches chi-squared distribution 𝑋𝑋V.

The critical region of the null hypothesis represents the region that the null
hypothesis is rejected. To calculate that region we first need to choose (a) the
significance level a, which is normally between 5% and 10%; and (b) the degrees of
freedom 𝑑𝑑𝑑𝑑 = 𝑘𝑘 −𝑚𝑚 − 1, with k and m denoting the number of groups and the
number of model parameters, respectively. In our case, we choose 𝑎𝑎 = 0.5; the
number of groups equals eight; while the number of model parameters equals two
(mean and standard deviation). Therefore, 𝑑𝑑𝑑𝑑 = 8 − 2 − 1 = 5. The critical region is
the region beyond 𝑋𝑋U.YV = 11.07, which is denoted as critical value and calculated
from the chi-squared distribution table. According to Equation 7 and Table 3, we
observe that 𝑋𝑋V = 8.42, which is less than the critical value 11.07. As a result the null
hypothesis is not rejected and we can safely assume that the population follows the
normal distribution. Note that the bigger 𝑋𝑋V, the stronger the evidence to reject the
null hypothesis.

6.2. Finding the lower and upper bounds of the population mean with 99%

confidence
The population mean is denoted by µ, while the population standard deviation is

defined as 𝜎𝜎. We find the lower and upper bounds (𝜇𝜇O and 𝜇𝜇K) of the population
mean under 𝑃𝑃% probability or equivalently P% degree of confidence. We first need
first to specify the significance level 𝑎𝑎 = (100 − 𝑃𝑃)/100. Note that the greater the
degree of confidence, the greater the interval between the lower and upper bounds.
For our problem, we will calculate the lower and upper bounds of population mean
with 99% degree of confidence, which is a common value. As a result, the
significance level is	𝑎𝑎 = OUUÄùù

OUU
= 0.01. Because the population follows the normal

distribution and the deviation σ is not known, we use Equation 8 to calculate the
bounds of population mean. Note that 𝑡𝑡{/V represents the power t distribution, with a
denoting the significance level. The degrees of freedom df equal 𝑛𝑛 − 1, we calculate
𝑡𝑡U.UUY = 2.58. Therefore, according to Equation 8, we can observe that with 99%
degree of confidence that 𝜇𝜇O = 115.96,and 𝜇𝜇V = 116.94.

x£ ± t•∕V ∗
å
√®

 (8)

6.3. Finding the lower and upper bounds of the population standard deviation with

99% confidence
Since we demand 99% confidence, the significance level is a	=	0.01. The lower

and upper bounds of population standard deviation are expressed by Equation 9 and
Equation 10, respectively. By looking into the chi-squared distribution table we
observe that 𝑋𝑋U.UUYV = 175.3 and 𝑋𝑋U.ùùYV = 92.2. Therefore, 𝜎𝜎O = 1.88 and 𝜎𝜎K = 2.59.

𝜎𝜎™ = 𝑠𝑠´
LÄO
¨≠∕ã
ã (9)

𝜎𝜎K = 𝑠𝑠´
LÄO
¨?Æ≠/ã
ã (10)

6.4. Finding probabilistically the lower and upper bounds of the population
From Chebyshev’s inequality (Equation 11) we can find probabilistically bounds

for the population. Specifically, to find the lower bound of the population, we assume
that 𝑋𝑋 − 𝜇𝜇 ≤ 0. 𝜇𝜇 = 𝜇𝜇™ and 𝜎𝜎 = 𝜎𝜎K.According to the above, inequality 11 becomes
Inequality 12. For 𝑘𝑘 = 3 we have that 𝑃𝑃𝑃𝑃	(𝑋𝑋 ≤ 108.19) ≤ 0.11. To find the upper
bound of the population, we assume that 𝑋𝑋 − 𝜇𝜇 ≥ 0, 𝜇𝜇 = 𝜇𝜇K and 𝜎𝜎 = 𝜎𝜎K. According to
the above, inequality 11 becomes inequality 13. For 𝑘𝑘 = 3 we have that 𝑃𝑃𝑃𝑃	(𝑋𝑋 ≥
124.71) ≤ 0.11. To find the confidence level for the lower bound of population, we
have to multiply the probability of A to be greater than 108.19 (i.e., 1 — 0.11 = 0.89)
by (a) the confidence level for the lower bound of population mean, and (b) by the
confidence level for the upper bound of population standard deviation. As a result,
the lower bound of population is equal to 108.9 with 87% (0.99 * 0.99 * 0.89) degree
of confidence. By working in a similar way, the upper bound of the population is
equal to 124.71 with 87% degree of confidence. Note that we can increase the
degree of confidence (by increasing k) at the cost of decreasing/increasing the
lower/upper bound of population.

𝑃𝑃B(|𝑋𝑋 − 𝜇𝜇| ≥ 𝑘𝑘𝑘𝑘) ≤ 1 ∕ 𝑘𝑘V (11)
𝑃𝑃B(𝑋𝑋 ≤ 𝜇𝜇™ − 𝑘𝑘𝜎𝜎K) ≤ 1 ∕ 𝑘𝑘V (12)
𝑃𝑃B(𝑋𝑋 ≥ 𝜇𝜇K + 𝑘𝑘𝜎𝜎K) ≤ 1 ∕ 𝑘𝑘V (13)

7. Conclusion
In this paper, we first summary the initiatives that the database community did for

building energy applications and DBMS. These initiatives cover software and
hardware aspects. Due to the complexity of the DBMS, we propose a green-query
optimizer build on the top of PostgreSQL. Before building it, an audit has been
performed to identify energy-sensitive components of the query optimizers. Based on
this audit, a methodology of building such a query optimizer is given and proposes to
modify the query processor. Our methodology is supported by an open source tool
available at the forge of our laboratory to allow researchers, industrials and students
to get benefit from it. Intensive experiments were conducted to demonstrate the
efficiency and usage of our proposal. The obtained results are encouraging. Based
on these results a probabilistic proof is given to evaluate the confidence bounds of
our model and results. We can conclude that our proposal is a complete since it
cover a large state of art discussion, a comprehensive methodology supported by a
open source tool and solid mathematical proof.

Currently, we are integrating physical design aspects in our tool and pushing its
development to become like an energy advisor.

Amine Roukh, Ladjel Bellatreche and Nikos Tziritas

61

the above, inequality 11 becomes inequality 13. For 𝑘𝑘 = 3 we have that 𝑃𝑃𝑃𝑃	(𝑋𝑋 ≥
124.71) ≤ 0.11. To find the confidence level for the lower bound of population, we
have to multiply the probability of A to be greater than 108.19 (i.e., 1 — 0.11 = 0.89)
by (a) the confidence level for the lower bound of population mean, and (b) by the
confidence level for the upper bound of population standard deviation. As a result,
the lower bound of population is equal to 108.9 with 87% (0.99 * 0.99 * 0.89) degree
of confidence. By working in a similar way, the upper bound of the population is
equal to 124.71 with 87% degree of confidence. Note that we can increase the
degree of confidence (by increasing k) at the cost of decreasing/increasing the
lower/upper bound of population.

𝑃𝑃B(|𝑋𝑋 − 𝜇𝜇| ≥ 𝑘𝑘𝑘𝑘) ≤ 1 ∕ 𝑘𝑘V (11)
𝑃𝑃B(𝑋𝑋 ≤ 𝜇𝜇™ − 𝑘𝑘𝜎𝜎K) ≤ 1 ∕ 𝑘𝑘V (12)
𝑃𝑃B(𝑋𝑋 ≥ 𝜇𝜇K + 𝑘𝑘𝜎𝜎K) ≤ 1 ∕ 𝑘𝑘V (13)

7. Conclusion
In this paper, we first summary the initiatives that the database community did for

building energy applications and DBMS. These initiatives cover software and
hardware aspects. Due to the complexity of the DBMS, we propose a green-query
optimizer build on the top of PostgreSQL. Before building it, an audit has been
performed to identify energy-sensitive components of the query optimizers. Based on
this audit, a methodology of building such a query optimizer is given and proposes to
modify the query processor. Our methodology is supported by an open source tool
available at the forge of our laboratory to allow researchers, industrials and students
to get benefit from it. Intensive experiments were conducted to demonstrate the
efficiency and usage of our proposal. The obtained results are encouraging. Based
on these results a probabilistic proof is given to evaluate the confidence bounds of
our model and results. We can conclude that our proposal is a complete since it
cover a large state of art discussion, a comprehensive methodology supported by a
open source tool and solid mathematical proof.

Currently, we are integrating physical design aspects in our tool and pushing its
development to become like an energy advisor.

Table 3: Information of the calculations.

Interval Observed
points (O)

Estimated
points (E) (O-E) (O-E)2/E

< 113.946 15 16.37 -1.37 0.114655
(113.946, 114.9825] 18 16.37 1.63 0.162303
(114.9825, 115.7572] 18 16.37 1.63 0.162303
(115.7572, 116.4554] 19 16.37 2.63 0.422535
(116.4554, 117.1537] 18 16.37 1.63 0.162303
(117.1537, 117.9284] 6 16.37 -10.37 6.569145
(117.9284, 118.9649] 20 16.37 3.63 0.804942
> 118.9649 17 16.37 0.63 0.024246

the above, inequality 11 becomes inequality 13. For 𝑘𝑘 = 3 we have that 𝑃𝑃𝑃𝑃	(𝑋𝑋 ≥
124.71) ≤ 0.11. To find the confidence level for the lower bound of population, we
have to multiply the probability of A to be greater than 108.19 (i.e., 1 — 0.11 = 0.89)
by (a) the confidence level for the lower bound of population mean, and (b) by the
confidence level for the upper bound of population standard deviation. As a result,
the lower bound of population is equal to 108.9 with 87% (0.99 * 0.99 * 0.89) degree
of confidence. By working in a similar way, the upper bound of the population is
equal to 124.71 with 87% degree of confidence. Note that we can increase the
degree of confidence (by increasing k) at the cost of decreasing/increasing the
lower/upper bound of population.

𝑃𝑃B(|𝑋𝑋 − 𝜇𝜇| ≥ 𝑘𝑘𝑘𝑘) ≤ 1 ∕ 𝑘𝑘V (11)
𝑃𝑃B(𝑋𝑋 ≤ 𝜇𝜇™ − 𝑘𝑘𝜎𝜎K) ≤ 1 ∕ 𝑘𝑘V (12)
𝑃𝑃B(𝑋𝑋 ≥ 𝜇𝜇K + 𝑘𝑘𝜎𝜎K) ≤ 1 ∕ 𝑘𝑘V (13)

7. Conclusion
In this paper, we first summary the initiatives that the database community did for

building energy applications and DBMS. These initiatives cover software and
hardware aspects. Due to the complexity of the DBMS, we propose a green-query
optimizer build on the top of PostgreSQL. Before building it, an audit has been
performed to identify energy-sensitive components of the query optimizers. Based on
this audit, a methodology of building such a query optimizer is given and proposes to
modify the query processor. Our methodology is supported by an open source tool
available at the forge of our laboratory to allow researchers, industrials and students
to get benefit from it. Intensive experiments were conducted to demonstrate the
efficiency and usage of our proposal. The obtained results are encouraging. Based
on these results a probabilistic proof is given to evaluate the confidence bounds of
our model and results. We can conclude that our proposal is a complete since it
cover a large state of art discussion, a comprehensive methodology supported by a
open source tool and solid mathematical proof.

Currently, we are integrating physical design aspects in our tool and pushing its
development to become like an energy advisor.

References
[1] Abadi, D., Agrawal, R., Ailamaki, A., Balazinska, M., Bernstein, P. A., Carey, M.

J., ... & Gehrke, J. (2016). The Beckman report on database research. Communica-
tions of the ACM, 59(2), 92-99.

Azerbaijan Journal of High Performance Computing, 2(1), 2019

62

[2] Chaudhuri, S., Narasayya, V., & Ramamurthy, R. (2004, June). Estimating prog-
ress of execution for SQL queries. In Proceedings of the 2004 ACM SIGMOD interna-
tional conference on Management of data (pp. 803-814). ACM.

[3] Dannecker, L., Schulze, R., Böhm, M., Lehner, W., & Hackenbroich, G. (2011,
July). Context-aware parameter estimation for forecast models in the energy domain.
In International Conference on Scientific and Statistical Database Management (pp.
491-508). Springer, Berlin, Heidelberg.

[4] Do, J., Kee, Y. S., Patel, J. M., Park, C., Park, K., & DeWitt, D. J. (2013, June).
Query processing on smart SSDs: opportunities and challenges. In Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data (pp. 1221-
1230). ACM.

[5] e Sustainability Initiative. (2012). G., the Boston Consulting Group, I: Gesi smart-
er 2020: The role of ict in driving a sustainable future. Press Release, December.

[6] Graefe, G. (2008, March). Database servers tailored to improve energy effi-
ciency. In Proceedings of the 2008 EDBT workshop on Software engineering for tai-
lor-made data management (pp. 24-28). ACM.

[7] Härder, T., Hudlet, V., Ou, Y., & Schall, D. (2011, April). Energy efficiency is not
enough, energy proportionality is needed!. In International Conference on Database
Systems for Advanced Applications (pp. 226-239). Springer, Berlin, Heidelberg.

[8] Harizopoulos, S., Shah, M., Meza, J., & Ranganathan, P. (2009). Energy effi-
ciency: The new holy grail of data management systems research. arXiv preprint arX-
iv:0909.1784.

[9] Intel and Oracle (2011). Oracle exadata on intel R xeonR processors: Extreme
performance for enterprise computing. White paper.

[10] Kunjir, M., Birwa, P. K., & Haritsa, J. R. (2012, March). Peak power plays in
database engines. In Proceedings of the 15th International Conference on Extending
Database Technology (pp. 444-455). ACM.

[11] Lang, W., Kandhan, R., & Patel, J. M. (2011). Rethinking query processing for
energy efficiency: Slowing down to win the race. IEEE Data Eng. Bull., 34(1), 12-23.

[12] Lang, W., & Patel, J. (2009). Towards eco-friendly database management sys-
tems. arXiv preprint arXiv:0909.1767.

[13] McCullough, J. C., Agarwal, Y., Chandrashekar, J., Kuppuswamy, S., Snoeren,
A. C., & Gupta, R. K. (2011, June). Evaluating the effectiveness of model-based power
characterization. In USENIX Annual Technical Conf (Vol. 20).

[14] Otoo, E., Rotem, D., & Tsao, S. C. (2009, June). Energy smart management of
scientific data. In International Conference on Scientific and Statistical Database Man-
agement (pp. 92-109). Springer, Berlin, Heidelberg.

[15] Poess, M., & Nambiar, R. O. (2008). Energy cost, the key challenge of to-
day’s data centers: a power consumption analysis of TPC-C results. Proceedings of
the VLDB Endowment, 1(2), 1229-1240.

[16] Rodriguez-Martinez, M., Valdivia, H., Seguel, J., & Greer, M. (2011). Estimating
power/energy consumption in database servers. Procedia Computer Science, 6, 112-
117.

[17] Rofouei, M., Stathopoulos, T., Ryffel, S., Kaiser, W., & Sarrafzadeh, M. (2008,
December). Energy-aware high performance computing with graphic processing
units. In Workshop on power aware computing and system.

Amine Roukh, Ladjel Bellatreche and Nikos Tziritas

63

[18] Roukh, A., & Bellatreche, L. (2015, September). Eco-processing of OLAP com-
plex queries. In International Conference on Big Data Analytics and Knowledge Dis-
covery (pp. 229-242). Springer, Cham.

[19] Roukh, A., Bellatreche, L., Boukorca, A., & Bouarar, S. (2015, October). Eco-
dmw: Eco-design methodology for data warehouses. In Proceedings of the ACM Eigh-
teenth International Workshop on Data Warehousing and OLAP (pp. 1-10). ACM.

[20] Royer, K., Bellatreche, L., & Jean, S. (2014, October). One semantic data ware-
house fits both electrical vehicle data and their business processes. In 17th Interna-
tional IEEE Conference on Intelligent Transportation Systems (ITSC) (pp. 635-640).
IEEE.

[21] Šikšnys, L., Thomsen, C., & Pedersen, T. B. (2015). MIRABEL DW: Manag-
ing Complex Energy Data in a Smart Grid. In Transactions on Large-Scale Data-and
Knowledge-Centered Systems XXI (pp. 48-72). Springer, Berlin, Heidelberg.

Submitted 20.03.2019
Accepted 31.05.2019

Azerbaijan Journal of High Performance Computing, 2(1), 2019

