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Abstract
In the last few years, we have been seeing a significant increase 
in research about the energy efficiency of hardware and software 
components by both academic and industry. Today, energy ef-
ficiency is one of the most challenging issues in the area of in-
formation technologies and communication. In data-centric ap-
plications, database management systems are one of the major 
energy consumers, in which, a large amount of data is queried 
by complex queries running daily. Designing and implementing 
of an energy-aware DBMS that enables significant energy con-
servation while processing queries become a necessary need. 
Traditionally, existing DBMSs focus to high-performance during 
query optimization phase, while totally ignoring the energy con-
sumption of the queries. In this paper, we propose a method-
ology, supported by a tool called EcoProD, focusing on query 
optimizers. To show its effectiveness, we implement it in Post-
greSQL DBMS aiming reducing energy consumption without de-
grading query response time. A mathematical cost model is used 
to estimate the energy consumption. Its parameters are identified 
by a machine learning technique. We conduct intensive experi-
ments using our cost models and a measurement tool dedicated 
to compute energy using dataset of TPC-H benchmark. Based 
on the obtained results, a probabilistic proof to demonstrate the 
confidence bounds of our model and results is given.
CCS Concepts: Information systems - Relational database mod-
el; DBMS engine architectures; Database query processing; 
Relational database query languages;
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The COP21 event shows the willingness of countries (Over 145 foreign Heads of 
State and Government attended the conference at Le Bourget, Paris), companies, 
individuals, government and non government associations, etc. to save the planet. 
According to the 2009 Climate Action Plan, electricity is one of the two largest 
sources of greenhouse gas (GHG) emissions for the campus and Information 
Technology (IT) is currently estimated to be responsible for approximately 10 percent 
of that electricity usage. IT has become a critical resource for the mission of the 
campus and usage of computing equipment continues to increase. 

The continued expansion of the industry means that the energy use by data 
centers, and the associated emissions of greenhouse gases and other air pollutants, 
will continue to grow. Industry experts, such as the SMARTer 2020, reports that 
global data center emissions will grow 7 percent year- on-year through 2020 [5]. In a 
typical data center, DBMS is one of the most important consumers of computational 
resources among other software deployed, which turn DBMS to be a considerable 
energy consumer [15]. Traditionally, the design process of a database considers one 
non-functional requirement, which represents the query response time. This 
requirement is quite comprehensive since, the end user and decision makers of 
database applications are looking for the efficiency of the queries. Note that in the 
Beckman report on databases published in last February, energy constrained 
processing and scientific data management are considered as challenging issues 
[1]. 

Face to the strong requirement of saving energy, database community did not 
stand idly, but from last decade, it continuously proposes initiatives around OBRE 
actions (Offer, Borrow, Reform, Evaluate) to deal with energy. 

• Offer: the database technology was made available for energy professional for 
the analysis usage to enable smarter scheduling of energy consumption of entities 
such as smart cities (in MIRABEL project [21]) and electrical vehicles in EDF 
(Elecricity De France) project [20]. 

Borrow: the database technology employs green hardware and platforms 
to deploy the target database applications. 

• Reform: the database community did several efforts in reforming their software 
to integrate energy. These efforts concern mainly the development of cost models to 
estimate energy and then use them to generate query plans [24, 10, 11] and select 
optimization structures such as materialized views [19]. 

• Evaluate: to test their efficiency and effectiveness, energy initiatives have to be 
evaluated either using real datasets or benchmarks. 

These initiatives have shown their performance in reducing energy consumption. 
Offering strategic guidelines in terms of competency, knowledge, reuse, etc. may 
contribute in boosting researchers and industrials to intensively integrate energy 
during the process of building their applications and DBMS. 

Note that the landscape of DBMS is very large since it includes several 
components: query optimizer, storage manager, etc. In this paper, we focus on query 
optimizers, which represents one of the main components of DBMS. There has been 
extensive work in query optimization since the early’70 in traditional databases. 
Several algorithms and systems have been proposed, such as System-R project, 
where its findings have been largely incorporated in many commercial optimizers. 
Advanced query optimizers perform two main tasks: (i) enumeration of execution 
plans of a given query and (ii) the selection of the best plan. This selection uses cost-
based optimization (CBO). The CBO is a mathematical processor, where it uses 
formulas to calculate the cost of each execution plan. This cost may be the number of 
inputs outputs required for executing a given execution plan. A CBO approach is 
suitable when statistics on tables, indexes, selectivity factors of join and selection 
predicates, etc. are available. The existing studies on energy-aware query optimizes 
consider mainly the second task, by reforming the cost models by integrating energy. 

In this paper, we focus on the query optimization component of the PostgreSQL 
DBMS. We propose a design methodology, supported by a tool called EcoProD, that 
tries to integrate energy in the query generation phase. This is done by revisiting all 
the query optimizer steps and studying their effect on energy consumption. The new 
query optimizer will have to deal with two objectives functions, namely: improving 
performance and minimizing energy. In our design, the end users can specify 
preferences in their profiles by setting weights on different objectives, representing 
relative importance. The role of the EcoProD is to minimize the weighted sum over 
different cost metrics. 

The main technical contributions of this paper are: 
• A deep classification of existing solutions for minimizing energy by the means 

of two approach: (i) the hardware approaches, (ii) and the software approaches; 
• a multi-objective formalization of the query optimization problem including the 

query performance and the energy consumption; 
a demonstration tool, EcoProD, developed in PostgreSQL that gives to end 

users execution plans and energy consumption by their queries using 
comprehensive GUI; 

• intensive experiments using real tools to study the effectiveness of our 
approaches. 

• a probabilistic proof is given to demonstrate the confidence bounds of our 
model data and results, using high-end configuration experimentation data. 

The rest of this paper is organized as follows. We summarize the most important 
studies based on OBRE principle in Section 2. In Section 3, we give more details on 
undertaken energy initiatives from software and hardware perspectives. Section 4.6 
describes our green query optimizers, by detailing all its components. Section 5 
presents and interprets our experimental results. Section 6 gives a probabilistic 
complexity study to demonstrate the confidence bounds of our finding, while our 
conclusions are given in Section 7. 

 
2. Related work  

The most existing studies will be discussed according our OBRE principle. 
Offer. As we said in the Introduction, the database technology is used in the past 

and now to store energetic data from vehicles, smart cities, etc. The MIRABEL Project 
[21] is an example of this direction. It consists in developing an approach on a 
conceptual and an infrastructural level that allows energy distribution companies 
balancing the available supply of renewable energy sources and the current demand 
in ad-hoc fashion. It uses a DBMS to store forecasting in order to answer time series 
queries, which is an important functionality in energy data management [3, 14]. 
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processing and scientific data management are considered as challenging issues 
[1]. 
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stand idly, but from last decade, it continuously proposes initiatives around OBRE 
actions (Offer, Borrow, Reform, Evaluate) to deal with energy. 
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such as smart cities (in MIRABEL project [21]) and electrical vehicles in EDF 
(Elecricity De France) project [20]. 
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to deploy the target database applications. 

• Reform: the database community did several efforts in reforming their software 
to integrate energy. These efforts concern mainly the development of cost models to 
estimate energy and then use them to generate query plans [24, 10, 11] and select 
optimization structures such as materialized views [19]. 

• Evaluate: to test their efficiency and effectiveness, energy initiatives have to be 
evaluated either using real datasets or benchmarks. 

These initiatives have shown their performance in reducing energy consumption. 
Offering strategic guidelines in terms of competency, knowledge, reuse, etc. may 
contribute in boosting researchers and industrials to intensively integrate energy 
during the process of building their applications and DBMS. 

Note that the landscape of DBMS is very large since it includes several 
components: query optimizer, storage manager, etc. In this paper, we focus on query 
optimizers, which represents one of the main components of DBMS. There has been 
extensive work in query optimization since the early’70 in traditional databases. 
Several algorithms and systems have been proposed, such as System-R project, 
where its findings have been largely incorporated in many commercial optimizers. 
Advanced query optimizers perform two main tasks: (i) enumeration of execution 
plans of a given query and (ii) the selection of the best plan. This selection uses cost-
based optimization (CBO). The CBO is a mathematical processor, where it uses 
formulas to calculate the cost of each execution plan. This cost may be the number of 
inputs outputs required for executing a given execution plan. A CBO approach is 
suitable when statistics on tables, indexes, selectivity factors of join and selection 
predicates, etc. are available. The existing studies on energy-aware query optimizes 
consider mainly the second task, by reforming the cost models by integrating energy. 

In this paper, we focus on the query optimization component of the PostgreSQL 
DBMS. We propose a design methodology, supported by a tool called EcoProD, that 
tries to integrate energy in the query generation phase. This is done by revisiting all 
the query optimizer steps and studying their effect on energy consumption. The new 
query optimizer will have to deal with two objectives functions, namely: improving 
performance and minimizing energy. In our design, the end users can specify 
preferences in their profiles by setting weights on different objectives, representing 
relative importance. The role of the EcoProD is to minimize the weighted sum over 
different cost metrics. 

The main technical contributions of this paper are: 
• A deep classification of existing solutions for minimizing energy by the means 

of two approach: (i) the hardware approaches, (ii) and the software approaches; 
• a multi-objective formalization of the query optimization problem including the 

query performance and the energy consumption; 
a demonstration tool, EcoProD, developed in PostgreSQL that gives to end 

users execution plans and energy consumption by their queries using 
comprehensive GUI; 

• intensive experiments using real tools to study the effectiveness of our 
approaches. 

• a probabilistic proof is given to demonstrate the confidence bounds of our 
model data and results, using high-end configuration experimentation data. 

The rest of this paper is organized as follows. We summarize the most important 
studies based on OBRE principle in Section 2. In Section 3, we give more details on 
undertaken energy initiatives from software and hardware perspectives. Section 4.6 
describes our green query optimizers, by detailing all its components. Section 5 
presents and interprets our experimental results. Section 6 gives a probabilistic 
complexity study to demonstrate the confidence bounds of our finding, while our 
conclusions are given in Section 7. 
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conceptual and an infrastructural level that allows energy distribution companies 
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a demonstration tool, EcoProD, developed in PostgreSQL that gives to end 
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comprehensive GUI; 

• intensive experiments using real tools to study the effectiveness of our 
approaches. 

• a probabilistic proof is given to demonstrate the confidence bounds of our 
model data and results, using high-end configuration experimentation data. 

The rest of this paper is organized as follows. We summarize the most important 
studies based on OBRE principle in Section 2. In Section 3, we give more details on 
undertaken energy initiatives from software and hardware perspectives. Section 4.6 
describes our green query optimizers, by detailing all its components. Section 5 
presents and interprets our experimental results. Section 6 gives a probabilistic 
complexity study to demonstrate the confidence bounds of our finding, while our 
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2. Related work  

The most existing studies will be discussed according our OBRE principle. 
Offer. As we said in the Introduction, the database technology is used in the past 

and now to store energetic data from vehicles, smart cities, etc. The MIRABEL Project 
[21] is an example of this direction. It consists in developing an approach on a 
conceptual and an infrastructural level that allows energy distribution companies 
balancing the available supply of renewable energy sources and the current demand 
in ad-hoc fashion. It uses a DBMS to store forecasting in order to answer time series 
queries, which is an important functionality in energy data management [3, 14]. 

Borrow. As other technology, databases never stop borrowing green hardware 
and platforms for their applications and DBMS [9]. 

Reform. This aspect consists in reforming existing software components to 
minimize their energy use. They concern mainly two aspects: (1) the definition of cost 
models to predict energy and (2) the proposition of optimization techniques to 
reduce energy. 

Energy cost models. 
Prior works have been concentrated on building power cost models to predict 

query power consumption. In [24, 23], the authors discussed the opportunities for 
energy-based query optimization, and a power cost model is developed in the 
conjunction of PostgreSQL’s cost model to predict the query power consumption. A 
static power profile for each basic database operation in query processing is 
defined. The power cost of a plan can be calculated from the basic SQL operations, 
like CPU power cost to access tuple, power cost for reading/writing one page, and so 
on, via different access methods and join operations using regression techniques. 
The authors adapt their static model to dynamic workloads using a feedback control 
mechanism to periodically update model parameters using real-time energy 
measurements. The authors of [10] propose a technique for modeling the peak 
power of database operations. A pipeline-based model of query execution plans was 
developed to identify the sources of the peak power consumption for a query and to 
recommend plans with low peak power. For each of these pipelines, a mathematical 
function is applied, which takes as input the rates and sizes of the data flowing 
through the pipeline operators, and as output an estimation of the peak power 
consumption. The authors used piece-wise regression technique to build their cost 
model. In the same direction, the work of [11] proposes a framework for energy-
aware database query processing. It augments query plans produced by traditional 
query optimizer with an energy consumption prediction for some specific database 
operators like select, project and join using linear regression technique. [16] attempts 
to model energy and peak power of simple selection queries on single relations using 
linear regression. In our previous works [18], we proposed cost models to predict the 
power consumption of single and concurrent queries. Our model is based on pipeline 
segmenting of the query and predicting their power based on its Inputs- outputs (IO) 
and CPU costs, using polynomial regression techniques. 

Optimization techniques. 
The presence of energy consumption cost models motivate the research 

community to propose cost-driven techniques. The work in [12] proposed an 
Improved Query Energy-Efficiency (QED) by Introducing Explicit Delays mechanism, 
which uses query aggregation to leverage common components of queries in a 
workload. The work of [11] showed that processing a query as fast as possible does 
not always turn out to be the most energy-efficient way to operate a DBMS. Based on 
their proposed framework, they choose query plans that reduce energy consumption. 
In [10], cost-based driven approach is proposed to generate query plans minimizing 
the peak power. In [19], genetic algorithm with a fitness function based on a energy 
consumption cost model, is given to select materialize views reducing energy and 
optimizing queries. The work by Xu et al. [23] is close in spirit to our proposal in this 
paper. They integrate their cost model into the DBMS to choose query plans with a 
low power at the optimization phase. However, they do not study the consumed 
energy at each phase of query optimizers. Moreover, they use a simple cost model 
that do not capture the relationship between the model parameters. 

Evaluate. Energy evaluation is a sensitive point and as a consequence it requires 
accurate and transparent evaluation to show its savings. For transparent perspective, 
we propose an open platform available at the forge of our laboratory, allowing 
researchers, industrials and students to evaluate it. 

 
3. Initiatives for integrating energy in DBMS 
The proposed initiatives covers hardware and software. This categorization is 

illustrated in Figure 1. 
 
3.1. Hardware solutions 
Hardware efforts towards green databases focus on using devices designed with 

low energy consumption, or controlling the power mode of hardware by doing a 
transition from high-power state to low-power state when the system is not active (idle 
mode), is this also known as energy- proportionality [7]. Most modern hardware such 
as processors, main memory, and disks come with this technology. 

 
Processing device. 
The processing device such as CPU is one of the main active power consumer 

[15]. Since the CPU is power-proportional hardware, significant power can be saved 
using techniques like Dynamic Voltage and Frequency Scaling (DVFS) with less 
performance degradation. This has been well studied and verified in the stat-of-arts 
works [22, 12]. The use of Graphics Processing Units (GPUs) in the database has 
been shown to incur significant performance benefits. A recent study reported that 
using a GPU is more energy efficient when the performance improvement is above a 
certain bound, compared to a CPU-only solution [17]. 

 
Storage management. 
Making storage management systems green in the context of database start to 

make it appearance. Switch disks to stand-by mode lead to less energy consumption 
compared to active mode. Other works use caching and perfecting techniques or 
consolidating the most frequently accessed data via dynamic power management 
algorithm to save energy [22]. Using solid state disks (SSDs) as a storage device by 
databases to improve energy-efficiency is another worthy direction. Studies such as 
[4] claim that using Smart SSD can be benefit from both the performance and the 
energy consumption perspectives. 

 
3.2. Software solutions 
On the other hand, software-based solutions play an important role in energy 

optimization. The basic idea is to redesign current algorithms and software 
applications for better energy use. 

 
Cost model. 
Perhaps the most important task in this category is the design and the 

implementation of an accurate energy cost model. Cost models are used to estimate 
the energy consumption of a query plan or an optimization structure. Since they are 
used by other software techniques to reduce energy, they shall be accurate enough 
to give better results. The crucial issues have to be discussed: (i) the identification of 
the relevant parameters that have an impact on energy, such as CPU, I/O and 
communication costs and (ii) the relationship between these parameters (e.g: 
linear/non-linear). They are usually calculated as the product of a basic operator such 
as the number of tuples, disk pages, and network messages. 
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Borrow. As other technology, databases never stop borrowing green hardware 
and platforms for their applications and DBMS [9]. 

Reform. This aspect consists in reforming existing software components to 
minimize their energy use. They concern mainly two aspects: (1) the definition of cost 
models to predict energy and (2) the proposition of optimization techniques to 
reduce energy. 

Energy cost models. 
Prior works have been concentrated on building power cost models to predict 

query power consumption. In [24, 23], the authors discussed the opportunities for 
energy-based query optimization, and a power cost model is developed in the 
conjunction of PostgreSQL’s cost model to predict the query power consumption. A 
static power profile for each basic database operation in query processing is 
defined. The power cost of a plan can be calculated from the basic SQL operations, 
like CPU power cost to access tuple, power cost for reading/writing one page, and so 
on, via different access methods and join operations using regression techniques. 
The authors adapt their static model to dynamic workloads using a feedback control 
mechanism to periodically update model parameters using real-time energy 
measurements. The authors of [10] propose a technique for modeling the peak 
power of database operations. A pipeline-based model of query execution plans was 
developed to identify the sources of the peak power consumption for a query and to 
recommend plans with low peak power. For each of these pipelines, a mathematical 
function is applied, which takes as input the rates and sizes of the data flowing 
through the pipeline operators, and as output an estimation of the peak power 
consumption. The authors used piece-wise regression technique to build their cost 
model. In the same direction, the work of [11] proposes a framework for energy-
aware database query processing. It augments query plans produced by traditional 
query optimizer with an energy consumption prediction for some specific database 
operators like select, project and join using linear regression technique. [16] attempts 
to model energy and peak power of simple selection queries on single relations using 
linear regression. In our previous works [18], we proposed cost models to predict the 
power consumption of single and concurrent queries. Our model is based on pipeline 
segmenting of the query and predicting their power based on its Inputs- outputs (IO) 
and CPU costs, using polynomial regression techniques. 

Optimization techniques. 
The presence of energy consumption cost models motivate the research 

community to propose cost-driven techniques. The work in [12] proposed an 
Improved Query Energy-Efficiency (QED) by Introducing Explicit Delays mechanism, 
which uses query aggregation to leverage common components of queries in a 
workload. The work of [11] showed that processing a query as fast as possible does 
not always turn out to be the most energy-efficient way to operate a DBMS. Based on 
their proposed framework, they choose query plans that reduce energy consumption. 
In [10], cost-based driven approach is proposed to generate query plans minimizing 
the peak power. In [19], genetic algorithm with a fitness function based on a energy 
consumption cost model, is given to select materialize views reducing energy and 
optimizing queries. The work by Xu et al. [23] is close in spirit to our proposal in this 
paper. They integrate their cost model into the DBMS to choose query plans with a 
low power at the optimization phase. However, they do not study the consumed 
energy at each phase of query optimizers. Moreover, they use a simple cost model 
that do not capture the relationship between the model parameters. 

Evaluate. Energy evaluation is a sensitive point and as a consequence it requires 
accurate and transparent evaluation to show its savings. For transparent perspective, 
we propose an open platform available at the forge of our laboratory, allowing 
researchers, industrials and students to evaluate it. 

 
3. Initiatives for integrating energy in DBMS 
The proposed initiatives covers hardware and software. This categorization is 

illustrated in Figure 1. 
 
3.1. Hardware solutions 
Hardware efforts towards green databases focus on using devices designed with 

low energy consumption, or controlling the power mode of hardware by doing a 
transition from high-power state to low-power state when the system is not active (idle 
mode), is this also known as energy- proportionality [7]. Most modern hardware such 
as processors, main memory, and disks come with this technology. 

 
Processing device. 
The processing device such as CPU is one of the main active power consumer 

[15]. Since the CPU is power-proportional hardware, significant power can be saved 
using techniques like Dynamic Voltage and Frequency Scaling (DVFS) with less 
performance degradation. This has been well studied and verified in the stat-of-arts 
works [22, 12]. The use of Graphics Processing Units (GPUs) in the database has 
been shown to incur significant performance benefits. A recent study reported that 
using a GPU is more energy efficient when the performance improvement is above a 
certain bound, compared to a CPU-only solution [17]. 

 
Storage management. 
Making storage management systems green in the context of database start to 

make it appearance. Switch disks to stand-by mode lead to less energy consumption 
compared to active mode. Other works use caching and perfecting techniques or 
consolidating the most frequently accessed data via dynamic power management 
algorithm to save energy [22]. Using solid state disks (SSDs) as a storage device by 
databases to improve energy-efficiency is another worthy direction. Studies such as 
[4] claim that using Smart SSD can be benefit from both the performance and the 
energy consumption perspectives. 

 
3.2. Software solutions 
On the other hand, software-based solutions play an important role in energy 

optimization. The basic idea is to redesign current algorithms and software 
applications for better energy use. 

 
Cost model. 
Perhaps the most important task in this category is the design and the 

implementation of an accurate energy cost model. Cost models are used to estimate 
the energy consumption of a query plan or an optimization structure. Since they are 
used by other software techniques to reduce energy, they shall be accurate enough 
to give better results. The crucial issues have to be discussed: (i) the identification of 
the relevant parameters that have an impact on energy, such as CPU, I/O and 
communication costs and (ii) the relationship between these parameters (e.g: 
linear/non-linear). They are usually calculated as the product of a basic operator such 
as the number of tuples, disk pages, and network messages. 
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Fig. 1: Energy integration levels in DBMS

Borrow. As other technology, databases never stop borrowing green hardware 
and platforms for their applications and DBMS [9]. 

Reform. This aspect consists in reforming existing software components to 
minimize their energy use. They concern mainly two aspects: (1) the definition of cost 
models to predict energy and (2) the proposition of optimization techniques to 
reduce energy. 

Energy cost models. 
Prior works have been concentrated on building power cost models to predict 

query power consumption. In [24, 23], the authors discussed the opportunities for 
energy-based query optimization, and a power cost model is developed in the 
conjunction of PostgreSQL’s cost model to predict the query power consumption. A 
static power profile for each basic database operation in query processing is 
defined. The power cost of a plan can be calculated from the basic SQL operations, 
like CPU power cost to access tuple, power cost for reading/writing one page, and so 
on, via different access methods and join operations using regression techniques. 
The authors adapt their static model to dynamic workloads using a feedback control 
mechanism to periodically update model parameters using real-time energy 
measurements. The authors of [10] propose a technique for modeling the peak 
power of database operations. A pipeline-based model of query execution plans was 
developed to identify the sources of the peak power consumption for a query and to 
recommend plans with low peak power. For each of these pipelines, a mathematical 
function is applied, which takes as input the rates and sizes of the data flowing 
through the pipeline operators, and as output an estimation of the peak power 
consumption. The authors used piece-wise regression technique to build their cost 
model. In the same direction, the work of [11] proposes a framework for energy-
aware database query processing. It augments query plans produced by traditional 
query optimizer with an energy consumption prediction for some specific database 
operators like select, project and join using linear regression technique. [16] attempts 
to model energy and peak power of simple selection queries on single relations using 
linear regression. In our previous works [18], we proposed cost models to predict the 
power consumption of single and concurrent queries. Our model is based on pipeline 
segmenting of the query and predicting their power based on its Inputs- outputs (IO) 
and CPU costs, using polynomial regression techniques. 

Optimization techniques. 
The presence of energy consumption cost models motivate the research 

community to propose cost-driven techniques. The work in [12] proposed an 
Improved Query Energy-Efficiency (QED) by Introducing Explicit Delays mechanism, 
which uses query aggregation to leverage common components of queries in a 
workload. The work of [11] showed that processing a query as fast as possible does 
not always turn out to be the most energy-efficient way to operate a DBMS. Based on 
their proposed framework, they choose query plans that reduce energy consumption. 
In [10], cost-based driven approach is proposed to generate query plans minimizing 
the peak power. In [19], genetic algorithm with a fitness function based on a energy 
consumption cost model, is given to select materialize views reducing energy and 
optimizing queries. The work by Xu et al. [23] is close in spirit to our proposal in this 
paper. They integrate their cost model into the DBMS to choose query plans with a 
low power at the optimization phase. However, they do not study the consumed 
energy at each phase of query optimizers. Moreover, they use a simple cost model 
that do not capture the relationship between the model parameters. 

Evaluate. Energy evaluation is a sensitive point and as a consequence it requires 
accurate and transparent evaluation to show its savings. For transparent perspective, 
we propose an open platform available at the forge of our laboratory, allowing 
researchers, industrials and students to evaluate it. 

 
3. Initiatives for integrating energy in DBMS 
The proposed initiatives covers hardware and software. This categorization is 

illustrated in Figure 1. 
 
3.1. Hardware solutions 
Hardware efforts towards green databases focus on using devices designed with 

low energy consumption, or controlling the power mode of hardware by doing a 
transition from high-power state to low-power state when the system is not active (idle 
mode), is this also known as energy- proportionality [7]. Most modern hardware such 
as processors, main memory, and disks come with this technology. 

 
Processing device. 
The processing device such as CPU is one of the main active power consumer 

[15]. Since the CPU is power-proportional hardware, significant power can be saved 
using techniques like Dynamic Voltage and Frequency Scaling (DVFS) with less 
performance degradation. This has been well studied and verified in the stat-of-arts 
works [22, 12]. The use of Graphics Processing Units (GPUs) in the database has 
been shown to incur significant performance benefits. A recent study reported that 
using a GPU is more energy efficient when the performance improvement is above a 
certain bound, compared to a CPU-only solution [17]. 

 
Storage management. 
Making storage management systems green in the context of database start to 

make it appearance. Switch disks to stand-by mode lead to less energy consumption 
compared to active mode. Other works use caching and perfecting techniques or 
consolidating the most frequently accessed data via dynamic power management 
algorithm to save energy [22]. Using solid state disks (SSDs) as a storage device by 
databases to improve energy-efficiency is another worthy direction. Studies such as 
[4] claim that using Smart SSD can be benefit from both the performance and the 
energy consumption perspectives. 

 
3.2. Software solutions 
On the other hand, software-based solutions play an important role in energy 

optimization. The basic idea is to redesign current algorithms and software 
applications for better energy use. 

 
Cost model. 
Perhaps the most important task in this category is the design and the 

implementation of an accurate energy cost model. Cost models are used to estimate 
the energy consumption of a query plan or an optimization structure. Since they are 
used by other software techniques to reduce energy, they shall be accurate enough 
to give better results. The crucial issues have to be discussed: (i) the identification of 
the relevant parameters that have an impact on energy, such as CPU, I/O and 
communication costs and (ii) the relationship between these parameters (e.g: 
linear/non-linear). They are usually calculated as the product of a basic operator such 
as the number of tuples, disk pages, and network messages. 
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Borrow. As other technology, databases never stop borrowing green hardware 
and platforms for their applications and DBMS [9]. 

Reform. This aspect consists in reforming existing software components to 
minimize their energy use. They concern mainly two aspects: (1) the definition of cost 
models to predict energy and (2) the proposition of optimization techniques to 
reduce energy. 

Energy cost models. 
Prior works have been concentrated on building power cost models to predict 

query power consumption. In [24, 23], the authors discussed the opportunities for 
energy-based query optimization, and a power cost model is developed in the 
conjunction of PostgreSQL’s cost model to predict the query power consumption. A 
static power profile for each basic database operation in query processing is 
defined. The power cost of a plan can be calculated from the basic SQL operations, 
like CPU power cost to access tuple, power cost for reading/writing one page, and so 
on, via different access methods and join operations using regression techniques. 
The authors adapt their static model to dynamic workloads using a feedback control 
mechanism to periodically update model parameters using real-time energy 
measurements. The authors of [10] propose a technique for modeling the peak 
power of database operations. A pipeline-based model of query execution plans was 
developed to identify the sources of the peak power consumption for a query and to 
recommend plans with low peak power. For each of these pipelines, a mathematical 
function is applied, which takes as input the rates and sizes of the data flowing 
through the pipeline operators, and as output an estimation of the peak power 
consumption. The authors used piece-wise regression technique to build their cost 
model. In the same direction, the work of [11] proposes a framework for energy-
aware database query processing. It augments query plans produced by traditional 
query optimizer with an energy consumption prediction for some specific database 
operators like select, project and join using linear regression technique. [16] attempts 
to model energy and peak power of simple selection queries on single relations using 
linear regression. In our previous works [18], we proposed cost models to predict the 
power consumption of single and concurrent queries. Our model is based on pipeline 
segmenting of the query and predicting their power based on its Inputs- outputs (IO) 
and CPU costs, using polynomial regression techniques. 

Optimization techniques. 
The presence of energy consumption cost models motivate the research 

community to propose cost-driven techniques. The work in [12] proposed an 
Improved Query Energy-Efficiency (QED) by Introducing Explicit Delays mechanism, 
which uses query aggregation to leverage common components of queries in a 
workload. The work of [11] showed that processing a query as fast as possible does 
not always turn out to be the most energy-efficient way to operate a DBMS. Based on 
their proposed framework, they choose query plans that reduce energy consumption. 
In [10], cost-based driven approach is proposed to generate query plans minimizing 
the peak power. In [19], genetic algorithm with a fitness function based on a energy 
consumption cost model, is given to select materialize views reducing energy and 
optimizing queries. The work by Xu et al. [23] is close in spirit to our proposal in this 
paper. They integrate their cost model into the DBMS to choose query plans with a 
low power at the optimization phase. However, they do not study the consumed 
energy at each phase of query optimizers. Moreover, they use a simple cost model 
that do not capture the relationship between the model parameters. 

Evaluate. Energy evaluation is a sensitive point and as a consequence it requires 
accurate and transparent evaluation to show its savings. For transparent perspective, 
we propose an open platform available at the forge of our laboratory, allowing 
researchers, industrials and students to evaluate it. 

 
3. Initiatives for integrating energy in DBMS 
The proposed initiatives covers hardware and software. This categorization is 

illustrated in Figure 1. 
 
3.1. Hardware solutions 
Hardware efforts towards green databases focus on using devices designed with 

low energy consumption, or controlling the power mode of hardware by doing a 
transition from high-power state to low-power state when the system is not active (idle 
mode), is this also known as energy- proportionality [7]. Most modern hardware such 
as processors, main memory, and disks come with this technology. 

 
Processing device. 
The processing device such as CPU is one of the main active power consumer 

[15]. Since the CPU is power-proportional hardware, significant power can be saved 
using techniques like Dynamic Voltage and Frequency Scaling (DVFS) with less 
performance degradation. This has been well studied and verified in the stat-of-arts 
works [22, 12]. The use of Graphics Processing Units (GPUs) in the database has 
been shown to incur significant performance benefits. A recent study reported that 
using a GPU is more energy efficient when the performance improvement is above a 
certain bound, compared to a CPU-only solution [17]. 

 
Storage management. 
Making storage management systems green in the context of database start to 

make it appearance. Switch disks to stand-by mode lead to less energy consumption 
compared to active mode. Other works use caching and perfecting techniques or 
consolidating the most frequently accessed data via dynamic power management 
algorithm to save energy [22]. Using solid state disks (SSDs) as a storage device by 
databases to improve energy-efficiency is another worthy direction. Studies such as 
[4] claim that using Smart SSD can be benefit from both the performance and the 
energy consumption perspectives. 

 
3.2. Software solutions 
On the other hand, software-based solutions play an important role in energy 

optimization. The basic idea is to redesign current algorithms and software 
applications for better energy use. 

 
Cost model. 
Perhaps the most important task in this category is the design and the 

implementation of an accurate energy cost model. Cost models are used to estimate 
the energy consumption of a query plan or an optimization structure. Since they are 
used by other software techniques to reduce energy, they shall be accurate enough 
to give better results. The crucial issues have to be discussed: (i) the identification of 
the relevant parameters that have an impact on energy, such as CPU, I/O and 
communication costs and (ii) the relationship between these parameters (e.g: 
linear/non-linear). They are usually calculated as the product of a basic operator such 
as the number of tuples, disk pages, and network messages. 

 Query optimization. 
The most used non-functional requirement by query optimizers represents the 

workload performance. Choosing query plans with low-energy consumption without 
sacrificing the performance was the motivation of several research studies [23, 10, 
11]. Their main results show the existence of power-performance trade-off in 
database query optimization. Up to 22% total power saving has been reported in 
[23]. 

 
Buffer management. 
New caching and replacement policies will be needed to reflect energy costs for 

accessing and storing data in memory. Usually, queries have some common 
components, such as common subexpressions, we can use multi-query optimization 
techniques to optimize the workload. This technique can be exploited further to 
improve the average per-query energy consumption [12]. 

 
Physical design. 
Several studies have recommended the integration of energy in the physical 

design of database [6, 8]. Recently, in [19], a energy-driven method for selecting 
materialized views leads to up to 38% total power saving. 

In this work, we consider software approach, specifically the query optimization 
technique to incorporate the energy dimension. 

 
4. Our green-query optimizer 
In order to build energy-aware query optimizers, we first propose an audit of each 

component to understand whether it is energy-sensitive or not. After our audit, we 
present in details our methodology to construct our optimizer. 

 
4.1. An Audit of Query Optimizers 
Recall that a query optimizer is the responsible to execute queries respecting one 

or several non functional requirements such as response time. The process of 
executing a given query passes through four main steps: (i) parsing, (ii) rewriting, (iii) 
planning and optimizing and (iv) executing (cf. Figure 2). To illustrate these steps, we 
consider PostgreSQL DBMS as a case study. 

 
4.2. Parse 
The parser has to check the query string for valid syntax using a set of grammar 

rules. If the syntax is correct a parse tree is built up and handed back. After the 
parser completes, the transformation process takes the parse tree as input and does 
the semantic interpretation needed to understand which tables, functions, and 
operators are referenced by the query. The data structure that is built to represent 
this information is called the query tree. The cost of this phase is generally ignored by 
the DBMS since its finish very quickly. We follow the same logic and suppose that the 
energy consumption is negligent. 

 
4.3. Rewrite 
The query rewrite processes the tree handed back by the parser stage and it 

rewrites the tree to an alternate using a set of rules. The rules are system or user 
defined. This rules-based phase is also used in materialization views query rewriting. 
As for the previous step, the cost is ignored due to the fast completion. 

 
4.4. Plan/Optimize 
The task of the planner/optimizer is to create an optimal execution plan. A given 

SQL query can be actually executed in different ways, each of which will produce the 
same set of results. The optimizer’s task is to estimate the cost of executing each 
plan using a cost-based approach and find out which one is expected to run the 
fastest. 

 
4.4.1. Plan. 
The planner starts by generating plans for scanning each individual relation 

(table) used in the query. The possible plans are determined by the available indexes 
on each relation. There is always the possibility of performing a sequential scan on a 
relation, so a sequential scan plan is always created. If the query requires joining two 
or more relations, plans for joining relations are considered after all feasible plans 
have been found for scanning single relations. The available join strategies are: 
nested loop join, merge join, hash join. When the query involves more than two 
relations, the final result must be built up by a tree of join steps, each with two inputs. 
The planner examines different possible join sequences to find the cheapest one. If 
the query uses less than a certain defined threshold, a near-exhaustive search is 
conducted to find the best join sequences, otherwise, a heuristics based genetic 
algorithm is used. 

To study the effects of such searching strategies, let us consider the query Q8 of 
the TPC-H benchmark. This a complex query which involves the join of 7 tables. We 
modify the planner of PostgreSQL in three manners: (i) searching for plan with actual 
DBMS strategy (ii) using the genetic algorithm, and (iii) manually by forcing the 
planner to choose a certain plan. For each strategy, we calculate its execution time, 
and the total energy consumption during query execution against 10GB datasets. 
Results are presented in Table 1. 

From the table, we can see that setting the query plan manually gives the betters 
results, in both time and energy. While the default searching algorithms (semi-
exhaustive) leads to a slightly more execution time and energy consumption. The 
genetic algorithm gives the worst results in this example, perhaps due to the small 
number of tables in the query, since this strategy is used by the DBMS where there is 
more than 12 tables. Considering this small number of tables, if we go in real 
operational databases where there is a hundred of tables, the searching strategy 
used by the planner can leads a noticeable energy consumption. Setting the query 
plan of queries manually by the database administrator is recommended in large 
databases to gain in energy efficiency. 

 
4.4.2. Optimize. 
To evaluate the response time for each execution plan, cost functions are defined 

for each basic SQL operator. The general formula to estimate the cost of operator op 
can be expressed as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶%& = 	𝛼𝛼	 × 	𝐼𝐼/𝑂𝑂	 ⊕ 	𝛽𝛽	 × 	𝐶𝐶𝐶𝐶𝐶𝐶	 ⊕ 	𝛾𝛾	 × 	𝑁𝑁𝑁𝑁𝑁𝑁                   (1) 
Where I/O, CPU and Net are the estimated pages numbers, tuples numbers, 

communication messages, respectively, required to execute op. They are usually 
calculated using database statistics and selectivity formulas. The coefficients a/3 and 
7 are used to convert estimations to the desired unit (e.g: time, energy). 0 represents 
the relationship between the parameters (linear, non-linear). The coefficients 
parameters and relationship can be obtained using various techniques such as 
calibration, regression and statistics. Thus, energy cost model must be defined at this 
stage with the relevant parameters. 
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Query optimization. 
The most used non-functional requirement by query optimizers represents the 

workload performance. Choosing query plans with low-energy consumption without 
sacrificing the performance was the motivation of several research studies [23, 10, 
11]. Their main results show the existence of power-performance trade-off in 
database query optimization. Up to 22% total power saving has been reported in 
[23]. 

 
Buffer management. 
New caching and replacement policies will be needed to reflect energy costs for 

accessing and storing data in memory. Usually, queries have some common 
components, such as common subexpressions, we can use multi-query optimization 
techniques to optimize the workload. This technique can be exploited further to 
improve the average per-query energy consumption [12]. 

 
Physical design. 
Several studies have recommended the integration of energy in the physical 

design of database [6, 8]. Recently, in [19], a energy-driven method for selecting 
materialized views leads to up to 38% total power saving. 

In this work, we consider software approach, specifically the query optimization 
technique to incorporate the energy dimension. 

 
4. Our green-query optimizer 
In order to build energy-aware query optimizers, we first propose an audit of each 

component to understand whether it is energy-sensitive or not. After our audit, we 
present in details our methodology to construct our optimizer. 

 
4.1. An Audit of Query Optimizers 
Recall that a query optimizer is the responsible to execute queries respecting one 

or several non functional requirements such as response time. The process of 
executing a given query passes through four main steps: (i) parsing, (ii) rewriting, (iii) 
planning and optimizing and (iv) executing (cf. Figure 2). To illustrate these steps, we 
consider PostgreSQL DBMS as a case study. 

 
4.2. Parse 
The parser has to check the query string for valid syntax using a set of grammar 

rules. If the syntax is correct a parse tree is built up and handed back. After the 
parser completes, the transformation process takes the parse tree as input and does 
the semantic interpretation needed to understand which tables, functions, and 
operators are referenced by the query. The data structure that is built to represent 
this information is called the query tree. The cost of this phase is generally ignored by 
the DBMS since its finish very quickly. We follow the same logic and suppose that the 
energy consumption is negligent. 

 
4.3. Rewrite 
The query rewrite processes the tree handed back by the parser stage and it 

rewrites the tree to an alternate using a set of rules. The rules are system or user 
defined. This rules-based phase is also used in materialization views query rewriting. 
As for the previous step, the cost is ignored due to the fast completion. 

 
4.4. Plan/Optimize 
The task of the planner/optimizer is to create an optimal execution plan. A given 

SQL query can be actually executed in different ways, each of which will produce the 
same set of results. The optimizer’s task is to estimate the cost of executing each 
plan using a cost-based approach and find out which one is expected to run the 
fastest. 

 
4.4.1. Plan. 
The planner starts by generating plans for scanning each individual relation 

(table) used in the query. The possible plans are determined by the available indexes 
on each relation. There is always the possibility of performing a sequential scan on a 
relation, so a sequential scan plan is always created. If the query requires joining two 
or more relations, plans for joining relations are considered after all feasible plans 
have been found for scanning single relations. The available join strategies are: 
nested loop join, merge join, hash join. When the query involves more than two 
relations, the final result must be built up by a tree of join steps, each with two inputs. 
The planner examines different possible join sequences to find the cheapest one. If 
the query uses less than a certain defined threshold, a near-exhaustive search is 
conducted to find the best join sequences, otherwise, a heuristics based genetic 
algorithm is used. 

To study the effects of such searching strategies, let us consider the query Q8 of 
the TPC-H benchmark. This a complex query which involves the join of 7 tables. We 
modify the planner of PostgreSQL in three manners: (i) searching for plan with actual 
DBMS strategy (ii) using the genetic algorithm, and (iii) manually by forcing the 
planner to choose a certain plan. For each strategy, we calculate its execution time, 
and the total energy consumption during query execution against 10GB datasets. 
Results are presented in Table 1. 

From the table, we can see that setting the query plan manually gives the betters 
results, in both time and energy. While the default searching algorithms (semi-
exhaustive) leads to a slightly more execution time and energy consumption. The 
genetic algorithm gives the worst results in this example, perhaps due to the small 
number of tables in the query, since this strategy is used by the DBMS where there is 
more than 12 tables. Considering this small number of tables, if we go in real 
operational databases where there is a hundred of tables, the searching strategy 
used by the planner can leads a noticeable energy consumption. Setting the query 
plan of queries manually by the database administrator is recommended in large 
databases to gain in energy efficiency. 

 
4.4.2. Optimize. 
To evaluate the response time for each execution plan, cost functions are defined 

for each basic SQL operator. The general formula to estimate the cost of operator op 
can be expressed as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶%& = 	𝛼𝛼	 × 	𝐼𝐼/𝑂𝑂	 ⊕ 	𝛽𝛽	 × 	𝐶𝐶𝐶𝐶𝐶𝐶	 ⊕ 	𝛾𝛾	 × 	𝑁𝑁𝑁𝑁𝑁𝑁                   (1) 
Where I/O, CPU and Net are the estimated pages numbers, tuples numbers, 

communication messages, respectively, required to execute op. They are usually 
calculated using database statistics and selectivity formulas. The coefficients a/3 and 
7 are used to convert estimations to the desired unit (e.g: time, energy). 0 represents 
the relationship between the parameters (linear, non-linear). The coefficients 
parameters and relationship can be obtained using various techniques such as 
calibration, regression and statistics. Thus, energy cost model must be defined at this 
stage with the relevant parameters. 

Query optimization. 
The most used non-functional requirement by query optimizers represents the 

workload performance. Choosing query plans with low-energy consumption without 
sacrificing the performance was the motivation of several research studies [23, 10, 
11]. Their main results show the existence of power-performance trade-off in 
database query optimization. Up to 22% total power saving has been reported in 
[23]. 

 
Buffer management. 
New caching and replacement policies will be needed to reflect energy costs for 

accessing and storing data in memory. Usually, queries have some common 
components, such as common subexpressions, we can use multi-query optimization 
techniques to optimize the workload. This technique can be exploited further to 
improve the average per-query energy consumption [12]. 

 
Physical design. 
Several studies have recommended the integration of energy in the physical 

design of database [6, 8]. Recently, in [19], a energy-driven method for selecting 
materialized views leads to up to 38% total power saving. 

In this work, we consider software approach, specifically the query optimization 
technique to incorporate the energy dimension. 

 
4. Our green-query optimizer 
In order to build energy-aware query optimizers, we first propose an audit of each 

component to understand whether it is energy-sensitive or not. After our audit, we 
present in details our methodology to construct our optimizer. 

 
4.1. An Audit of Query Optimizers 
Recall that a query optimizer is the responsible to execute queries respecting one 

or several non functional requirements such as response time. The process of 
executing a given query passes through four main steps: (i) parsing, (ii) rewriting, (iii) 
planning and optimizing and (iv) executing (cf. Figure 2). To illustrate these steps, we 
consider PostgreSQL DBMS as a case study. 

 
4.2. Parse 
The parser has to check the query string for valid syntax using a set of grammar 

rules. If the syntax is correct a parse tree is built up and handed back. After the 
parser completes, the transformation process takes the parse tree as input and does 
the semantic interpretation needed to understand which tables, functions, and 
operators are referenced by the query. The data structure that is built to represent 
this information is called the query tree. The cost of this phase is generally ignored by 
the DBMS since its finish very quickly. We follow the same logic and suppose that the 
energy consumption is negligent. 

 
4.3. Rewrite 
The query rewrite processes the tree handed back by the parser stage and it 

rewrites the tree to an alternate using a set of rules. The rules are system or user 
defined. This rules-based phase is also used in materialization views query rewriting. 
As for the previous step, the cost is ignored due to the fast completion. 

 
4.4. Plan/Optimize 
The task of the planner/optimizer is to create an optimal execution plan. A given 

SQL query can be actually executed in different ways, each of which will produce the 
same set of results. The optimizer’s task is to estimate the cost of executing each 
plan using a cost-based approach and find out which one is expected to run the 
fastest. 

 
4.4.1. Plan. 
The planner starts by generating plans for scanning each individual relation 

(table) used in the query. The possible plans are determined by the available indexes 
on each relation. There is always the possibility of performing a sequential scan on a 
relation, so a sequential scan plan is always created. If the query requires joining two 
or more relations, plans for joining relations are considered after all feasible plans 
have been found for scanning single relations. The available join strategies are: 
nested loop join, merge join, hash join. When the query involves more than two 
relations, the final result must be built up by a tree of join steps, each with two inputs. 
The planner examines different possible join sequences to find the cheapest one. If 
the query uses less than a certain defined threshold, a near-exhaustive search is 
conducted to find the best join sequences, otherwise, a heuristics based genetic 
algorithm is used. 

To study the effects of such searching strategies, let us consider the query Q8 of 
the TPC-H benchmark. This a complex query which involves the join of 7 tables. We 
modify the planner of PostgreSQL in three manners: (i) searching for plan with actual 
DBMS strategy (ii) using the genetic algorithm, and (iii) manually by forcing the 
planner to choose a certain plan. For each strategy, we calculate its execution time, 
and the total energy consumption during query execution against 10GB datasets. 
Results are presented in Table 1. 

From the table, we can see that setting the query plan manually gives the betters 
results, in both time and energy. While the default searching algorithms (semi-
exhaustive) leads to a slightly more execution time and energy consumption. The 
genetic algorithm gives the worst results in this example, perhaps due to the small 
number of tables in the query, since this strategy is used by the DBMS where there is 
more than 12 tables. Considering this small number of tables, if we go in real 
operational databases where there is a hundred of tables, the searching strategy 
used by the planner can leads a noticeable energy consumption. Setting the query 
plan of queries manually by the database administrator is recommended in large 
databases to gain in energy efficiency. 

 
4.4.2. Optimize. 
To evaluate the response time for each execution plan, cost functions are defined 

for each basic SQL operator. The general formula to estimate the cost of operator op 
can be expressed as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶%& = 	𝛼𝛼	 × 	𝐼𝐼/𝑂𝑂	 ⊕ 	𝛽𝛽	 × 	𝐶𝐶𝐶𝐶𝐶𝐶	 ⊕ 	𝛾𝛾	 × 	𝑁𝑁𝑁𝑁𝑁𝑁                   (1) 
Where I/O, CPU and Net are the estimated pages numbers, tuples numbers, 

communication messages, respectively, required to execute op. They are usually 
calculated using database statistics and selectivity formulas. The coefficients a/3 and 
7 are used to convert estimations to the desired unit (e.g: time, energy). 0 represents 
the relationship between the parameters (linear, non-linear). The coefficients 
parameters and relationship can be obtained using various techniques such as 
calibration, regression and statistics. Thus, energy cost model must be defined at this 
stage with the relevant parameters. 

Fig. 2: Query optimizer steps
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Query optimization. 
The most used non-functional requirement by query optimizers represents the 

workload performance. Choosing query plans with low-energy consumption without 
sacrificing the performance was the motivation of several research studies [23, 10, 
11]. Their main results show the existence of power-performance trade-off in 
database query optimization. Up to 22% total power saving has been reported in 
[23]. 

 
Buffer management. 
New caching and replacement policies will be needed to reflect energy costs for 

accessing and storing data in memory. Usually, queries have some common 
components, such as common subexpressions, we can use multi-query optimization 
techniques to optimize the workload. This technique can be exploited further to 
improve the average per-query energy consumption [12]. 

 
Physical design. 
Several studies have recommended the integration of energy in the physical 

design of database [6, 8]. Recently, in [19], a energy-driven method for selecting 
materialized views leads to up to 38% total power saving. 

In this work, we consider software approach, specifically the query optimization 
technique to incorporate the energy dimension. 

 
4. Our green-query optimizer 
In order to build energy-aware query optimizers, we first propose an audit of each 

component to understand whether it is energy-sensitive or not. After our audit, we 
present in details our methodology to construct our optimizer. 

 
4.1. An Audit of Query Optimizers 
Recall that a query optimizer is the responsible to execute queries respecting one 

or several non functional requirements such as response time. The process of 
executing a given query passes through four main steps: (i) parsing, (ii) rewriting, (iii) 
planning and optimizing and (iv) executing (cf. Figure 2). To illustrate these steps, we 
consider PostgreSQL DBMS as a case study. 

 
4.2. Parse 
The parser has to check the query string for valid syntax using a set of grammar 

rules. If the syntax is correct a parse tree is built up and handed back. After the 
parser completes, the transformation process takes the parse tree as input and does 
the semantic interpretation needed to understand which tables, functions, and 
operators are referenced by the query. The data structure that is built to represent 
this information is called the query tree. The cost of this phase is generally ignored by 
the DBMS since its finish very quickly. We follow the same logic and suppose that the 
energy consumption is negligent. 

 
4.3. Rewrite 
The query rewrite processes the tree handed back by the parser stage and it 

rewrites the tree to an alternate using a set of rules. The rules are system or user 
defined. This rules-based phase is also used in materialization views query rewriting. 
As for the previous step, the cost is ignored due to the fast completion. 

 
4.4. Plan/Optimize 
The task of the planner/optimizer is to create an optimal execution plan. A given 

SQL query can be actually executed in different ways, each of which will produce the 
same set of results. The optimizer’s task is to estimate the cost of executing each 
plan using a cost-based approach and find out which one is expected to run the 
fastest. 

 
4.4.1. Plan. 
The planner starts by generating plans for scanning each individual relation 

(table) used in the query. The possible plans are determined by the available indexes 
on each relation. There is always the possibility of performing a sequential scan on a 
relation, so a sequential scan plan is always created. If the query requires joining two 
or more relations, plans for joining relations are considered after all feasible plans 
have been found for scanning single relations. The available join strategies are: 
nested loop join, merge join, hash join. When the query involves more than two 
relations, the final result must be built up by a tree of join steps, each with two inputs. 
The planner examines different possible join sequences to find the cheapest one. If 
the query uses less than a certain defined threshold, a near-exhaustive search is 
conducted to find the best join sequences, otherwise, a heuristics based genetic 
algorithm is used. 

To study the effects of such searching strategies, let us consider the query Q8 of 
the TPC-H benchmark. This a complex query which involves the join of 7 tables. We 
modify the planner of PostgreSQL in three manners: (i) searching for plan with actual 
DBMS strategy (ii) using the genetic algorithm, and (iii) manually by forcing the 
planner to choose a certain plan. For each strategy, we calculate its execution time, 
and the total energy consumption during query execution against 10GB datasets. 
Results are presented in Table 1. 

From the table, we can see that setting the query plan manually gives the betters 
results, in both time and energy. While the default searching algorithms (semi-
exhaustive) leads to a slightly more execution time and energy consumption. The 
genetic algorithm gives the worst results in this example, perhaps due to the small 
number of tables in the query, since this strategy is used by the DBMS where there is 
more than 12 tables. Considering this small number of tables, if we go in real 
operational databases where there is a hundred of tables, the searching strategy 
used by the planner can leads a noticeable energy consumption. Setting the query 
plan of queries manually by the database administrator is recommended in large 
databases to gain in energy efficiency. 

 
4.4.2. Optimize. 
To evaluate the response time for each execution plan, cost functions are defined 

for each basic SQL operator. The general formula to estimate the cost of operator op 
can be expressed as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶%& = 	𝛼𝛼	 × 	𝐼𝐼/𝑂𝑂	 ⊕ 	𝛽𝛽	 × 	𝐶𝐶𝐶𝐶𝐶𝐶	 ⊕ 	𝛾𝛾	 × 	𝑁𝑁𝑁𝑁𝑁𝑁                   (1) 
Where I/O, CPU and Net are the estimated pages numbers, tuples numbers, 

communication messages, respectively, required to execute op. They are usually 
calculated using database statistics and selectivity formulas. The coefficients a/3 and 
7 are used to convert estimations to the desired unit (e.g: time, energy). 0 represents 
the relationship between the parameters (linear, non-linear). The coefficients 
parameters and relationship can be obtained using various techniques such as 
calibration, regression and statistics. Thus, energy cost model must be defined at this 
stage with the relevant parameters. 

Query optimization. 
The most used non-functional requirement by query optimizers represents the 

workload performance. Choosing query plans with low-energy consumption without 
sacrificing the performance was the motivation of several research studies [23, 10, 
11]. Their main results show the existence of power-performance trade-off in 
database query optimization. Up to 22% total power saving has been reported in 
[23]. 

 
Buffer management. 
New caching and replacement policies will be needed to reflect energy costs for 

accessing and storing data in memory. Usually, queries have some common 
components, such as common subexpressions, we can use multi-query optimization 
techniques to optimize the workload. This technique can be exploited further to 
improve the average per-query energy consumption [12]. 

 
Physical design. 
Several studies have recommended the integration of energy in the physical 

design of database [6, 8]. Recently, in [19], a energy-driven method for selecting 
materialized views leads to up to 38% total power saving. 

In this work, we consider software approach, specifically the query optimization 
technique to incorporate the energy dimension. 

 
4. Our green-query optimizer 
In order to build energy-aware query optimizers, we first propose an audit of each 

component to understand whether it is energy-sensitive or not. After our audit, we 
present in details our methodology to construct our optimizer. 

 
4.1. An Audit of Query Optimizers 
Recall that a query optimizer is the responsible to execute queries respecting one 

or several non functional requirements such as response time. The process of 
executing a given query passes through four main steps: (i) parsing, (ii) rewriting, (iii) 
planning and optimizing and (iv) executing (cf. Figure 2). To illustrate these steps, we 
consider PostgreSQL DBMS as a case study. 

 
4.2. Parse 
The parser has to check the query string for valid syntax using a set of grammar 

rules. If the syntax is correct a parse tree is built up and handed back. After the 
parser completes, the transformation process takes the parse tree as input and does 
the semantic interpretation needed to understand which tables, functions, and 
operators are referenced by the query. The data structure that is built to represent 
this information is called the query tree. The cost of this phase is generally ignored by 
the DBMS since its finish very quickly. We follow the same logic and suppose that the 
energy consumption is negligent. 

 
4.3. Rewrite 
The query rewrite processes the tree handed back by the parser stage and it 

rewrites the tree to an alternate using a set of rules. The rules are system or user 
defined. This rules-based phase is also used in materialization views query rewriting. 
As for the previous step, the cost is ignored due to the fast completion. 

 
4.4. Plan/Optimize 
The task of the planner/optimizer is to create an optimal execution plan. A given 

SQL query can be actually executed in different ways, each of which will produce the 
same set of results. The optimizer’s task is to estimate the cost of executing each 
plan using a cost-based approach and find out which one is expected to run the 
fastest. 

 
4.4.1. Plan. 
The planner starts by generating plans for scanning each individual relation 

(table) used in the query. The possible plans are determined by the available indexes 
on each relation. There is always the possibility of performing a sequential scan on a 
relation, so a sequential scan plan is always created. If the query requires joining two 
or more relations, plans for joining relations are considered after all feasible plans 
have been found for scanning single relations. The available join strategies are: 
nested loop join, merge join, hash join. When the query involves more than two 
relations, the final result must be built up by a tree of join steps, each with two inputs. 
The planner examines different possible join sequences to find the cheapest one. If 
the query uses less than a certain defined threshold, a near-exhaustive search is 
conducted to find the best join sequences, otherwise, a heuristics based genetic 
algorithm is used. 

To study the effects of such searching strategies, let us consider the query Q8 of 
the TPC-H benchmark. This a complex query which involves the join of 7 tables. We 
modify the planner of PostgreSQL in three manners: (i) searching for plan with actual 
DBMS strategy (ii) using the genetic algorithm, and (iii) manually by forcing the 
planner to choose a certain plan. For each strategy, we calculate its execution time, 
and the total energy consumption during query execution against 10GB datasets. 
Results are presented in Table 1. 

From the table, we can see that setting the query plan manually gives the betters 
results, in both time and energy. While the default searching algorithms (semi-
exhaustive) leads to a slightly more execution time and energy consumption. The 
genetic algorithm gives the worst results in this example, perhaps due to the small 
number of tables in the query, since this strategy is used by the DBMS where there is 
more than 12 tables. Considering this small number of tables, if we go in real 
operational databases where there is a hundred of tables, the searching strategy 
used by the planner can leads a noticeable energy consumption. Setting the query 
plan of queries manually by the database administrator is recommended in large 
databases to gain in energy efficiency. 

 
4.4.2. Optimize. 
To evaluate the response time for each execution plan, cost functions are defined 

for each basic SQL operator. The general formula to estimate the cost of operator op 
can be expressed as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶%& = 	𝛼𝛼	 × 	𝐼𝐼/𝑂𝑂	 ⊕ 	𝛽𝛽	 × 	𝐶𝐶𝐶𝐶𝐶𝐶	 ⊕ 	𝛾𝛾	 × 	𝑁𝑁𝑁𝑁𝑁𝑁                   (1) 
Where I/O, CPU and Net are the estimated pages numbers, tuples numbers, 

communication messages, respectively, required to execute op. They are usually 
calculated using database statistics and selectivity formulas. The coefficients a/3 and 
7 are used to convert estimations to the desired unit (e.g: time, energy). 0 represents 
the relationship between the parameters (linear, non-linear). The coefficients 
parameters and relationship can be obtained using various techniques such as 
calibration, regression and statistics. Thus, energy cost model must be defined at this 
stage with the relevant parameters. 

Table 1: Planning step for TPC-H Q8 with different searching strategies.

Search Algo Planning Time (s) Energy (j)
Default 0.110006 5200.362
GA 0.977013 5387.648
Manual 0.092054 5160.036
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Query optimization. 
The most used non-functional requirement by query optimizers represents the 

workload performance. Choosing query plans with low-energy consumption without 
sacrificing the performance was the motivation of several research studies [23, 10, 
11]. Their main results show the existence of power-performance trade-off in 
database query optimization. Up to 22% total power saving has been reported in 
[23]. 

 
Buffer management. 
New caching and replacement policies will be needed to reflect energy costs for 

accessing and storing data in memory. Usually, queries have some common 
components, such as common subexpressions, we can use multi-query optimization 
techniques to optimize the workload. This technique can be exploited further to 
improve the average per-query energy consumption [12]. 

 
Physical design. 
Several studies have recommended the integration of energy in the physical 

design of database [6, 8]. Recently, in [19], a energy-driven method for selecting 
materialized views leads to up to 38% total power saving. 

In this work, we consider software approach, specifically the query optimization 
technique to incorporate the energy dimension. 

 
4. Our green-query optimizer 
In order to build energy-aware query optimizers, we first propose an audit of each 

component to understand whether it is energy-sensitive or not. After our audit, we 
present in details our methodology to construct our optimizer. 

 
4.1. An Audit of Query Optimizers 
Recall that a query optimizer is the responsible to execute queries respecting one 

or several non functional requirements such as response time. The process of 
executing a given query passes through four main steps: (i) parsing, (ii) rewriting, (iii) 
planning and optimizing and (iv) executing (cf. Figure 2). To illustrate these steps, we 
consider PostgreSQL DBMS as a case study. 

 
4.2. Parse 
The parser has to check the query string for valid syntax using a set of grammar 

rules. If the syntax is correct a parse tree is built up and handed back. After the 
parser completes, the transformation process takes the parse tree as input and does 
the semantic interpretation needed to understand which tables, functions, and 
operators are referenced by the query. The data structure that is built to represent 
this information is called the query tree. The cost of this phase is generally ignored by 
the DBMS since its finish very quickly. We follow the same logic and suppose that the 
energy consumption is negligent. 

 
4.3. Rewrite 
The query rewrite processes the tree handed back by the parser stage and it 

rewrites the tree to an alternate using a set of rules. The rules are system or user 
defined. This rules-based phase is also used in materialization views query rewriting. 
As for the previous step, the cost is ignored due to the fast completion. 

 
4.4. Plan/Optimize 
The task of the planner/optimizer is to create an optimal execution plan. A given 

SQL query can be actually executed in different ways, each of which will produce the 
same set of results. The optimizer’s task is to estimate the cost of executing each 
plan using a cost-based approach and find out which one is expected to run the 
fastest. 

 
4.4.1. Plan. 
The planner starts by generating plans for scanning each individual relation 

(table) used in the query. The possible plans are determined by the available indexes 
on each relation. There is always the possibility of performing a sequential scan on a 
relation, so a sequential scan plan is always created. If the query requires joining two 
or more relations, plans for joining relations are considered after all feasible plans 
have been found for scanning single relations. The available join strategies are: 
nested loop join, merge join, hash join. When the query involves more than two 
relations, the final result must be built up by a tree of join steps, each with two inputs. 
The planner examines different possible join sequences to find the cheapest one. If 
the query uses less than a certain defined threshold, a near-exhaustive search is 
conducted to find the best join sequences, otherwise, a heuristics based genetic 
algorithm is used. 

To study the effects of such searching strategies, let us consider the query Q8 of 
the TPC-H benchmark. This a complex query which involves the join of 7 tables. We 
modify the planner of PostgreSQL in three manners: (i) searching for plan with actual 
DBMS strategy (ii) using the genetic algorithm, and (iii) manually by forcing the 
planner to choose a certain plan. For each strategy, we calculate its execution time, 
and the total energy consumption during query execution against 10GB datasets. 
Results are presented in Table 1. 

From the table, we can see that setting the query plan manually gives the betters 
results, in both time and energy. While the default searching algorithms (semi-
exhaustive) leads to a slightly more execution time and energy consumption. The 
genetic algorithm gives the worst results in this example, perhaps due to the small 
number of tables in the query, since this strategy is used by the DBMS where there is 
more than 12 tables. Considering this small number of tables, if we go in real 
operational databases where there is a hundred of tables, the searching strategy 
used by the planner can leads a noticeable energy consumption. Setting the query 
plan of queries manually by the database administrator is recommended in large 
databases to gain in energy efficiency. 

 
4.4.2. Optimize. 
To evaluate the response time for each execution plan, cost functions are defined 

for each basic SQL operator. The general formula to estimate the cost of operator op 
can be expressed as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶%& = 	𝛼𝛼	 × 	𝐼𝐼/𝑂𝑂	 ⊕ 	𝛽𝛽	 × 	𝐶𝐶𝐶𝐶𝐶𝐶	 ⊕ 	𝛾𝛾	 × 	𝑁𝑁𝑁𝑁𝑁𝑁                   (1) 
Where I/O, CPU and Net are the estimated pages numbers, tuples numbers, 

communication messages, respectively, required to execute op. They are usually 
calculated using database statistics and selectivity formulas. The coefficients a/3 and 
7 are used to convert estimations to the desired unit (e.g: time, energy). 0 represents 
the relationship between the parameters (linear, non-linear). The coefficients 
parameters and relationship can be obtained using various techniques such as 
calibration, regression and statistics. Thus, energy cost model must be defined at this 
stage with the relevant parameters. 

The finished plan tree consists of sequential or index scans of the base relations, 
plus nested-loop, merge or hash join nodes as needed, plus any auxiliary steps, such 
as sort nodes or aggregate-function calculation nodes. 

 
4.5. Executor 
The executor takes the plan created by the planner/optimizer and recursively 

processes it to extract the required set of rows. This is essentially a demand-pull 
pipeline mechanism. Each time a plan node is called, it must deliver one more row, or 
report that it is done delivering rows. Complex queries can involve many levels of 
plan nodes, but the general approach is the same: each node computes and returns 
its next output row each time it is called. Each node is also responsible for applying 
any selection or projection expressions that were assigned to it by the planner. 

To study the effect of the execution step on designing green-query optimizer, we 
consider an example of query Q22 from the TPC-H benchmark. Figure 3 presents the 
execution plan returned by the PostgreSQL query optimizer. As we shown in [18], the 
power consumption is directly influenced by execution model of the DBMS. 
Therefore, the execution plan can divided into a set of segments, we refer to these 
segments as pipelines, the pipelines are the concurrent execution of a contiguous 
sequence of operators. The pipeline segmentation of the optimizer plan for query 
Q22 is shown in Figure 3, there are 4 pipelines, and a partial order of the execution of 
these pipelines is enforced by their terminal blocking operators (e.g., PL3 cannot 
begin until PL2 is complete). 

In our previous study, we showed that when a query switches from one pipeline to 
another, its power consumption also changes. During the execution of a pipeline, the 
power consumption usually tends to be approximately constant [18]. Therefore, the 
pipelining execution is very important and has a direct impact on power consumption 
during query execution. The design of power cost model should take into 
consideration the execution strategy, which is unfortunately ignored by Xu et al. [23]. 

 
4.6. Our Methodology 
In this section, we describe the design and the implementation of our proposal 

into PostgreSQL database. As we mentioned above, the planner/optimizer and the 
executor stages have an impact on energy consumption and should considered in 
designing any green-query optimizer. We extended the cost model, the query 
optimizer and the communication interface of PostgreSQL to include the energy 
dimension. 

Inspired by the observation made in the previous section, we designed our cost-
based power model. The basic idea of this model is to decompose an execution plan 
into a set of power independent pipelines delimited by blocking/semi- blocking 
operators. Then for each pipeline, we estimate its power consumption based on its 
CPU and I/O cost. 

The work-flow of our methodology is described in Figure 
 
4.7. Power Cost Model 
In this section, we present our methodology for estimating energy consumption. 

The characteristics of our model include: (i) the segmentation of an execution plan 
into a set of pipelines, (ii) the utilization of the pipeline cost to build the regression 
model, and (iii) the estimation of the power of future pipeline based on pipeline cost 
and the regression equation. 

 
4.7.1. Pipeline Segmentation. 
When a query is submitted to the DBMS, the query optimizer chooses an 

execution plan (cf. Figure 3). A physical operator can be either blocking or 
nonblocking. An operator is blocking if it cannot produce any output tuple without 
reading as least one of its inputs (e.g., sort operator). Based on the notion of 
blocking/nonblocking operators, we decompose a plan in a set of pipelines delimited 
by blocking operators. Thus, a pipeline consists of a set of concurrently running 
operators [2]. As in previous work [2], the pipelines are created in an inductive 
manner, starting from the leaf operators of the plan. Whenever we encounter a 
blocking operator, the current pipeline ends, and a new pipeline starts. As a result, 
the original execution plan can be viewed as a tree of pipelines, as showed in Figure 
3. 

 
4.7.2. Model Parameters. 
Given a certain query, the query optimizer is responsible for estimating CPU and 

I/O costs. Our strategy for pipeline modeling is to extend the cost models that are 
built into the PostgreSQL database systems for query optimization. To process a 
query, each operator in a pipeline needs to perform CPU and/or I/O tasks. The cost 
of these tasks represents the “cost of the pipeline”, which is the active power to be 
consumed in order to finish the takes. In this paper, we focus on a single server setup 
and leave the study of distributed databases as future work. Thus, the 
communication cost can be ignored. More formally, for a given query Q composed of 
p pipelines {PL1, PL2, . . . ,  PLp}. The power cost Power(Q) of the query Q is given by 
the following equation: 
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The time variable represents the pipelines and the query estimated time to finish 
the execution. Unlike Xu et al. study which ignore the execution time [24], in our 
model, the time is an important factor in determining the CPU or I/O dominated 
pipeline in a query. The DBMS statistics module provide us with this information. Let 
a pipeline PLi composed of n algebraic operations {OP1, OP2, …, OPn}. The power 
cost Power (PLi) of the pipeline PLi is the sum of CPU and I/O costs of all its 
operators: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑟𝑟(𝑃𝑃𝐿𝐿F) = 𝛽𝛽J&K ∑ 𝐶𝐶𝐶𝐶𝐶𝐶L=
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Where 𝛽𝛽J&K and 𝛽𝛽F% are the model parameter (i.e., unit power costs) for the 
pipelines. For a given query, the optimizer uses the query plan, cardinality estimates, 
and cost equations for the operators in the plan to generate counts for various types 
of I/O and CPU operations. It then converts these counts to time by using system-
specific parameters such as CPU speed and I/O transfer speed. Therefore, in our 
model, we take I/O and CPU estimations already available in PostgreSQL before 
converting it to time. The IO-COST is the predicted number of I/O it will require for 
DBMS to run the specified operator. The CPU-COST is the predicted number of CPU 
Tuples it will require for DBMS to run the specified operator. 

 
4.7.3. Parameters Calibration. 
The key challenge in equation (3) is to find model parameters 𝛽𝛽J&K and 𝛽𝛽F%. Simple 

linear regression technique, as used in [24, 10, 11], did not work well in our 
experiments, especially when data size change, this is because the relationships 
between data size and power are not linear. In other words, processing large files 
does not always translate in high power consumption. It depends more on the type of 
queries (I/O or CPU intensive) and their execution time. Therefore, we employed 

The finished plan tree consists of sequential or index scans of the base relations, 
plus nested-loop, merge or hash join nodes as needed, plus any auxiliary steps, such 
as sort nodes or aggregate-function calculation nodes. 

 
4.5. Executor 
The executor takes the plan created by the planner/optimizer and recursively 

processes it to extract the required set of rows. This is essentially a demand-pull 
pipeline mechanism. Each time a plan node is called, it must deliver one more row, or 
report that it is done delivering rows. Complex queries can involve many levels of 
plan nodes, but the general approach is the same: each node computes and returns 
its next output row each time it is called. Each node is also responsible for applying 
any selection or projection expressions that were assigned to it by the planner. 

To study the effect of the execution step on designing green-query optimizer, we 
consider an example of query Q22 from the TPC-H benchmark. Figure 3 presents the 
execution plan returned by the PostgreSQL query optimizer. As we shown in [18], the 
power consumption is directly influenced by execution model of the DBMS. 
Therefore, the execution plan can divided into a set of segments, we refer to these 
segments as pipelines, the pipelines are the concurrent execution of a contiguous 
sequence of operators. The pipeline segmentation of the optimizer plan for query 
Q22 is shown in Figure 3, there are 4 pipelines, and a partial order of the execution of 
these pipelines is enforced by their terminal blocking operators (e.g., PL3 cannot 
begin until PL2 is complete). 

In our previous study, we showed that when a query switches from one pipeline to 
another, its power consumption also changes. During the execution of a pipeline, the 
power consumption usually tends to be approximately constant [18]. Therefore, the 
pipelining execution is very important and has a direct impact on power consumption 
during query execution. The design of power cost model should take into 
consideration the execution strategy, which is unfortunately ignored by Xu et al. [23]. 

 
4.6. Our Methodology 
In this section, we describe the design and the implementation of our proposal 

into PostgreSQL database. As we mentioned above, the planner/optimizer and the 
executor stages have an impact on energy consumption and should considered in 
designing any green-query optimizer. We extended the cost model, the query 
optimizer and the communication interface of PostgreSQL to include the energy 
dimension. 

Inspired by the observation made in the previous section, we designed our cost-
based power model. The basic idea of this model is to decompose an execution plan 
into a set of power independent pipelines delimited by blocking/semi- blocking 
operators. Then for each pipeline, we estimate its power consumption based on its 
CPU and I/O cost. 

The work-flow of our methodology is described in Figure 
 
4.7. Power Cost Model 
In this section, we present our methodology for estimating energy consumption. 

The characteristics of our model include: (i) the segmentation of an execution plan 
into a set of pipelines, (ii) the utilization of the pipeline cost to build the regression 
model, and (iii) the estimation of the power of future pipeline based on pipeline cost 
and the regression equation. 

 
4.7.1. Pipeline Segmentation. 
When a query is submitted to the DBMS, the query optimizer chooses an 

execution plan (cf. Figure 3). A physical operator can be either blocking or 
nonblocking. An operator is blocking if it cannot produce any output tuple without 
reading as least one of its inputs (e.g., sort operator). Based on the notion of 
blocking/nonblocking operators, we decompose a plan in a set of pipelines delimited 
by blocking operators. Thus, a pipeline consists of a set of concurrently running 
operators [2]. As in previous work [2], the pipelines are created in an inductive 
manner, starting from the leaf operators of the plan. Whenever we encounter a 
blocking operator, the current pipeline ends, and a new pipeline starts. As a result, 
the original execution plan can be viewed as a tree of pipelines, as showed in Figure 
3. 

 
4.7.2. Model Parameters. 
Given a certain query, the query optimizer is responsible for estimating CPU and 

I/O costs. Our strategy for pipeline modeling is to extend the cost models that are 
built into the PostgreSQL database systems for query optimization. To process a 
query, each operator in a pipeline needs to perform CPU and/or I/O tasks. The cost 
of these tasks represents the “cost of the pipeline”, which is the active power to be 
consumed in order to finish the takes. In this paper, we focus on a single server setup 
and leave the study of distributed databases as future work. Thus, the 
communication cost can be ignored. More formally, for a given query Q composed of 
p pipelines {PL1, PL2, . . . ,  PLp}. The power cost Power(Q) of the query Q is given by 
the following equation: 
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The time variable represents the pipelines and the query estimated time to finish 
the execution. Unlike Xu et al. study which ignore the execution time [24], in our 
model, the time is an important factor in determining the CPU or I/O dominated 
pipeline in a query. The DBMS statistics module provide us with this information. Let 
a pipeline PLi composed of n algebraic operations {OP1, OP2, …, OPn}. The power 
cost Power (PLi) of the pipeline PLi is the sum of CPU and I/O costs of all its 
operators: 
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Where 𝛽𝛽J&K and 𝛽𝛽F% are the model parameter (i.e., unit power costs) for the 
pipelines. For a given query, the optimizer uses the query plan, cardinality estimates, 
and cost equations for the operators in the plan to generate counts for various types 
of I/O and CPU operations. It then converts these counts to time by using system-
specific parameters such as CPU speed and I/O transfer speed. Therefore, in our 
model, we take I/O and CPU estimations already available in PostgreSQL before 
converting it to time. The IO-COST is the predicted number of I/O it will require for 
DBMS to run the specified operator. The CPU-COST is the predicted number of CPU 
Tuples it will require for DBMS to run the specified operator. 

 
4.7.3. Parameters Calibration. 
The key challenge in equation (3) is to find model parameters 𝛽𝛽J&K and 𝛽𝛽F%. Simple 

linear regression technique, as used in [24, 10, 11], did not work well in our 
experiments, especially when data size change, this is because the relationships 
between data size and power are not linear. In other words, processing large files 
does not always translate in high power consumption. It depends more on the type of 
queries (I/O or CPU intensive) and their execution time. Therefore, we employed 

Fig. 3: execution plan of TPC-H benchmark query Q22 with corresponding pipeline 
annotation.
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The finished plan tree consists of sequential or index scans of the base relations, 
plus nested-loop, merge or hash join nodes as needed, plus any auxiliary steps, such 
as sort nodes or aggregate-function calculation nodes. 

 
4.5. Executor 
The executor takes the plan created by the planner/optimizer and recursively 

processes it to extract the required set of rows. This is essentially a demand-pull 
pipeline mechanism. Each time a plan node is called, it must deliver one more row, or 
report that it is done delivering rows. Complex queries can involve many levels of 
plan nodes, but the general approach is the same: each node computes and returns 
its next output row each time it is called. Each node is also responsible for applying 
any selection or projection expressions that were assigned to it by the planner. 

To study the effect of the execution step on designing green-query optimizer, we 
consider an example of query Q22 from the TPC-H benchmark. Figure 3 presents the 
execution plan returned by the PostgreSQL query optimizer. As we shown in [18], the 
power consumption is directly influenced by execution model of the DBMS. 
Therefore, the execution plan can divided into a set of segments, we refer to these 
segments as pipelines, the pipelines are the concurrent execution of a contiguous 
sequence of operators. The pipeline segmentation of the optimizer plan for query 
Q22 is shown in Figure 3, there are 4 pipelines, and a partial order of the execution of 
these pipelines is enforced by their terminal blocking operators (e.g., PL3 cannot 
begin until PL2 is complete). 

In our previous study, we showed that when a query switches from one pipeline to 
another, its power consumption also changes. During the execution of a pipeline, the 
power consumption usually tends to be approximately constant [18]. Therefore, the 
pipelining execution is very important and has a direct impact on power consumption 
during query execution. The design of power cost model should take into 
consideration the execution strategy, which is unfortunately ignored by Xu et al. [23]. 

 
4.6. Our Methodology 
In this section, we describe the design and the implementation of our proposal 

into PostgreSQL database. As we mentioned above, the planner/optimizer and the 
executor stages have an impact on energy consumption and should considered in 
designing any green-query optimizer. We extended the cost model, the query 
optimizer and the communication interface of PostgreSQL to include the energy 
dimension. 

Inspired by the observation made in the previous section, we designed our cost-
based power model. The basic idea of this model is to decompose an execution plan 
into a set of power independent pipelines delimited by blocking/semi- blocking 
operators. Then for each pipeline, we estimate its power consumption based on its 
CPU and I/O cost. 

The work-flow of our methodology is described in Figure 
 
4.7. Power Cost Model 
In this section, we present our methodology for estimating energy consumption. 

The characteristics of our model include: (i) the segmentation of an execution plan 
into a set of pipelines, (ii) the utilization of the pipeline cost to build the regression 
model, and (iii) the estimation of the power of future pipeline based on pipeline cost 
and the regression equation. 

 
4.7.1. Pipeline Segmentation. 
When a query is submitted to the DBMS, the query optimizer chooses an 

execution plan (cf. Figure 3). A physical operator can be either blocking or 
nonblocking. An operator is blocking if it cannot produce any output tuple without 
reading as least one of its inputs (e.g., sort operator). Based on the notion of 
blocking/nonblocking operators, we decompose a plan in a set of pipelines delimited 
by blocking operators. Thus, a pipeline consists of a set of concurrently running 
operators [2]. As in previous work [2], the pipelines are created in an inductive 
manner, starting from the leaf operators of the plan. Whenever we encounter a 
blocking operator, the current pipeline ends, and a new pipeline starts. As a result, 
the original execution plan can be viewed as a tree of pipelines, as showed in Figure 
3. 

 
4.7.2. Model Parameters. 
Given a certain query, the query optimizer is responsible for estimating CPU and 

I/O costs. Our strategy for pipeline modeling is to extend the cost models that are 
built into the PostgreSQL database systems for query optimization. To process a 
query, each operator in a pipeline needs to perform CPU and/or I/O tasks. The cost 
of these tasks represents the “cost of the pipeline”, which is the active power to be 
consumed in order to finish the takes. In this paper, we focus on a single server setup 
and leave the study of distributed databases as future work. Thus, the 
communication cost can be ignored. More formally, for a given query Q composed of 
p pipelines {PL1, PL2, . . . ,  PLp}. The power cost Power(Q) of the query Q is given by 
the following equation: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑄𝑄) = ∑ ;<
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The time variable represents the pipelines and the query estimated time to finish 
the execution. Unlike Xu et al. study which ignore the execution time [24], in our 
model, the time is an important factor in determining the CPU or I/O dominated 
pipeline in a query. The DBMS statistics module provide us with this information. Let 
a pipeline PLi composed of n algebraic operations {OP1, OP2, …, OPn}. The power 
cost Power (PLi) of the pipeline PLi is the sum of CPU and I/O costs of all its 
operators: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑟𝑟(𝑃𝑃𝐿𝐿F) = 𝛽𝛽J&K ∑ 𝐶𝐶𝐶𝐶𝐶𝐶L=
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Where 𝛽𝛽J&K and 𝛽𝛽F% are the model parameter (i.e., unit power costs) for the 
pipelines. For a given query, the optimizer uses the query plan, cardinality estimates, 
and cost equations for the operators in the plan to generate counts for various types 
of I/O and CPU operations. It then converts these counts to time by using system-
specific parameters such as CPU speed and I/O transfer speed. Therefore, in our 
model, we take I/O and CPU estimations already available in PostgreSQL before 
converting it to time. The IO-COST is the predicted number of I/O it will require for 
DBMS to run the specified operator. The CPU-COST is the predicted number of CPU 
Tuples it will require for DBMS to run the specified operator. 

 
4.7.3. Parameters Calibration. 
The key challenge in equation (3) is to find model parameters 𝛽𝛽J&K and 𝛽𝛽F%. Simple 

linear regression technique, as used in [24, 10, 11], did not work well in our 
experiments, especially when data size change, this is because the relationships 
between data size and power are not linear. In other words, processing large files 
does not always translate in high power consumption. It depends more on the type of 
queries (I/O or CPU intensive) and their execution time. Therefore, we employed 

Fig. 4: The Design Methodology
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The finished plan tree consists of sequential or index scans of the base relations, 
plus nested-loop, merge or hash join nodes as needed, plus any auxiliary steps, such 
as sort nodes or aggregate-function calculation nodes. 

 
4.5. Executor 
The executor takes the plan created by the planner/optimizer and recursively 

processes it to extract the required set of rows. This is essentially a demand-pull 
pipeline mechanism. Each time a plan node is called, it must deliver one more row, or 
report that it is done delivering rows. Complex queries can involve many levels of 
plan nodes, but the general approach is the same: each node computes and returns 
its next output row each time it is called. Each node is also responsible for applying 
any selection or projection expressions that were assigned to it by the planner. 

To study the effect of the execution step on designing green-query optimizer, we 
consider an example of query Q22 from the TPC-H benchmark. Figure 3 presents the 
execution plan returned by the PostgreSQL query optimizer. As we shown in [18], the 
power consumption is directly influenced by execution model of the DBMS. 
Therefore, the execution plan can divided into a set of segments, we refer to these 
segments as pipelines, the pipelines are the concurrent execution of a contiguous 
sequence of operators. The pipeline segmentation of the optimizer plan for query 
Q22 is shown in Figure 3, there are 4 pipelines, and a partial order of the execution of 
these pipelines is enforced by their terminal blocking operators (e.g., PL3 cannot 
begin until PL2 is complete). 

In our previous study, we showed that when a query switches from one pipeline to 
another, its power consumption also changes. During the execution of a pipeline, the 
power consumption usually tends to be approximately constant [18]. Therefore, the 
pipelining execution is very important and has a direct impact on power consumption 
during query execution. The design of power cost model should take into 
consideration the execution strategy, which is unfortunately ignored by Xu et al. [23]. 

 
4.6. Our Methodology 
In this section, we describe the design and the implementation of our proposal 

into PostgreSQL database. As we mentioned above, the planner/optimizer and the 
executor stages have an impact on energy consumption and should considered in 
designing any green-query optimizer. We extended the cost model, the query 
optimizer and the communication interface of PostgreSQL to include the energy 
dimension. 

Inspired by the observation made in the previous section, we designed our cost-
based power model. The basic idea of this model is to decompose an execution plan 
into a set of power independent pipelines delimited by blocking/semi- blocking 
operators. Then for each pipeline, we estimate its power consumption based on its 
CPU and I/O cost. 

The work-flow of our methodology is described in Figure 
 
4.7. Power Cost Model 
In this section, we present our methodology for estimating energy consumption. 

The characteristics of our model include: (i) the segmentation of an execution plan 
into a set of pipelines, (ii) the utilization of the pipeline cost to build the regression 
model, and (iii) the estimation of the power of future pipeline based on pipeline cost 
and the regression equation. 

 
4.7.1. Pipeline Segmentation. 
When a query is submitted to the DBMS, the query optimizer chooses an 

execution plan (cf. Figure 3). A physical operator can be either blocking or 
nonblocking. An operator is blocking if it cannot produce any output tuple without 
reading as least one of its inputs (e.g., sort operator). Based on the notion of 
blocking/nonblocking operators, we decompose a plan in a set of pipelines delimited 
by blocking operators. Thus, a pipeline consists of a set of concurrently running 
operators [2]. As in previous work [2], the pipelines are created in an inductive 
manner, starting from the leaf operators of the plan. Whenever we encounter a 
blocking operator, the current pipeline ends, and a new pipeline starts. As a result, 
the original execution plan can be viewed as a tree of pipelines, as showed in Figure 
3. 

 
4.7.2. Model Parameters. 
Given a certain query, the query optimizer is responsible for estimating CPU and 

I/O costs. Our strategy for pipeline modeling is to extend the cost models that are 
built into the PostgreSQL database systems for query optimization. To process a 
query, each operator in a pipeline needs to perform CPU and/or I/O tasks. The cost 
of these tasks represents the “cost of the pipeline”, which is the active power to be 
consumed in order to finish the takes. In this paper, we focus on a single server setup 
and leave the study of distributed databases as future work. Thus, the 
communication cost can be ignored. More formally, for a given query Q composed of 
p pipelines {PL1, PL2, . . . ,  PLp}. The power cost Power(Q) of the query Q is given by 
the following equation: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑄𝑄) = ∑ ;<
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The time variable represents the pipelines and the query estimated time to finish 
the execution. Unlike Xu et al. study which ignore the execution time [24], in our 
model, the time is an important factor in determining the CPU or I/O dominated 
pipeline in a query. The DBMS statistics module provide us with this information. Let 
a pipeline PLi composed of n algebraic operations {OP1, OP2, …, OPn}. The power 
cost Power (PLi) of the pipeline PLi is the sum of CPU and I/O costs of all its 
operators: 
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Where 𝛽𝛽J&K and 𝛽𝛽F% are the model parameter (i.e., unit power costs) for the 
pipelines. For a given query, the optimizer uses the query plan, cardinality estimates, 
and cost equations for the operators in the plan to generate counts for various types 
of I/O and CPU operations. It then converts these counts to time by using system-
specific parameters such as CPU speed and I/O transfer speed. Therefore, in our 
model, we take I/O and CPU estimations already available in PostgreSQL before 
converting it to time. The IO-COST is the predicted number of I/O it will require for 
DBMS to run the specified operator. The CPU-COST is the predicted number of CPU 
Tuples it will require for DBMS to run the specified operator. 

 
4.7.3. Parameters Calibration. 
The key challenge in equation (3) is to find model parameters 𝛽𝛽J&K and 𝛽𝛽F%. Simple 

linear regression technique, as used in [24, 10, 11], did not work well in our 
experiments, especially when data size change, this is because the relationships 
between data size and power are not linear. In other words, processing large files 
does not always translate in high power consumption. It depends more on the type of 
queries (I/O or CPU intensive) and their execution time. Therefore, we employed 
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The finished plan tree consists of sequential or index scans of the base relations, 
plus nested-loop, merge or hash join nodes as needed, plus any auxiliary steps, such 
as sort nodes or aggregate-function calculation nodes. 

 
4.5. Executor 
The executor takes the plan created by the planner/optimizer and recursively 

processes it to extract the required set of rows. This is essentially a demand-pull 
pipeline mechanism. Each time a plan node is called, it must deliver one more row, or 
report that it is done delivering rows. Complex queries can involve many levels of 
plan nodes, but the general approach is the same: each node computes and returns 
its next output row each time it is called. Each node is also responsible for applying 
any selection or projection expressions that were assigned to it by the planner. 

To study the effect of the execution step on designing green-query optimizer, we 
consider an example of query Q22 from the TPC-H benchmark. Figure 3 presents the 
execution plan returned by the PostgreSQL query optimizer. As we shown in [18], the 
power consumption is directly influenced by execution model of the DBMS. 
Therefore, the execution plan can divided into a set of segments, we refer to these 
segments as pipelines, the pipelines are the concurrent execution of a contiguous 
sequence of operators. The pipeline segmentation of the optimizer plan for query 
Q22 is shown in Figure 3, there are 4 pipelines, and a partial order of the execution of 
these pipelines is enforced by their terminal blocking operators (e.g., PL3 cannot 
begin until PL2 is complete). 

In our previous study, we showed that when a query switches from one pipeline to 
another, its power consumption also changes. During the execution of a pipeline, the 
power consumption usually tends to be approximately constant [18]. Therefore, the 
pipelining execution is very important and has a direct impact on power consumption 
during query execution. The design of power cost model should take into 
consideration the execution strategy, which is unfortunately ignored by Xu et al. [23]. 

 
4.6. Our Methodology 
In this section, we describe the design and the implementation of our proposal 

into PostgreSQL database. As we mentioned above, the planner/optimizer and the 
executor stages have an impact on energy consumption and should considered in 
designing any green-query optimizer. We extended the cost model, the query 
optimizer and the communication interface of PostgreSQL to include the energy 
dimension. 

Inspired by the observation made in the previous section, we designed our cost-
based power model. The basic idea of this model is to decompose an execution plan 
into a set of power independent pipelines delimited by blocking/semi- blocking 
operators. Then for each pipeline, we estimate its power consumption based on its 
CPU and I/O cost. 

The work-flow of our methodology is described in Figure 
 
4.7. Power Cost Model 
In this section, we present our methodology for estimating energy consumption. 

The characteristics of our model include: (i) the segmentation of an execution plan 
into a set of pipelines, (ii) the utilization of the pipeline cost to build the regression 
model, and (iii) the estimation of the power of future pipeline based on pipeline cost 
and the regression equation. 

 
4.7.1. Pipeline Segmentation. 
When a query is submitted to the DBMS, the query optimizer chooses an 

execution plan (cf. Figure 3). A physical operator can be either blocking or 
nonblocking. An operator is blocking if it cannot produce any output tuple without 
reading as least one of its inputs (e.g., sort operator). Based on the notion of 
blocking/nonblocking operators, we decompose a plan in a set of pipelines delimited 
by blocking operators. Thus, a pipeline consists of a set of concurrently running 
operators [2]. As in previous work [2], the pipelines are created in an inductive 
manner, starting from the leaf operators of the plan. Whenever we encounter a 
blocking operator, the current pipeline ends, and a new pipeline starts. As a result, 
the original execution plan can be viewed as a tree of pipelines, as showed in Figure 
3. 

 
4.7.2. Model Parameters. 
Given a certain query, the query optimizer is responsible for estimating CPU and 

I/O costs. Our strategy for pipeline modeling is to extend the cost models that are 
built into the PostgreSQL database systems for query optimization. To process a 
query, each operator in a pipeline needs to perform CPU and/or I/O tasks. The cost 
of these tasks represents the “cost of the pipeline”, which is the active power to be 
consumed in order to finish the takes. In this paper, we focus on a single server setup 
and leave the study of distributed databases as future work. Thus, the 
communication cost can be ignored. More formally, for a given query Q composed of 
p pipelines {PL1, PL2, . . . ,  PLp}. The power cost Power(Q) of the query Q is given by 
the following equation: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑄𝑄) = ∑ ;<
=>? %@AB(;C=)⋅EFGA(;C=)

EFGA(H)
                   (2) 

The time variable represents the pipelines and the query estimated time to finish 
the execution. Unlike Xu et al. study which ignore the execution time [24], in our 
model, the time is an important factor in determining the CPU or I/O dominated 
pipeline in a query. The DBMS statistics module provide us with this information. Let 
a pipeline PLi composed of n algebraic operations {OP1, OP2, …, OPn}. The power 
cost Power (PLi) of the pipeline PLi is the sum of CPU and I/O costs of all its 
operators: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑟𝑟(𝑃𝑃𝐿𝐿F) = 𝛽𝛽J&K ∑ 𝐶𝐶𝐶𝐶𝐶𝐶L=
MNO _𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝛽𝛽F%T 𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶M

L=
MNO     (3) 

Where 𝛽𝛽J&K and 𝛽𝛽F% are the model parameter (i.e., unit power costs) for the 
pipelines. For a given query, the optimizer uses the query plan, cardinality estimates, 
and cost equations for the operators in the plan to generate counts for various types 
of I/O and CPU operations. It then converts these counts to time by using system-
specific parameters such as CPU speed and I/O transfer speed. Therefore, in our 
model, we take I/O and CPU estimations already available in PostgreSQL before 
converting it to time. The IO-COST is the predicted number of I/O it will require for 
DBMS to run the specified operator. The CPU-COST is the predicted number of CPU 
Tuples it will require for DBMS to run the specified operator. 

 
4.7.3. Parameters Calibration. 
The key challenge in equation (3) is to find model parameters 𝛽𝛽J&K and 𝛽𝛽F%. Simple 

linear regression technique, as used in [24, 10, 11], did not work well in our 
experiments, especially when data size change, this is because the relationships 
between data size and power are not linear. In other words, processing large files 
does not always translate in high power consumption. It depends more on the type of 
queries (I/O or CPU intensive) and their execution time. Therefore, we employed 

(a) Performance oriented 
plan

(b) Power oriented plan (c) Performance/power
traed-o oriented plan

Figure 5: The optimal plan for TPC-H query Q3 when changing user preferences.

multiple polynomial regression techniques. This method is suitable when there is a 
nonlinear relationship between the independents variables and the corresponding 
dependent variable. Based on our experiments, the order m=4 gives us the best 
results (the residual sum of squares is the smallest). The power cost Power (PLi) of 
the pipeline PLi is computed as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃𝐿𝐿F) = 𝛽𝛽U + 𝛽𝛽O(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) + 𝛽𝛽V(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝑆𝑆𝑇𝑇) + 𝛽𝛽W(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶V) +
𝛽𝛽X(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶V) +	𝛽𝛽Y(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) +⋯+ 𝛽𝛽OW[𝐼𝐼𝑂𝑂\]^EX_ +

																																												+𝛽𝛽OX(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇X) + 𝜀𝜀    (4) 
Where IO-COST, CPU-COST denote the pipeline I/O and CPU costs respectively, 

these costs are calculated using the DBMS cost model functions, and e is a noise 
term that can account for measurement error. The 𝛽𝛽 parameters are regression 
coefficients that will be estimated while learning the model from training data. Thus, 
the regression models are solved by estimating the model parameters 𝛽𝛽, and this is 
typically done by finding the least-squares solution [13]. 

 
4.8. Plans Evaluation 
The query optimizer evaluates each possible execution path and takes the fastest. 

Adding energy criterion, we must adjust the comparison functions to reflect the 
tradeoffs between energy cost and processing time. In order to give the database 
administrator a solution with the desired trade-off, we propose to use the weighted 
sum of the cost functions method. In this scalarization method, we calculate the 
weighted sum of the cost functions so as to aggregate criterion’s and have an 
equivalent single criterion to be minimized. This method is defined as follows: 

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = ∑ 𝑤𝑤F𝑓𝑓F(𝑥𝑥)f
FNO      (5) 

g𝑤𝑤F

f

FNO

= 1 

Where wj are the weighting coefficients representing the relative importance of the 
𝑘𝑘 cost functions. 𝑓𝑓(𝑥𝑥) represents power cost function and performance cost function 
respectively. We implemented these two coefficients as an external parameter in the 
DBMS, so the database administrator or users can change them in the fly. 

Figure 5 shows the optimal query plan returned by the modified query 
planner/optimizer for TPC-H query Q3 and how it changes when user preferences 
vary. Initially, we used a performance only optimization goal, the total estimated cost 
is 371080 and the estimated total power is 153. Changing the goal to be only power, 
the estimated cost increased to 626035 but the power cut down to 120. In the trade-
off configuration, the estimated cost is 377426 and the power is 134. In Figure 5a the 
nested loop operator draws the high amount of power in the query (33 watts) but the 
plan is chosen by the optimizer because it is very fast. In Figure 5b, we realise that 
the merge join operator is the slowest in query, its estimated cost is 539200 but the 
power is minimal. The two hash join operators used in Figure 5c give a good trade-
off, for a 1.7% of performance degradation, we get 12.4% of power saving. 

 
4.9. EcoProD GUI 
In this section, we describe the graphical user interface part of EcoProD. The GUI 

helps manipulating EcoProD, changing parameters and showing in real time their 
impact on the power consumption. 

The EcoProD GUI interface is used to facilitates users manipulating the framework 
settings and seeing their effect on the system. The interface is implemented using 
C+-b programing language and Qt library. Figure 6 gives an overview of the main 
GUI, which comprises several component modules: 

 
4.9.1. Configuration. 
This module is responsible for the connexion establishment with the DBMS server. 

Users can also specify the path for the power meter driver in order to capture 
realtime power consumption. The most important part here is the power/performance 
settings, which decide the optimization goals to be performance or power oriented. 

 
4.9.2. SQL Query. 
In this module, users can give their SQL query to be executed. Queries supported 

varies from simple transactional operations to very complex reporting operations 
involving many tables with large data size. The execution is done in a separate 
thread and the results are displayed in a tree table widget. 

 
4.9.3. Power Time-line. 
When the user execute a query, EcoProD dynamically displays via the power 

meter the real time power consumption. After the query finished executing, the total 
energy that has been consumed during query execution time is computed and 
showed. This can gives users a real observation of the energy that has been saved 
using the desired trade-off parameters. Also, users can compare between the 
estimated and the real values to check model accuracy or further refine it. 

 
4.9.4. Execution Plan. 
When the user submit a query, the query optimizer will select their best execution 

plan in respect to the pre-defined trade-off. The execution plan is displayed with 
various informations, such as estimated cost, power consumption, I/O and CPU costs 
for every physical operator through mouse-hovering events. Also, the pipeline 
notation is demonstrated, as shown in Figure 6 (4), the pipeline trees are grouped 
with the same color. The GUI shows how the trade-off parameters affect the 
generated plan. Thus, we can help users better understand and interpret runtime 
optimization informations and pipeline notation. 

 
5. Experiments and results 
To evaluate the effectiveness of our proposal, we conduct several experiments. 

Next we present our experimental machine to compute the energy and the used 
datasets and simulator. 

 
5.1. Experiment Setup 
We use a similar setup used in the state-of-arts [11, 24, 10]. Our machine is 

equipped with a “Watts UP? Pro ES” power meter with one second as a maximum 
resolution. The device is directly placed between the power supply and the database 
workstation under test to measure the workstation’s overall power consumption. The 
power values are logged and processed in a separate monitor machine. 

We used a Dell PowerEdge R310 workstation having a Xeon X3430 2.40GHz 
processor and 32GB of DDR3 memory. To validate our model using di_erent low-end 
hardware con_guration, we created another setup with a Dell Precision T1500 
workstation equipped with an Intel Core i5 2.27GHz processor and 4GB of memory. 
Our workstation machine is installed with our modi_ed version of PostgreSQL 9.4.5 
DBMS under Ubuntu 14.04 LTS with kernel 3.13. We use TPC-H datasets and queries 
with 10GB and 100GB scale factor. The TPC-H benchmark illustrates decision 
support systems that examine large volumes of data, execute di_erent types of 
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multiple polynomial regression techniques. This method is suitable when there is a 
nonlinear relationship between the independents variables and the corresponding 
dependent variable. Based on our experiments, the order m=4 gives us the best 
results (the residual sum of squares is the smallest). The power cost Power (PLi) of 
the pipeline PLi is computed as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃𝐿𝐿F) = 𝛽𝛽U + 𝛽𝛽O(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) + 𝛽𝛽V(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝑆𝑆𝑇𝑇) + 𝛽𝛽W(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶V) +
𝛽𝛽X(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶V) +	𝛽𝛽Y(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) +⋯+ 𝛽𝛽OW[𝐼𝐼𝑂𝑂\]^EX_ +

																																												+𝛽𝛽OX(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇X) + 𝜀𝜀    (4) 
Where IO-COST, CPU-COST denote the pipeline I/O and CPU costs respectively, 

these costs are calculated using the DBMS cost model functions, and e is a noise 
term that can account for measurement error. The 𝛽𝛽 parameters are regression 
coefficients that will be estimated while learning the model from training data. Thus, 
the regression models are solved by estimating the model parameters 𝛽𝛽, and this is 
typically done by finding the least-squares solution [13]. 

 
4.8. Plans Evaluation 
The query optimizer evaluates each possible execution path and takes the fastest. 

Adding energy criterion, we must adjust the comparison functions to reflect the 
tradeoffs between energy cost and processing time. In order to give the database 
administrator a solution with the desired trade-off, we propose to use the weighted 
sum of the cost functions method. In this scalarization method, we calculate the 
weighted sum of the cost functions so as to aggregate criterion’s and have an 
equivalent single criterion to be minimized. This method is defined as follows: 

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = ∑ 𝑤𝑤F𝑓𝑓F(𝑥𝑥)f
FNO      (5) 

g𝑤𝑤F
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Where wj are the weighting coefficients representing the relative importance of the 
𝑘𝑘 cost functions. 𝑓𝑓(𝑥𝑥) represents power cost function and performance cost function 
respectively. We implemented these two coefficients as an external parameter in the 
DBMS, so the database administrator or users can change them in the fly. 

Figure 5 shows the optimal query plan returned by the modified query 
planner/optimizer for TPC-H query Q3 and how it changes when user preferences 
vary. Initially, we used a performance only optimization goal, the total estimated cost 
is 371080 and the estimated total power is 153. Changing the goal to be only power, 
the estimated cost increased to 626035 but the power cut down to 120. In the trade-
off configuration, the estimated cost is 377426 and the power is 134. In Figure 5a the 
nested loop operator draws the high amount of power in the query (33 watts) but the 
plan is chosen by the optimizer because it is very fast. In Figure 5b, we realise that 
the merge join operator is the slowest in query, its estimated cost is 539200 but the 
power is minimal. The two hash join operators used in Figure 5c give a good trade-
off, for a 1.7% of performance degradation, we get 12.4% of power saving. 

 
4.9. EcoProD GUI 
In this section, we describe the graphical user interface part of EcoProD. The GUI 

helps manipulating EcoProD, changing parameters and showing in real time their 
impact on the power consumption. 

The EcoProD GUI interface is used to facilitates users manipulating the framework 
settings and seeing their effect on the system. The interface is implemented using 
C+-b programing language and Qt library. Figure 6 gives an overview of the main 
GUI, which comprises several component modules: 

 
4.9.1. Configuration. 
This module is responsible for the connexion establishment with the DBMS server. 

Users can also specify the path for the power meter driver in order to capture 
realtime power consumption. The most important part here is the power/performance 
settings, which decide the optimization goals to be performance or power oriented. 

 
4.9.2. SQL Query. 
In this module, users can give their SQL query to be executed. Queries supported 

varies from simple transactional operations to very complex reporting operations 
involving many tables with large data size. The execution is done in a separate 
thread and the results are displayed in a tree table widget. 

 
4.9.3. Power Time-line. 
When the user execute a query, EcoProD dynamically displays via the power 

meter the real time power consumption. After the query finished executing, the total 
energy that has been consumed during query execution time is computed and 
showed. This can gives users a real observation of the energy that has been saved 
using the desired trade-off parameters. Also, users can compare between the 
estimated and the real values to check model accuracy or further refine it. 

 
4.9.4. Execution Plan. 
When the user submit a query, the query optimizer will select their best execution 

plan in respect to the pre-defined trade-off. The execution plan is displayed with 
various informations, such as estimated cost, power consumption, I/O and CPU costs 
for every physical operator through mouse-hovering events. Also, the pipeline 
notation is demonstrated, as shown in Figure 6 (4), the pipeline trees are grouped 
with the same color. The GUI shows how the trade-off parameters affect the 
generated plan. Thus, we can help users better understand and interpret runtime 
optimization informations and pipeline notation. 

 
5. Experiments and results 
To evaluate the effectiveness of our proposal, we conduct several experiments. 

Next we present our experimental machine to compute the energy and the used 
datasets and simulator. 

 
5.1. Experiment Setup 
We use a similar setup used in the state-of-arts [11, 24, 10]. Our machine is 

equipped with a “Watts UP? Pro ES” power meter with one second as a maximum 
resolution. The device is directly placed between the power supply and the database 
workstation under test to measure the workstation’s overall power consumption. The 
power values are logged and processed in a separate monitor machine. 

We used a Dell PowerEdge R310 workstation having a Xeon X3430 2.40GHz 
processor and 32GB of DDR3 memory. To validate our model using di_erent low-end 
hardware con_guration, we created another setup with a Dell Precision T1500 
workstation equipped with an Intel Core i5 2.27GHz processor and 4GB of memory. 
Our workstation machine is installed with our modi_ed version of PostgreSQL 9.4.5 
DBMS under Ubuntu 14.04 LTS with kernel 3.13. We use TPC-H datasets and queries 
with 10GB and 100GB scale factor. The TPC-H benchmark illustrates decision 
support systems that examine large volumes of data, execute di_erent types of 
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multiple polynomial regression techniques. This method is suitable when there is a 
nonlinear relationship between the independents variables and the corresponding 
dependent variable. Based on our experiments, the order m=4 gives us the best 
results (the residual sum of squares is the smallest). The power cost Power (PLi) of 
the pipeline PLi is computed as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃𝐿𝐿F) = 𝛽𝛽U + 𝛽𝛽O(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) + 𝛽𝛽V(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝑆𝑆𝑇𝑇) + 𝛽𝛽W(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶V) +
𝛽𝛽X(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶V) +	𝛽𝛽Y(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) +⋯+ 𝛽𝛽OW[𝐼𝐼𝑂𝑂\]^EX_ +

																																												+𝛽𝛽OX(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇X) + 𝜀𝜀    (4) 
Where IO-COST, CPU-COST denote the pipeline I/O and CPU costs respectively, 

these costs are calculated using the DBMS cost model functions, and e is a noise 
term that can account for measurement error. The 𝛽𝛽 parameters are regression 
coefficients that will be estimated while learning the model from training data. Thus, 
the regression models are solved by estimating the model parameters 𝛽𝛽, and this is 
typically done by finding the least-squares solution [13]. 

 
4.8. Plans Evaluation 
The query optimizer evaluates each possible execution path and takes the fastest. 

Adding energy criterion, we must adjust the comparison functions to reflect the 
tradeoffs between energy cost and processing time. In order to give the database 
administrator a solution with the desired trade-off, we propose to use the weighted 
sum of the cost functions method. In this scalarization method, we calculate the 
weighted sum of the cost functions so as to aggregate criterion’s and have an 
equivalent single criterion to be minimized. This method is defined as follows: 

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = ∑ 𝑤𝑤F𝑓𝑓F(𝑥𝑥)f
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Where wj are the weighting coefficients representing the relative importance of the 
𝑘𝑘 cost functions. 𝑓𝑓(𝑥𝑥) represents power cost function and performance cost function 
respectively. We implemented these two coefficients as an external parameter in the 
DBMS, so the database administrator or users can change them in the fly. 

Figure 5 shows the optimal query plan returned by the modified query 
planner/optimizer for TPC-H query Q3 and how it changes when user preferences 
vary. Initially, we used a performance only optimization goal, the total estimated cost 
is 371080 and the estimated total power is 153. Changing the goal to be only power, 
the estimated cost increased to 626035 but the power cut down to 120. In the trade-
off configuration, the estimated cost is 377426 and the power is 134. In Figure 5a the 
nested loop operator draws the high amount of power in the query (33 watts) but the 
plan is chosen by the optimizer because it is very fast. In Figure 5b, we realise that 
the merge join operator is the slowest in query, its estimated cost is 539200 but the 
power is minimal. The two hash join operators used in Figure 5c give a good trade-
off, for a 1.7% of performance degradation, we get 12.4% of power saving. 

 
4.9. EcoProD GUI 
In this section, we describe the graphical user interface part of EcoProD. The GUI 

helps manipulating EcoProD, changing parameters and showing in real time their 
impact on the power consumption. 

The EcoProD GUI interface is used to facilitates users manipulating the framework 
settings and seeing their effect on the system. The interface is implemented using 
C+-b programing language and Qt library. Figure 6 gives an overview of the main 
GUI, which comprises several component modules: 

 
4.9.1. Configuration. 
This module is responsible for the connexion establishment with the DBMS server. 

Users can also specify the path for the power meter driver in order to capture 
realtime power consumption. The most important part here is the power/performance 
settings, which decide the optimization goals to be performance or power oriented. 

 
4.9.2. SQL Query. 
In this module, users can give their SQL query to be executed. Queries supported 

varies from simple transactional operations to very complex reporting operations 
involving many tables with large data size. The execution is done in a separate 
thread and the results are displayed in a tree table widget. 

 
4.9.3. Power Time-line. 
When the user execute a query, EcoProD dynamically displays via the power 

meter the real time power consumption. After the query finished executing, the total 
energy that has been consumed during query execution time is computed and 
showed. This can gives users a real observation of the energy that has been saved 
using the desired trade-off parameters. Also, users can compare between the 
estimated and the real values to check model accuracy or further refine it. 

 
4.9.4. Execution Plan. 
When the user submit a query, the query optimizer will select their best execution 

plan in respect to the pre-defined trade-off. The execution plan is displayed with 
various informations, such as estimated cost, power consumption, I/O and CPU costs 
for every physical operator through mouse-hovering events. Also, the pipeline 
notation is demonstrated, as shown in Figure 6 (4), the pipeline trees are grouped 
with the same color. The GUI shows how the trade-off parameters affect the 
generated plan. Thus, we can help users better understand and interpret runtime 
optimization informations and pipeline notation. 

 
5. Experiments and results 
To evaluate the effectiveness of our proposal, we conduct several experiments. 

Next we present our experimental machine to compute the energy and the used 
datasets and simulator. 

 
5.1. Experiment Setup 
We use a similar setup used in the state-of-arts [11, 24, 10]. Our machine is 

equipped with a “Watts UP? Pro ES” power meter with one second as a maximum 
resolution. The device is directly placed between the power supply and the database 
workstation under test to measure the workstation’s overall power consumption. The 
power values are logged and processed in a separate monitor machine. 

We used a Dell PowerEdge R310 workstation having a Xeon X3430 2.40GHz 
processor and 32GB of DDR3 memory. To validate our model using di_erent low-end 
hardware con_guration, we created another setup with a Dell Precision T1500 
workstation equipped with an Intel Core i5 2.27GHz processor and 4GB of memory. 
Our workstation machine is installed with our modi_ed version of PostgreSQL 9.4.5 
DBMS under Ubuntu 14.04 LTS with kernel 3.13. We use TPC-H datasets and queries 
with 10GB and 100GB scale factor. The TPC-H benchmark illustrates decision 
support systems that examine large volumes of data, execute di_erent types of 
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multiple polynomial regression techniques. This method is suitable when there is a 
nonlinear relationship between the independents variables and the corresponding 
dependent variable. Based on our experiments, the order m=4 gives us the best 
results (the residual sum of squares is the smallest). The power cost Power (PLi) of 
the pipeline PLi is computed as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃𝐿𝐿F) = 𝛽𝛽U + 𝛽𝛽O(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) + 𝛽𝛽V(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝑆𝑆𝑇𝑇) + 𝛽𝛽W(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶V) +
𝛽𝛽X(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶V) +	𝛽𝛽Y(𝐼𝐼𝐼𝐼_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) +⋯+ 𝛽𝛽OW[𝐼𝐼𝑂𝑂\]^EX_ +

																																												+𝛽𝛽OX(𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇X) + 𝜀𝜀    (4) 
Where IO-COST, CPU-COST denote the pipeline I/O and CPU costs respectively, 

these costs are calculated using the DBMS cost model functions, and e is a noise 
term that can account for measurement error. The 𝛽𝛽 parameters are regression 
coefficients that will be estimated while learning the model from training data. Thus, 
the regression models are solved by estimating the model parameters 𝛽𝛽, and this is 
typically done by finding the least-squares solution [13]. 

 
4.8. Plans Evaluation 
The query optimizer evaluates each possible execution path and takes the fastest. 

Adding energy criterion, we must adjust the comparison functions to reflect the 
tradeoffs between energy cost and processing time. In order to give the database 
administrator a solution with the desired trade-off, we propose to use the weighted 
sum of the cost functions method. In this scalarization method, we calculate the 
weighted sum of the cost functions so as to aggregate criterion’s and have an 
equivalent single criterion to be minimized. This method is defined as follows: 

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = ∑ 𝑤𝑤F𝑓𝑓F(𝑥𝑥)f
FNO      (5) 

g𝑤𝑤F

f

FNO

= 1 

Where wj are the weighting coefficients representing the relative importance of the 
𝑘𝑘 cost functions. 𝑓𝑓(𝑥𝑥) represents power cost function and performance cost function 
respectively. We implemented these two coefficients as an external parameter in the 
DBMS, so the database administrator or users can change them in the fly. 

Figure 5 shows the optimal query plan returned by the modified query 
planner/optimizer for TPC-H query Q3 and how it changes when user preferences 
vary. Initially, we used a performance only optimization goal, the total estimated cost 
is 371080 and the estimated total power is 153. Changing the goal to be only power, 
the estimated cost increased to 626035 but the power cut down to 120. In the trade-
off configuration, the estimated cost is 377426 and the power is 134. In Figure 5a the 
nested loop operator draws the high amount of power in the query (33 watts) but the 
plan is chosen by the optimizer because it is very fast. In Figure 5b, we realise that 
the merge join operator is the slowest in query, its estimated cost is 539200 but the 
power is minimal. The two hash join operators used in Figure 5c give a good trade-
off, for a 1.7% of performance degradation, we get 12.4% of power saving. 

 
4.9. EcoProD GUI 
In this section, we describe the graphical user interface part of EcoProD. The GUI 

helps manipulating EcoProD, changing parameters and showing in real time their 
impact on the power consumption. 

The EcoProD GUI interface is used to facilitates users manipulating the framework 
settings and seeing their effect on the system. The interface is implemented using 
C+-b programing language and Qt library. Figure 6 gives an overview of the main 
GUI, which comprises several component modules: 

 
4.9.1. Configuration. 
This module is responsible for the connexion establishment with the DBMS server. 

Users can also specify the path for the power meter driver in order to capture 
realtime power consumption. The most important part here is the power/performance 
settings, which decide the optimization goals to be performance or power oriented. 

 
4.9.2. SQL Query. 
In this module, users can give their SQL query to be executed. Queries supported 

varies from simple transactional operations to very complex reporting operations 
involving many tables with large data size. The execution is done in a separate 
thread and the results are displayed in a tree table widget. 

 
4.9.3. Power Time-line. 
When the user execute a query, EcoProD dynamically displays via the power 

meter the real time power consumption. After the query finished executing, the total 
energy that has been consumed during query execution time is computed and 
showed. This can gives users a real observation of the energy that has been saved 
using the desired trade-off parameters. Also, users can compare between the 
estimated and the real values to check model accuracy or further refine it. 

 
4.9.4. Execution Plan. 
When the user submit a query, the query optimizer will select their best execution 

plan in respect to the pre-defined trade-off. The execution plan is displayed with 
various informations, such as estimated cost, power consumption, I/O and CPU costs 
for every physical operator through mouse-hovering events. Also, the pipeline 
notation is demonstrated, as shown in Figure 6 (4), the pipeline trees are grouped 
with the same color. The GUI shows how the trade-off parameters affect the 
generated plan. Thus, we can help users better understand and interpret runtime 
optimization informations and pipeline notation. 

 
5. Experiments and results 
To evaluate the effectiveness of our proposal, we conduct several experiments. 

Next we present our experimental machine to compute the energy and the used 
datasets and simulator. 

 
5.1. Experiment Setup 
We use a similar setup used in the state-of-arts [11, 24, 10]. Our machine is 

equipped with a “Watts UP? Pro ES” power meter with one second as a maximum 
resolution. The device is directly placed between the power supply and the database 
workstation under test to measure the workstation’s overall power consumption. The 
power values are logged and processed in a separate monitor machine. 

We used a Dell PowerEdge R310 workstation having a Xeon X3430 2.40GHz 
processor and 32GB of DDR3 memory. To validate our model using di_erent low-end 
hardware con_guration, we created another setup with a Dell Precision T1500 
workstation equipped with an Intel Core i5 2.27GHz processor and 4GB of memory. 
Our workstation machine is installed with our modi_ed version of PostgreSQL 9.4.5 
DBMS under Ubuntu 14.04 LTS with kernel 3.13. We use TPC-H datasets and queries 
with 10GB and 100GB scale factor. The TPC-H benchmark illustrates decision 
support systems that examine large volumes of data, execute di_erent types of 

Fig. 6: EcoProD main GUI and its component module panels.

queries with a high degree of complexity. The queries are executed in an isolated 
way. In our experiments, we consider three types of PostgreSQL con_guration: (1) 

Power-PG, which is the con_guration that gives the minimal power cost, (2) Time-
PG, is the con_guration with minimal time cost, (3) Tradeo_-PG, using weighted sum 
method with 𝜔𝜔O = 0.5, 𝜔𝜔V = 0.5 

 
5.2. Power Model Building 
As mentioned above, the _ parameters are estimated while learning the model 

from training data. We then perform series of observations in which queries are well-
chosen, and the power values consumed by the system are collected using 
measuring equipment while running these queries. In the same time, for each training 
instance, we calculate their costs. To generate training instances, we create our 
custom query workload based on TPC-H datasets. The workload containing queries 
divided into two main categories: (i) queries with operations that exhaust the system 
processor (CPU intensive queries) and (ii) queries with exhaustive storage subsystem 
resource operations (I/O intensive queries). Note that the considered queries include: 
queries with a single table scan, queries with multiple joins with different predicates. 
They also contain sorting/grouping conditions and simple and advanced aggregation 
functions as in [10]. After collecting power consumption training queries, we apply 
the regression equation (4) using the R language software9 to find our model 
parameters. Once we get them, an estimation of new queries is obtained without the 
use of our measurement equipment. 

 
5.3. Results 
In this section, we present the results of our various experiments. 
 
5.3.1. Cost Model Quality. 
The results of the training phase in our two setup con_gurations, against the _tted 

values from polynomial models (cf. Equation 4) are plotted in Figure 7. As we can 
see, the predicted and actual power consumption approximate the diagonal lines 
closely using our cost model in both congurations. Otherwise, in the server 
conguration we can see some variance between the predicted and the observed 
power for some training queries. Much of this can be attributed to the errors made by 
the DBMS query optimizer in estimating IO and CPU costs for these queries when 
there is a large working memory. This problem has been faced by query optimizers 
for a long time, and all the performance models proposed so far suffer from this 
problem, which is inherited from the cardinality estimation errors. In fact, the 
estimation errors in the low levels pipeline are propagated to the upper level and may 
significantly degrade the prediction accuracy. 

 
5.3.2. Cost Model Estimation Error. 
In this type of experiment, given the estimated power cost predicted by our model 

(𝐸𝐸)., we compare it with the actually observed system active power consumption 
(𝑀𝑀). To quantify the model accuracy, we used the following error ratio metric:   

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
|𝑀𝑀 − 𝐸𝐸|
𝑀𝑀  

To test our model with large datasets, we run all 22 queries of the TPC-H 
benchmark against two database scale factor: 10GB and 100GB. Most of the queries 
contain more than 4 pipelines. The results are shown in Table 2. We not that some 
queries were aborted since they exceeded 72 hours of execution in our current test 
environment. 

As we can see from the table, the average error is typically small (0.1% in both 
100GB and 10GB datasets), and the maximum error is usually below 5%. The 
experiment shows the accuracy of our prediction model, indicating that is sufficiently 
accurate for the intended applications. 

 
5.3.3. Query Characterization. 
To study the characterization of the TPC-H 22 query, we conduct a series of tests 

using the modified PostgreSQL. In such tests and for every configurations (Time-PG, 
Power- PG, Tradeoff-PG) we run all the TPC-H queries and collect the estimated 
performance cost and power cost returned by the query optimizer. From Figure 8 
(values are plotted on logarithmic scale) we can see that 16 of 22 queries have the 
potential for power saving in the Power-PG configuration. Normally, the benefit of 
power saving for these queries have a negative impact on the processing time cost 
as shown in the same figure. However choosing the trade-off configuration can lead 
to a good power saving values with less performance degradation. These queries are 
characterized by an important number of SQL operators and various I/O and CPU 
operations, which gives the query optimizer a variety of plans to choose from. 
Therefore, we can achieve a good power saving queries from those plans. On the 
other hand, the rest of queries that doesn’t show opportunities for power saving, are 
simple queries with a few tables and SQL operators. This leads the query optimizer to 
choose the same plan in every PostgreSQL configuration, duo to the small search 
space of the plans. 

 
5.3.4. Power Saving. 
The purpose of this set of experiments is to investigate the benefit of our approach 

in term of energy efficiency. We configured the DBMS to evaluate the performance 
and power consumption cost models for the three configurations (Time- PG, Power-
PG, Tradeoff-PG). We repeat the same experiments under two different database 
sizes: 10GB, and 100GB using TPC-H benchmark. 

In Figure 9 we present the results of the experiments. We can clearly see that 
workloads consume significantly lower power when we choose a query optimizer 
configuration that favors low-power plans. When we compare the power-only (Power-
PG) with the performance-only (Time-PG) results, we observe a large margin in 
power savings, the benefit is remarkably considerable in small database size, 
perhaps this is due to the large amount of I/O operations and data processing 
required by queries of big database size which translate in more power consumption 
regardless of plan chosen by query optimizer. As expected, the savings of the 
Tradeoff- PG configuration are smaller than those obtained by the power-only 
experiment, but it still acceptable, especially, in 100GB datasets they are 
approximate. On the other hand, the power-only configuration takes more time to 
finish executing all the queries, which translate in a noticeable performance 
degradation, this not surprising, if we gain in power we automatically lose in 
performance. In the Tradeoff-PG configuration, the performance degradation is 
actually acceptable if we consider the power gain achieved. 

Note that all results of our experiments only considered direct power savings in a 
single database server. This number could be even higher if we consider large-scale 
data centers with thousands of servers and cooling systems. 

 
6. Confidence bounds 
In this section we will prove the confidence in our model data and results, using 
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Fig. 7: Training workload power consumption and regressions t.
(a) Regression Model t using high-end conguration
(b) Regression Model t using low-end conguration

queries with a high degree of complexity. The queries are executed in an isolated 
way. In our experiments, we consider three types of PostgreSQL con_guration: (1) 

Power-PG, which is the con_guration that gives the minimal power cost, (2) Time-
PG, is the con_guration with minimal time cost, (3) Tradeo_-PG, using weighted sum 
method with 𝜔𝜔O = 0.5, 𝜔𝜔V = 0.5 

 
5.2. Power Model Building 
As mentioned above, the _ parameters are estimated while learning the model 

from training data. We then perform series of observations in which queries are well-
chosen, and the power values consumed by the system are collected using 
measuring equipment while running these queries. In the same time, for each training 
instance, we calculate their costs. To generate training instances, we create our 
custom query workload based on TPC-H datasets. The workload containing queries 
divided into two main categories: (i) queries with operations that exhaust the system 
processor (CPU intensive queries) and (ii) queries with exhaustive storage subsystem 
resource operations (I/O intensive queries). Note that the considered queries include: 
queries with a single table scan, queries with multiple joins with different predicates. 
They also contain sorting/grouping conditions and simple and advanced aggregation 
functions as in [10]. After collecting power consumption training queries, we apply 
the regression equation (4) using the R language software9 to find our model 
parameters. Once we get them, an estimation of new queries is obtained without the 
use of our measurement equipment. 

 
5.3. Results 
In this section, we present the results of our various experiments. 
 
5.3.1. Cost Model Quality. 
The results of the training phase in our two setup con_gurations, against the _tted 

values from polynomial models (cf. Equation 4) are plotted in Figure 7. As we can 
see, the predicted and actual power consumption approximate the diagonal lines 
closely using our cost model in both congurations. Otherwise, in the server 
conguration we can see some variance between the predicted and the observed 
power for some training queries. Much of this can be attributed to the errors made by 
the DBMS query optimizer in estimating IO and CPU costs for these queries when 
there is a large working memory. This problem has been faced by query optimizers 
for a long time, and all the performance models proposed so far suffer from this 
problem, which is inherited from the cardinality estimation errors. In fact, the 
estimation errors in the low levels pipeline are propagated to the upper level and may 
significantly degrade the prediction accuracy. 

 
5.3.2. Cost Model Estimation Error. 
In this type of experiment, given the estimated power cost predicted by our model 

(𝐸𝐸)., we compare it with the actually observed system active power consumption 
(𝑀𝑀). To quantify the model accuracy, we used the following error ratio metric:   

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
|𝑀𝑀 − 𝐸𝐸|
𝑀𝑀  

To test our model with large datasets, we run all 22 queries of the TPC-H 
benchmark against two database scale factor: 10GB and 100GB. Most of the queries 
contain more than 4 pipelines. The results are shown in Table 2. We not that some 
queries were aborted since they exceeded 72 hours of execution in our current test 
environment. 

As we can see from the table, the average error is typically small (0.1% in both 
100GB and 10GB datasets), and the maximum error is usually below 5%. The 
experiment shows the accuracy of our prediction model, indicating that is sufficiently 
accurate for the intended applications. 

 
5.3.3. Query Characterization. 
To study the characterization of the TPC-H 22 query, we conduct a series of tests 

using the modified PostgreSQL. In such tests and for every configurations (Time-PG, 
Power- PG, Tradeoff-PG) we run all the TPC-H queries and collect the estimated 
performance cost and power cost returned by the query optimizer. From Figure 8 
(values are plotted on logarithmic scale) we can see that 16 of 22 queries have the 
potential for power saving in the Power-PG configuration. Normally, the benefit of 
power saving for these queries have a negative impact on the processing time cost 
as shown in the same figure. However choosing the trade-off configuration can lead 
to a good power saving values with less performance degradation. These queries are 
characterized by an important number of SQL operators and various I/O and CPU 
operations, which gives the query optimizer a variety of plans to choose from. 
Therefore, we can achieve a good power saving queries from those plans. On the 
other hand, the rest of queries that doesn’t show opportunities for power saving, are 
simple queries with a few tables and SQL operators. This leads the query optimizer to 
choose the same plan in every PostgreSQL configuration, duo to the small search 
space of the plans. 

 
5.3.4. Power Saving. 
The purpose of this set of experiments is to investigate the benefit of our approach 

in term of energy efficiency. We configured the DBMS to evaluate the performance 
and power consumption cost models for the three configurations (Time- PG, Power-
PG, Tradeoff-PG). We repeat the same experiments under two different database 
sizes: 10GB, and 100GB using TPC-H benchmark. 

In Figure 9 we present the results of the experiments. We can clearly see that 
workloads consume significantly lower power when we choose a query optimizer 
configuration that favors low-power plans. When we compare the power-only (Power-
PG) with the performance-only (Time-PG) results, we observe a large margin in 
power savings, the benefit is remarkably considerable in small database size, 
perhaps this is due to the large amount of I/O operations and data processing 
required by queries of big database size which translate in more power consumption 
regardless of plan chosen by query optimizer. As expected, the savings of the 
Tradeoff- PG configuration are smaller than those obtained by the power-only 
experiment, but it still acceptable, especially, in 100GB datasets they are 
approximate. On the other hand, the power-only configuration takes more time to 
finish executing all the queries, which translate in a noticeable performance 
degradation, this not surprising, if we gain in power we automatically lose in 
performance. In the Tradeoff-PG configuration, the performance degradation is 
actually acceptable if we consider the power gain achieved. 

Note that all results of our experiments only considered direct power savings in a 
single database server. This number could be even higher if we consider large-scale 
data centers with thousands of servers and cooling systems. 

 
6. Confidence bounds 
In this section we will prove the confidence in our model data and results, using 
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queries with a high degree of complexity. The queries are executed in an isolated 
way. In our experiments, we consider three types of PostgreSQL con_guration: (1) 

Power-PG, which is the con_guration that gives the minimal power cost, (2) Time-
PG, is the con_guration with minimal time cost, (3) Tradeo_-PG, using weighted sum 
method with 𝜔𝜔O = 0.5, 𝜔𝜔V = 0.5 

 
5.2. Power Model Building 
As mentioned above, the _ parameters are estimated while learning the model 

from training data. We then perform series of observations in which queries are well-
chosen, and the power values consumed by the system are collected using 
measuring equipment while running these queries. In the same time, for each training 
instance, we calculate their costs. To generate training instances, we create our 
custom query workload based on TPC-H datasets. The workload containing queries 
divided into two main categories: (i) queries with operations that exhaust the system 
processor (CPU intensive queries) and (ii) queries with exhaustive storage subsystem 
resource operations (I/O intensive queries). Note that the considered queries include: 
queries with a single table scan, queries with multiple joins with different predicates. 
They also contain sorting/grouping conditions and simple and advanced aggregation 
functions as in [10]. After collecting power consumption training queries, we apply 
the regression equation (4) using the R language software9 to find our model 
parameters. Once we get them, an estimation of new queries is obtained without the 
use of our measurement equipment. 

 
5.3. Results 
In this section, we present the results of our various experiments. 
 
5.3.1. Cost Model Quality. 
The results of the training phase in our two setup con_gurations, against the _tted 

values from polynomial models (cf. Equation 4) are plotted in Figure 7. As we can 
see, the predicted and actual power consumption approximate the diagonal lines 
closely using our cost model in both congurations. Otherwise, in the server 
conguration we can see some variance between the predicted and the observed 
power for some training queries. Much of this can be attributed to the errors made by 
the DBMS query optimizer in estimating IO and CPU costs for these queries when 
there is a large working memory. This problem has been faced by query optimizers 
for a long time, and all the performance models proposed so far suffer from this 
problem, which is inherited from the cardinality estimation errors. In fact, the 
estimation errors in the low levels pipeline are propagated to the upper level and may 
significantly degrade the prediction accuracy. 

 
5.3.2. Cost Model Estimation Error. 
In this type of experiment, given the estimated power cost predicted by our model 

(𝐸𝐸)., we compare it with the actually observed system active power consumption 
(𝑀𝑀). To quantify the model accuracy, we used the following error ratio metric:   

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
|𝑀𝑀 − 𝐸𝐸|
𝑀𝑀  

To test our model with large datasets, we run all 22 queries of the TPC-H 
benchmark against two database scale factor: 10GB and 100GB. Most of the queries 
contain more than 4 pipelines. The results are shown in Table 2. We not that some 
queries were aborted since they exceeded 72 hours of execution in our current test 
environment. 

As we can see from the table, the average error is typically small (0.1% in both 
100GB and 10GB datasets), and the maximum error is usually below 5%. The 
experiment shows the accuracy of our prediction model, indicating that is sufficiently 
accurate for the intended applications. 

 
5.3.3. Query Characterization. 
To study the characterization of the TPC-H 22 query, we conduct a series of tests 

using the modified PostgreSQL. In such tests and for every configurations (Time-PG, 
Power- PG, Tradeoff-PG) we run all the TPC-H queries and collect the estimated 
performance cost and power cost returned by the query optimizer. From Figure 8 
(values are plotted on logarithmic scale) we can see that 16 of 22 queries have the 
potential for power saving in the Power-PG configuration. Normally, the benefit of 
power saving for these queries have a negative impact on the processing time cost 
as shown in the same figure. However choosing the trade-off configuration can lead 
to a good power saving values with less performance degradation. These queries are 
characterized by an important number of SQL operators and various I/O and CPU 
operations, which gives the query optimizer a variety of plans to choose from. 
Therefore, we can achieve a good power saving queries from those plans. On the 
other hand, the rest of queries that doesn’t show opportunities for power saving, are 
simple queries with a few tables and SQL operators. This leads the query optimizer to 
choose the same plan in every PostgreSQL configuration, duo to the small search 
space of the plans. 

 
5.3.4. Power Saving. 
The purpose of this set of experiments is to investigate the benefit of our approach 

in term of energy efficiency. We configured the DBMS to evaluate the performance 
and power consumption cost models for the three configurations (Time- PG, Power-
PG, Tradeoff-PG). We repeat the same experiments under two different database 
sizes: 10GB, and 100GB using TPC-H benchmark. 

In Figure 9 we present the results of the experiments. We can clearly see that 
workloads consume significantly lower power when we choose a query optimizer 
configuration that favors low-power plans. When we compare the power-only (Power-
PG) with the performance-only (Time-PG) results, we observe a large margin in 
power savings, the benefit is remarkably considerable in small database size, 
perhaps this is due to the large amount of I/O operations and data processing 
required by queries of big database size which translate in more power consumption 
regardless of plan chosen by query optimizer. As expected, the savings of the 
Tradeoff- PG configuration are smaller than those obtained by the power-only 
experiment, but it still acceptable, especially, in 100GB datasets they are 
approximate. On the other hand, the power-only configuration takes more time to 
finish executing all the queries, which translate in a noticeable performance 
degradation, this not surprising, if we gain in power we automatically lose in 
performance. In the Tradeoff-PG configuration, the performance degradation is 
actually acceptable if we consider the power gain achieved. 

Note that all results of our experiments only considered direct power savings in a 
single database server. This number could be even higher if we consider large-scale 
data centers with thousands of servers and cooling systems. 

 
6. Confidence bounds 
In this section we will prove the confidence in our model data and results, using 

Table 2: Estimation errors in TPC-H benchmark queries with different database sizes.

Query 10GB 100GB Query 10GB 100GB
Q1 0.01 0.002 Q11 0.04 -

Q2 - - Q12 0.009 0.00029
Q3 0.01 0.01 Q13 0.04 0.04
Q 4 0.006 0.005 Q14 0.02 0.02
Q5 0.01 0.03 Q15 0.004 0.02
Q6 0.04 0.02 Q16 0.05 0.0003
Q7 0.004 0.01 Q18 0.004 -
QS 0.0007 0.01 Q19 0.01 0.009
Q10 0.006 0.003 Q22 0.01 0.004
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queries with a high degree of complexity. The queries are executed in an isolated 
way. In our experiments, we consider three types of PostgreSQL con_guration: (1) 

Power-PG, which is the con_guration that gives the minimal power cost, (2) Time-
PG, is the con_guration with minimal time cost, (3) Tradeo_-PG, using weighted sum 
method with 𝜔𝜔O = 0.5, 𝜔𝜔V = 0.5 

 
5.2. Power Model Building 
As mentioned above, the _ parameters are estimated while learning the model 

from training data. We then perform series of observations in which queries are well-
chosen, and the power values consumed by the system are collected using 
measuring equipment while running these queries. In the same time, for each training 
instance, we calculate their costs. To generate training instances, we create our 
custom query workload based on TPC-H datasets. The workload containing queries 
divided into two main categories: (i) queries with operations that exhaust the system 
processor (CPU intensive queries) and (ii) queries with exhaustive storage subsystem 
resource operations (I/O intensive queries). Note that the considered queries include: 
queries with a single table scan, queries with multiple joins with different predicates. 
They also contain sorting/grouping conditions and simple and advanced aggregation 
functions as in [10]. After collecting power consumption training queries, we apply 
the regression equation (4) using the R language software9 to find our model 
parameters. Once we get them, an estimation of new queries is obtained without the 
use of our measurement equipment. 

 
5.3. Results 
In this section, we present the results of our various experiments. 
 
5.3.1. Cost Model Quality. 
The results of the training phase in our two setup con_gurations, against the _tted 

values from polynomial models (cf. Equation 4) are plotted in Figure 7. As we can 
see, the predicted and actual power consumption approximate the diagonal lines 
closely using our cost model in both congurations. Otherwise, in the server 
conguration we can see some variance between the predicted and the observed 
power for some training queries. Much of this can be attributed to the errors made by 
the DBMS query optimizer in estimating IO and CPU costs for these queries when 
there is a large working memory. This problem has been faced by query optimizers 
for a long time, and all the performance models proposed so far suffer from this 
problem, which is inherited from the cardinality estimation errors. In fact, the 
estimation errors in the low levels pipeline are propagated to the upper level and may 
significantly degrade the prediction accuracy. 

 
5.3.2. Cost Model Estimation Error. 
In this type of experiment, given the estimated power cost predicted by our model 

(𝐸𝐸)., we compare it with the actually observed system active power consumption 
(𝑀𝑀). To quantify the model accuracy, we used the following error ratio metric:   

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
|𝑀𝑀 − 𝐸𝐸|
𝑀𝑀  

To test our model with large datasets, we run all 22 queries of the TPC-H 
benchmark against two database scale factor: 10GB and 100GB. Most of the queries 
contain more than 4 pipelines. The results are shown in Table 2. We not that some 
queries were aborted since they exceeded 72 hours of execution in our current test 
environment. 

As we can see from the table, the average error is typically small (0.1% in both 
100GB and 10GB datasets), and the maximum error is usually below 5%. The 
experiment shows the accuracy of our prediction model, indicating that is sufficiently 
accurate for the intended applications. 

 
5.3.3. Query Characterization. 
To study the characterization of the TPC-H 22 query, we conduct a series of tests 

using the modified PostgreSQL. In such tests and for every configurations (Time-PG, 
Power- PG, Tradeoff-PG) we run all the TPC-H queries and collect the estimated 
performance cost and power cost returned by the query optimizer. From Figure 8 
(values are plotted on logarithmic scale) we can see that 16 of 22 queries have the 
potential for power saving in the Power-PG configuration. Normally, the benefit of 
power saving for these queries have a negative impact on the processing time cost 
as shown in the same figure. However choosing the trade-off configuration can lead 
to a good power saving values with less performance degradation. These queries are 
characterized by an important number of SQL operators and various I/O and CPU 
operations, which gives the query optimizer a variety of plans to choose from. 
Therefore, we can achieve a good power saving queries from those plans. On the 
other hand, the rest of queries that doesn’t show opportunities for power saving, are 
simple queries with a few tables and SQL operators. This leads the query optimizer to 
choose the same plan in every PostgreSQL configuration, duo to the small search 
space of the plans. 

 
5.3.4. Power Saving. 
The purpose of this set of experiments is to investigate the benefit of our approach 

in term of energy efficiency. We configured the DBMS to evaluate the performance 
and power consumption cost models for the three configurations (Time- PG, Power-
PG, Tradeoff-PG). We repeat the same experiments under two different database 
sizes: 10GB, and 100GB using TPC-H benchmark. 

In Figure 9 we present the results of the experiments. We can clearly see that 
workloads consume significantly lower power when we choose a query optimizer 
configuration that favors low-power plans. When we compare the power-only (Power-
PG) with the performance-only (Time-PG) results, we observe a large margin in 
power savings, the benefit is remarkably considerable in small database size, 
perhaps this is due to the large amount of I/O operations and data processing 
required by queries of big database size which translate in more power consumption 
regardless of plan chosen by query optimizer. As expected, the savings of the 
Tradeoff- PG configuration are smaller than those obtained by the power-only 
experiment, but it still acceptable, especially, in 100GB datasets they are 
approximate. On the other hand, the power-only configuration takes more time to 
finish executing all the queries, which translate in a noticeable performance 
degradation, this not surprising, if we gain in power we automatically lose in 
performance. In the Tradeoff-PG configuration, the performance degradation is 
actually acceptable if we consider the power gain achieved. 

Note that all results of our experiments only considered direct power savings in a 
single database server. This number could be even higher if we consider large-scale 
data centers with thousands of servers and cooling systems. 

 
6. Confidence bounds 
In this section we will prove the confidence in our model data and results, using 

Fig. 8: Performance and power for TPC-H queries using dierent PostgreSQL 
congurations.

Fig. 9: Performance and power saving with dierent PostgreSQL congurations using 
TPC-H benchmark.

queries with a high degree of complexity. The queries are executed in an isolated 
way. In our experiments, we consider three types of PostgreSQL con_guration: (1) 

Power-PG, which is the con_guration that gives the minimal power cost, (2) Time-
PG, is the con_guration with minimal time cost, (3) Tradeo_-PG, using weighted sum 
method with 𝜔𝜔O = 0.5, 𝜔𝜔V = 0.5 

 
5.2. Power Model Building 
As mentioned above, the _ parameters are estimated while learning the model 

from training data. We then perform series of observations in which queries are well-
chosen, and the power values consumed by the system are collected using 
measuring equipment while running these queries. In the same time, for each training 
instance, we calculate their costs. To generate training instances, we create our 
custom query workload based on TPC-H datasets. The workload containing queries 
divided into two main categories: (i) queries with operations that exhaust the system 
processor (CPU intensive queries) and (ii) queries with exhaustive storage subsystem 
resource operations (I/O intensive queries). Note that the considered queries include: 
queries with a single table scan, queries with multiple joins with different predicates. 
They also contain sorting/grouping conditions and simple and advanced aggregation 
functions as in [10]. After collecting power consumption training queries, we apply 
the regression equation (4) using the R language software9 to find our model 
parameters. Once we get them, an estimation of new queries is obtained without the 
use of our measurement equipment. 

 
5.3. Results 
In this section, we present the results of our various experiments. 
 
5.3.1. Cost Model Quality. 
The results of the training phase in our two setup con_gurations, against the _tted 

values from polynomial models (cf. Equation 4) are plotted in Figure 7. As we can 
see, the predicted and actual power consumption approximate the diagonal lines 
closely using our cost model in both congurations. Otherwise, in the server 
conguration we can see some variance between the predicted and the observed 
power for some training queries. Much of this can be attributed to the errors made by 
the DBMS query optimizer in estimating IO and CPU costs for these queries when 
there is a large working memory. This problem has been faced by query optimizers 
for a long time, and all the performance models proposed so far suffer from this 
problem, which is inherited from the cardinality estimation errors. In fact, the 
estimation errors in the low levels pipeline are propagated to the upper level and may 
significantly degrade the prediction accuracy. 

 
5.3.2. Cost Model Estimation Error. 
In this type of experiment, given the estimated power cost predicted by our model 

(𝐸𝐸)., we compare it with the actually observed system active power consumption 
(𝑀𝑀). To quantify the model accuracy, we used the following error ratio metric:   

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
|𝑀𝑀 − 𝐸𝐸|
𝑀𝑀  

To test our model with large datasets, we run all 22 queries of the TPC-H 
benchmark against two database scale factor: 10GB and 100GB. Most of the queries 
contain more than 4 pipelines. The results are shown in Table 2. We not that some 
queries were aborted since they exceeded 72 hours of execution in our current test 
environment. 

As we can see from the table, the average error is typically small (0.1% in both 
100GB and 10GB datasets), and the maximum error is usually below 5%. The 
experiment shows the accuracy of our prediction model, indicating that is sufficiently 
accurate for the intended applications. 

 
5.3.3. Query Characterization. 
To study the characterization of the TPC-H 22 query, we conduct a series of tests 

using the modified PostgreSQL. In such tests and for every configurations (Time-PG, 
Power- PG, Tradeoff-PG) we run all the TPC-H queries and collect the estimated 
performance cost and power cost returned by the query optimizer. From Figure 8 
(values are plotted on logarithmic scale) we can see that 16 of 22 queries have the 
potential for power saving in the Power-PG configuration. Normally, the benefit of 
power saving for these queries have a negative impact on the processing time cost 
as shown in the same figure. However choosing the trade-off configuration can lead 
to a good power saving values with less performance degradation. These queries are 
characterized by an important number of SQL operators and various I/O and CPU 
operations, which gives the query optimizer a variety of plans to choose from. 
Therefore, we can achieve a good power saving queries from those plans. On the 
other hand, the rest of queries that doesn’t show opportunities for power saving, are 
simple queries with a few tables and SQL operators. This leads the query optimizer to 
choose the same plan in every PostgreSQL configuration, duo to the small search 
space of the plans. 

 
5.3.4. Power Saving. 
The purpose of this set of experiments is to investigate the benefit of our approach 

in term of energy efficiency. We configured the DBMS to evaluate the performance 
and power consumption cost models for the three configurations (Time- PG, Power-
PG, Tradeoff-PG). We repeat the same experiments under two different database 
sizes: 10GB, and 100GB using TPC-H benchmark. 

In Figure 9 we present the results of the experiments. We can clearly see that 
workloads consume significantly lower power when we choose a query optimizer 
configuration that favors low-power plans. When we compare the power-only (Power-
PG) with the performance-only (Time-PG) results, we observe a large margin in 
power savings, the benefit is remarkably considerable in small database size, 
perhaps this is due to the large amount of I/O operations and data processing 
required by queries of big database size which translate in more power consumption 
regardless of plan chosen by query optimizer. As expected, the savings of the 
Tradeoff- PG configuration are smaller than those obtained by the power-only 
experiment, but it still acceptable, especially, in 100GB datasets they are 
approximate. On the other hand, the power-only configuration takes more time to 
finish executing all the queries, which translate in a noticeable performance 
degradation, this not surprising, if we gain in power we automatically lose in 
performance. In the Tradeoff-PG configuration, the performance degradation is 
actually acceptable if we consider the power gain achieved. 

Note that all results of our experiments only considered direct power savings in a 
single database server. This number could be even higher if we consider large-scale 
data centers with thousands of servers and cooling systems. 

 
6. Confidence bounds 
In this section we will prove the confidence in our model data and results, using 
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high-end configuration experimentation data. To find the lower and upper bounds of 
population, we use Chebyshev’s inequality (6). The inequality is based on population 
mean (denoted by 𝜇𝜇) and population standard deviation (denoted by 𝜎𝜎). 
Unfortunately, 𝜇𝜇 and 𝜎𝜎 are unknown parameters. Therefore, we must found their 
upper and lower bounds with some degree of confidence to calculate Chebyshev’s 
inequality. To do the above, we (a) test whether the samples comes from a 
population that follows the normal distribution; (b) find the lower and upper bounds of 
the population mean, with the degree of confidence being 99%; (c) find the lower and 
upper bounds of the population standard deviation, with the degree of confidence 
being 99%. 

 
6.1. Testing whether the population follows the normal distribution 
The sample mean equals 116.4554, which is denoted by 𝑥̅𝑥; while the sample 

standard deviation equals 2.1822, which is denoted by s. The number of samples 
equals 131 and is denoted by 𝑛𝑛. We perform hypothesis testing to identify whether 
the samples comes from a normally distributed population or not. The hypothesis 
testing is conducted by applying the chi-squared test for normal distribution. The null 
hypothesis (𝐻𝐻U) is defined as “The population probability distribution is normal”. On 
the other extreme, the alternative hypothesis (𝐻𝐻{) is defined as “The population 
probability distribution is not normal”. 

We first divide the standard normal distribution 𝑁𝑁(0,1) into a set 𝐴𝐴O𝑡𝑡	containing 
eight proportionally equal parts, with each part being equal to 1/8; and then we find a 
set 𝐵𝐵O	 containing eight parts in a one-to-one correspondence with the ones 
belonging to set 𝐵𝐵O	 such that each sample is assigned onto one of the parts 
belonging to 𝐵𝐵O. We find the right-most split point of standard normal distribution, 
which equals 1.15, by subtracting 1/8=0.125 from 1 and then looking into the normal 
distribution table. By following the aforementioned procedure we result in the 
following set (named 𝐴𝐴V) of split points -1.15, -0.675, -0.32, 0, 0.32, 0.675, 1.15 
representing Z values. According to the aforementioned split points, we find seven 
new split points in one- to-one correspondence with the previous ones. Specifically, 
we apply Equation 6 for each point of 𝐴𝐴V, resulting in the following set (named 𝐵𝐵V) of 
split points 113.946, 114.9825, 115.7572, 116.4554, 117.1537, 117.9284, 118.9649. 

By taking into consideration the above, we can reformulate the null hypothesis 
and the alternative hypothesis as follows: 

• 𝐻𝐻U: All the parts of 𝐵𝐵Oare proportionally equal. 
• 𝐻𝐻{: At least one of the parts of 𝐵𝐵O is not proportionally equal with the rest 

ones. 
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Next we find how many (estimated) points belong to each of the parts of 𝐴𝐴O. For 
the first part of 𝐴𝐴O, we find that it contains 𝑛𝑛𝑛𝑛O = 131 ∗

O
å
= 16.375 (estimated) points, 

with 𝑝𝑝O representing the probability of first part. Because all the parts have the same 
probability, we conclude that each part contains 16.375 (estimated) points. The 
observed points belonging to the parts of 𝐵𝐵O are found as follows. Each point that is 
less than or equal to the left-most point of 𝐵𝐵V belongs to the first part of 𝐵𝐵O. The points 
that are greater than the left-most point of 𝐵𝐵V	and less than or equal to the second 
left-most point of 𝐵𝐵V belong to the second part of 𝐵𝐵O. The assignment process 
proceeds in a similar way for the rest parts. Table 3 contains the aforementioned 
information as well as information for calculating Equation 7 which asymptotically 
approaches chi-squared distribution 𝑋𝑋V. 

The critical region of the null hypothesis represents the region that the null 
hypothesis is rejected. To calculate that region we first need to choose (a) the 
significance level a, which is normally between 5% and 10%; and (b) the degrees of 
freedom 𝑑𝑑𝑑𝑑 = 𝑘𝑘 −𝑚𝑚 − 1, with k and m denoting the number of groups and the 
number of model parameters, respectively. In our case, we choose 𝑎𝑎 = 0.5; the 
number of groups equals eight; while the number of model parameters equals two 
(mean and standard deviation). Therefore, 𝑑𝑑𝑑𝑑 = 8 − 2 − 1 = 5. The critical region is 
the region beyond 𝑋𝑋U.YV = 11.07, which is denoted as critical value and calculated 
from the chi-squared distribution table. According to Equation 7 and Table 3, we 
observe that 𝑋𝑋V = 8.42, which is less than the critical value 11.07. As a result the null 
hypothesis is not rejected and we can safely assume that the population follows the 
normal distribution. Note that the bigger 𝑋𝑋V, the stronger the evidence to reject the 
null hypothesis. 

 
6.2. Finding the lower and upper bounds of the population mean with 99% 

confidence 
The population mean is denoted by µ, while the population standard deviation is 

defined as 𝜎𝜎. We find the lower and upper bounds (𝜇𝜇O and 𝜇𝜇K) of the population 
mean under 𝑃𝑃%  probability or equivalently P% degree of confidence. We first need 
first to specify the significance level 𝑎𝑎 = (100 − 𝑃𝑃)/100. Note that the greater the 
degree of confidence, the greater the interval between the lower and upper bounds. 
For our problem, we will calculate the lower and upper bounds of population mean 
with 99% degree of confidence, which is a common value. As a result, the 
significance level is	𝑎𝑎 = OUUÄùù

OUU
= 0.01. Because the population follows the normal 

distribution and the deviation σ is not known, we use Equation 8 to calculate the 
bounds of population mean. Note that 𝑡𝑡{/V represents the power t distribution, with a 
denoting the significance level. The degrees of freedom df equal 𝑛𝑛 − 1, we calculate 
𝑡𝑡U.UUY = 2.58. Therefore, according to Equation 8, we can observe that with 99% 
degree of confidence that 𝜇𝜇O = 115.96,and 𝜇𝜇V = 116.94. 

x£ ± t•∕V ∗
å
√®

     (8) 
 
6.3. Finding the lower and upper bounds of the population standard deviation with 

99% confidence 
Since we demand 99% confidence, the significance level is a	=	0.01. The lower 

and upper bounds of population standard deviation are expressed by Equation 9 and 
Equation 10, respectively. By looking into the chi-squared distribution table we 
observe that 𝑋𝑋U.UUYV = 175.3 and 𝑋𝑋U.ùùYV = 92.2. Therefore, 𝜎𝜎O = 1.88 and 𝜎𝜎K = 2.59. 
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LÄO
¨≠∕ã
ã       (9) 

𝜎𝜎K = 𝑠𝑠´
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6.4. Finding probabilistically the lower and upper bounds of the population 
From Chebyshev’s inequality (Equation 11) we can find probabilistically bounds 

for the population. Specifically, to find the lower bound of the population, we assume 
that 𝑋𝑋 − 𝜇𝜇 ≤ 0. 𝜇𝜇 = 𝜇𝜇™ and 𝜎𝜎 = 𝜎𝜎K.According to the above, inequality 11 becomes 
Inequality 12. For 𝑘𝑘 = 3 we have that 𝑃𝑃𝑃𝑃	(𝑋𝑋 ≤ 108.19) ≤ 0.11. To find the upper 
bound of the population, we assume that 𝑋𝑋 − 𝜇𝜇 ≥ 0, 𝜇𝜇 = 𝜇𝜇K  and 𝜎𝜎 = 𝜎𝜎K. According to 

queries with a high degree of complexity. The queries are executed in an isolated 
way. In our experiments, we consider three types of PostgreSQL con_guration: (1) 

Power-PG, which is the con_guration that gives the minimal power cost, (2) Time-
PG, is the con_guration with minimal time cost, (3) Tradeo_-PG, using weighted sum 
method with 𝜔𝜔O = 0.5, 𝜔𝜔V = 0.5 

 
5.2. Power Model Building 
As mentioned above, the _ parameters are estimated while learning the model 

from training data. We then perform series of observations in which queries are well-
chosen, and the power values consumed by the system are collected using 
measuring equipment while running these queries. In the same time, for each training 
instance, we calculate their costs. To generate training instances, we create our 
custom query workload based on TPC-H datasets. The workload containing queries 
divided into two main categories: (i) queries with operations that exhaust the system 
processor (CPU intensive queries) and (ii) queries with exhaustive storage subsystem 
resource operations (I/O intensive queries). Note that the considered queries include: 
queries with a single table scan, queries with multiple joins with different predicates. 
They also contain sorting/grouping conditions and simple and advanced aggregation 
functions as in [10]. After collecting power consumption training queries, we apply 
the regression equation (4) using the R language software9 to find our model 
parameters. Once we get them, an estimation of new queries is obtained without the 
use of our measurement equipment. 

 
5.3. Results 
In this section, we present the results of our various experiments. 
 
5.3.1. Cost Model Quality. 
The results of the training phase in our two setup con_gurations, against the _tted 

values from polynomial models (cf. Equation 4) are plotted in Figure 7. As we can 
see, the predicted and actual power consumption approximate the diagonal lines 
closely using our cost model in both congurations. Otherwise, in the server 
conguration we can see some variance between the predicted and the observed 
power for some training queries. Much of this can be attributed to the errors made by 
the DBMS query optimizer in estimating IO and CPU costs for these queries when 
there is a large working memory. This problem has been faced by query optimizers 
for a long time, and all the performance models proposed so far suffer from this 
problem, which is inherited from the cardinality estimation errors. In fact, the 
estimation errors in the low levels pipeline are propagated to the upper level and may 
significantly degrade the prediction accuracy. 

 
5.3.2. Cost Model Estimation Error. 
In this type of experiment, given the estimated power cost predicted by our model 

(𝐸𝐸)., we compare it with the actually observed system active power consumption 
(𝑀𝑀). To quantify the model accuracy, we used the following error ratio metric:   

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
|𝑀𝑀 − 𝐸𝐸|
𝑀𝑀  

To test our model with large datasets, we run all 22 queries of the TPC-H 
benchmark against two database scale factor: 10GB and 100GB. Most of the queries 
contain more than 4 pipelines. The results are shown in Table 2. We not that some 
queries were aborted since they exceeded 72 hours of execution in our current test 
environment. 

As we can see from the table, the average error is typically small (0.1% in both 
100GB and 10GB datasets), and the maximum error is usually below 5%. The 
experiment shows the accuracy of our prediction model, indicating that is sufficiently 
accurate for the intended applications. 

 
5.3.3. Query Characterization. 
To study the characterization of the TPC-H 22 query, we conduct a series of tests 

using the modified PostgreSQL. In such tests and for every configurations (Time-PG, 
Power- PG, Tradeoff-PG) we run all the TPC-H queries and collect the estimated 
performance cost and power cost returned by the query optimizer. From Figure 8 
(values are plotted on logarithmic scale) we can see that 16 of 22 queries have the 
potential for power saving in the Power-PG configuration. Normally, the benefit of 
power saving for these queries have a negative impact on the processing time cost 
as shown in the same figure. However choosing the trade-off configuration can lead 
to a good power saving values with less performance degradation. These queries are 
characterized by an important number of SQL operators and various I/O and CPU 
operations, which gives the query optimizer a variety of plans to choose from. 
Therefore, we can achieve a good power saving queries from those plans. On the 
other hand, the rest of queries that doesn’t show opportunities for power saving, are 
simple queries with a few tables and SQL operators. This leads the query optimizer to 
choose the same plan in every PostgreSQL configuration, duo to the small search 
space of the plans. 

 
5.3.4. Power Saving. 
The purpose of this set of experiments is to investigate the benefit of our approach 

in term of energy efficiency. We configured the DBMS to evaluate the performance 
and power consumption cost models for the three configurations (Time- PG, Power-
PG, Tradeoff-PG). We repeat the same experiments under two different database 
sizes: 10GB, and 100GB using TPC-H benchmark. 

In Figure 9 we present the results of the experiments. We can clearly see that 
workloads consume significantly lower power when we choose a query optimizer 
configuration that favors low-power plans. When we compare the power-only (Power-
PG) with the performance-only (Time-PG) results, we observe a large margin in 
power savings, the benefit is remarkably considerable in small database size, 
perhaps this is due to the large amount of I/O operations and data processing 
required by queries of big database size which translate in more power consumption 
regardless of plan chosen by query optimizer. As expected, the savings of the 
Tradeoff- PG configuration are smaller than those obtained by the power-only 
experiment, but it still acceptable, especially, in 100GB datasets they are 
approximate. On the other hand, the power-only configuration takes more time to 
finish executing all the queries, which translate in a noticeable performance 
degradation, this not surprising, if we gain in power we automatically lose in 
performance. In the Tradeoff-PG configuration, the performance degradation is 
actually acceptable if we consider the power gain achieved. 

Note that all results of our experiments only considered direct power savings in a 
single database server. This number could be even higher if we consider large-scale 
data centers with thousands of servers and cooling systems. 

 
6. Confidence bounds 
In this section we will prove the confidence in our model data and results, using 
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high-end configuration experimentation data. To find the lower and upper bounds of 
population, we use Chebyshev’s inequality (6). The inequality is based on population 
mean (denoted by 𝜇𝜇) and population standard deviation (denoted by 𝜎𝜎). 
Unfortunately, 𝜇𝜇 and 𝜎𝜎 are unknown parameters. Therefore, we must found their 
upper and lower bounds with some degree of confidence to calculate Chebyshev’s 
inequality. To do the above, we (a) test whether the samples comes from a 
population that follows the normal distribution; (b) find the lower and upper bounds of 
the population mean, with the degree of confidence being 99%; (c) find the lower and 
upper bounds of the population standard deviation, with the degree of confidence 
being 99%. 

 
6.1. Testing whether the population follows the normal distribution 
The sample mean equals 116.4554, which is denoted by 𝑥̅𝑥; while the sample 

standard deviation equals 2.1822, which is denoted by s. The number of samples 
equals 131 and is denoted by 𝑛𝑛. We perform hypothesis testing to identify whether 
the samples comes from a normally distributed population or not. The hypothesis 
testing is conducted by applying the chi-squared test for normal distribution. The null 
hypothesis (𝐻𝐻U) is defined as “The population probability distribution is normal”. On 
the other extreme, the alternative hypothesis (𝐻𝐻{) is defined as “The population 
probability distribution is not normal”. 

We first divide the standard normal distribution 𝑁𝑁(0,1) into a set 𝐴𝐴O𝑡𝑡	containing 
eight proportionally equal parts, with each part being equal to 1/8; and then we find a 
set 𝐵𝐵O	 containing eight parts in a one-to-one correspondence with the ones 
belonging to set 𝐵𝐵O	 such that each sample is assigned onto one of the parts 
belonging to 𝐵𝐵O. We find the right-most split point of standard normal distribution, 
which equals 1.15, by subtracting 1/8=0.125 from 1 and then looking into the normal 
distribution table. By following the aforementioned procedure we result in the 
following set (named 𝐴𝐴V) of split points -1.15, -0.675, -0.32, 0, 0.32, 0.675, 1.15 
representing Z values. According to the aforementioned split points, we find seven 
new split points in one- to-one correspondence with the previous ones. Specifically, 
we apply Equation 6 for each point of 𝐴𝐴V, resulting in the following set (named 𝐵𝐵V) of 
split points 113.946, 114.9825, 115.7572, 116.4554, 117.1537, 117.9284, 118.9649. 

By taking into consideration the above, we can reformulate the null hypothesis 
and the alternative hypothesis as follows: 

• 𝐻𝐻U: All the parts of 𝐵𝐵Oare proportionally equal. 
• 𝐻𝐻{: At least one of the parts of 𝐵𝐵O is not proportionally equal with the rest 

ones. 
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Next we find how many (estimated) points belong to each of the parts of 𝐴𝐴O. For 
the first part of 𝐴𝐴O, we find that it contains 𝑛𝑛𝑛𝑛O = 131 ∗

O
å
= 16.375 (estimated) points, 

with 𝑝𝑝O representing the probability of first part. Because all the parts have the same 
probability, we conclude that each part contains 16.375 (estimated) points. The 
observed points belonging to the parts of 𝐵𝐵O are found as follows. Each point that is 
less than or equal to the left-most point of 𝐵𝐵V belongs to the first part of 𝐵𝐵O. The points 
that are greater than the left-most point of 𝐵𝐵V	and less than or equal to the second 
left-most point of 𝐵𝐵V belong to the second part of 𝐵𝐵O. The assignment process 
proceeds in a similar way for the rest parts. Table 3 contains the aforementioned 
information as well as information for calculating Equation 7 which asymptotically 
approaches chi-squared distribution 𝑋𝑋V. 

The critical region of the null hypothesis represents the region that the null 
hypothesis is rejected. To calculate that region we first need to choose (a) the 
significance level a, which is normally between 5% and 10%; and (b) the degrees of 
freedom 𝑑𝑑𝑑𝑑 = 𝑘𝑘 −𝑚𝑚 − 1, with k and m denoting the number of groups and the 
number of model parameters, respectively. In our case, we choose 𝑎𝑎 = 0.5; the 
number of groups equals eight; while the number of model parameters equals two 
(mean and standard deviation). Therefore, 𝑑𝑑𝑑𝑑 = 8 − 2 − 1 = 5. The critical region is 
the region beyond 𝑋𝑋U.YV = 11.07, which is denoted as critical value and calculated 
from the chi-squared distribution table. According to Equation 7 and Table 3, we 
observe that 𝑋𝑋V = 8.42, which is less than the critical value 11.07. As a result the null 
hypothesis is not rejected and we can safely assume that the population follows the 
normal distribution. Note that the bigger 𝑋𝑋V, the stronger the evidence to reject the 
null hypothesis. 

 
6.2. Finding the lower and upper bounds of the population mean with 99% 

confidence 
The population mean is denoted by µ, while the population standard deviation is 

defined as 𝜎𝜎. We find the lower and upper bounds (𝜇𝜇O and 𝜇𝜇K) of the population 
mean under 𝑃𝑃%  probability or equivalently P% degree of confidence. We first need 
first to specify the significance level 𝑎𝑎 = (100 − 𝑃𝑃)/100. Note that the greater the 
degree of confidence, the greater the interval between the lower and upper bounds. 
For our problem, we will calculate the lower and upper bounds of population mean 
with 99% degree of confidence, which is a common value. As a result, the 
significance level is	𝑎𝑎 = OUUÄùù

OUU
= 0.01. Because the population follows the normal 

distribution and the deviation σ is not known, we use Equation 8 to calculate the 
bounds of population mean. Note that 𝑡𝑡{/V represents the power t distribution, with a 
denoting the significance level. The degrees of freedom df equal 𝑛𝑛 − 1, we calculate 
𝑡𝑡U.UUY = 2.58. Therefore, according to Equation 8, we can observe that with 99% 
degree of confidence that 𝜇𝜇O = 115.96,and 𝜇𝜇V = 116.94. 
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6.3. Finding the lower and upper bounds of the population standard deviation with 

99% confidence 
Since we demand 99% confidence, the significance level is a	=	0.01. The lower 

and upper bounds of population standard deviation are expressed by Equation 9 and 
Equation 10, respectively. By looking into the chi-squared distribution table we 
observe that 𝑋𝑋U.UUYV = 175.3 and 𝑋𝑋U.ùùYV = 92.2. Therefore, 𝜎𝜎O = 1.88 and 𝜎𝜎K = 2.59. 
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6.4. Finding probabilistically the lower and upper bounds of the population 
From Chebyshev’s inequality (Equation 11) we can find probabilistically bounds 

for the population. Specifically, to find the lower bound of the population, we assume 
that 𝑋𝑋 − 𝜇𝜇 ≤ 0. 𝜇𝜇 = 𝜇𝜇™ and 𝜎𝜎 = 𝜎𝜎K.According to the above, inequality 11 becomes 
Inequality 12. For 𝑘𝑘 = 3 we have that 𝑃𝑃𝑃𝑃	(𝑋𝑋 ≤ 108.19) ≤ 0.11. To find the upper 
bound of the population, we assume that 𝑋𝑋 − 𝜇𝜇 ≥ 0, 𝜇𝜇 = 𝜇𝜇K  and 𝜎𝜎 = 𝜎𝜎K. According to 
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high-end configuration experimentation data. To find the lower and upper bounds of 
population, we use Chebyshev’s inequality (6). The inequality is based on population 
mean (denoted by 𝜇𝜇) and population standard deviation (denoted by 𝜎𝜎). 
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the population mean, with the degree of confidence being 99%; (c) find the lower and 
upper bounds of the population standard deviation, with the degree of confidence 
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the samples comes from a normally distributed population or not. The hypothesis 
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the other extreme, the alternative hypothesis (𝐻𝐻{) is defined as “The population 
probability distribution is not normal”. 
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• 𝐻𝐻{: At least one of the parts of 𝐵𝐵O is not proportionally equal with the rest 

ones. 
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information as well as information for calculating Equation 7 which asymptotically 
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number of groups equals eight; while the number of model parameters equals two 
(mean and standard deviation). Therefore, 𝑑𝑑𝑑𝑑 = 8 − 2 − 1 = 5. The critical region is 
the region beyond 𝑋𝑋U.YV = 11.07, which is denoted as critical value and calculated 
from the chi-squared distribution table. According to Equation 7 and Table 3, we 
observe that 𝑋𝑋V = 8.42, which is less than the critical value 11.07. As a result the null 
hypothesis is not rejected and we can safely assume that the population follows the 
normal distribution. Note that the bigger 𝑋𝑋V, the stronger the evidence to reject the 
null hypothesis. 
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with 99% degree of confidence, which is a common value. As a result, the 
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distribution and the deviation σ is not known, we use Equation 8 to calculate the 
bounds of population mean. Note that 𝑡𝑡{/V represents the power t distribution, with a 
denoting the significance level. The degrees of freedom df equal 𝑛𝑛 − 1, we calculate 
𝑡𝑡U.UUY = 2.58. Therefore, according to Equation 8, we can observe that with 99% 
degree of confidence that 𝜇𝜇O = 115.96,and 𝜇𝜇V = 116.94. 
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Equation 10, respectively. By looking into the chi-squared distribution table we 
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6.4. Finding probabilistically the lower and upper bounds of the population 
From Chebyshev’s inequality (Equation 11) we can find probabilistically bounds 

for the population. Specifically, to find the lower bound of the population, we assume 
that 𝑋𝑋 − 𝜇𝜇 ≤ 0. 𝜇𝜇 = 𝜇𝜇™ and 𝜎𝜎 = 𝜎𝜎K.According to the above, inequality 11 becomes 
Inequality 12. For 𝑘𝑘 = 3 we have that 𝑃𝑃𝑃𝑃	(𝑋𝑋 ≤ 108.19) ≤ 0.11. To find the upper 
bound of the population, we assume that 𝑋𝑋 − 𝜇𝜇 ≥ 0, 𝜇𝜇 = 𝜇𝜇K  and 𝜎𝜎 = 𝜎𝜎K. According to 
the above, inequality 11 becomes inequality 13. For 𝑘𝑘 = 3 we have that 𝑃𝑃𝑃𝑃	(𝑋𝑋 ≥
124.71) ≤ 0.11. To find the confidence level for the lower bound of population, we 
have to multiply the probability of A to be greater than 108.19 (i.e., 1 — 0.11 = 0.89) 
by (a) the confidence level for the lower bound of population mean, and (b) by the 
confidence level for the upper bound of population standard deviation. As a result, 
the lower bound of population is equal to 108.9 with 87% (0.99 * 0.99 * 0.89) degree 
of confidence. By working in a similar way, the upper bound of the population is 
equal to 124.71 with 87% degree of confidence. Note that we can increase the 
degree of confidence (by increasing k) at the cost of decreasing/increasing the 
lower/upper bound of population. 

𝑃𝑃B(|𝑋𝑋 − 𝜇𝜇| ≥ 𝑘𝑘𝑘𝑘) ≤ 1 ∕ 𝑘𝑘V     (11) 
𝑃𝑃B(𝑋𝑋 ≤ 𝜇𝜇™ − 𝑘𝑘𝜎𝜎K) ≤ 1 ∕ 𝑘𝑘V     (12) 
𝑃𝑃B(𝑋𝑋 ≥ 𝜇𝜇K + 𝑘𝑘𝜎𝜎K) ≤ 1 ∕ 𝑘𝑘V      (13) 

 
7. Conclusion 
In this paper, we first summary the initiatives that the database community did for 

building energy applications and DBMS. These initiatives cover software and 
hardware aspects. Due to the complexity of the DBMS, we propose a green-query 
optimizer build on the top of PostgreSQL. Before building it, an audit has been 
performed to identify energy-sensitive components of the query optimizers. Based on 
this audit, a methodology of building such a query optimizer is given and proposes to 
modify the query processor. Our methodology is supported by an open source tool 
available at the forge of our laboratory to allow researchers, industrials and students 
to get benefit from it. Intensive experiments were conducted to demonstrate the 
efficiency and usage of our proposal. The obtained results are encouraging. Based 
on these results a probabilistic proof is given to evaluate the confidence bounds of 
our model and results. We can conclude that our proposal is a complete since it 
cover a large state of art discussion, a comprehensive methodology supported by a 
open source tool and solid mathematical proof. 

Currently, we are integrating physical design aspects in our tool and pushing its 
development to become like an energy advisor. 
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Table 3: Information of the calculations.

Interval Observed 
points (O)

Estimated 
points (E) (O-E) (O-E)2/E
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