
3

The Influence of Exascale on Resource
Discovery and Defining an Indicator
Ehsan Mousavi Khaneghah1, Araz R. Aliev2, Ulphat Bakhishoff3, Elham Adibi1
1Department of Computer Engineering, Faculty of Engineering, Shahed University, Tehran,
Iran, EMousavi@shahed.ac.ir, elham.adibi@shahed.ac.ir
2High Performance Computing Research Advance Center, Department of General and
Applied Mathematics, Azerbaijan State Oil and Industry University, Baku, Azerbaijan,
alievaraz@asoiu.edu.az
3 Department of General and Applied Mathematics, Azerbaijan State Oil and Industry
University, Baku, Azerbaijan, ulfat.baxıshov@asoiu.edu.az*Correspondence:

Ulphat Bakhishoff,
Department of General

and Applied Mathematics,
Azerbaijan State Oil

and Industry University,
Baku, Azerbaijan, ulfat.
baxıshov@asoiu.edu.az

Abstract
Resource discovery in distributed Exascale computing systems, in
addition to managing events resulting in failures due to not finding
the resource, as well as failure to perform resource discovery
activities at the acceptable time, needs to be able to manage
events resulting in failures due to dynamic and interactive nature
as well. While investigating the concept of dynamic and interactive
nature and its impact on RD functionality, this paper introduces a
mathematical model of events resulting in RD failure in this type of
computing systems based on descriptive spaces of RD activities.
This mathematical model helps to analyze this issue that in what
situations the dynamic and interactive nature would lead to the
failure of RD and what capabilities RD should have to prevent the
failure.
Keyword: Distributed Exascale computing systems, Resource
Discovery, Resource discovery failure, Resource discovery
indicator.

	
 	

	
 	

1. Introduction
Resource Discovery (RD), as one of the units of resource management in

computing systems, is responsible for providing the possibility of continuing running
a program which requires high performance computing and processing through
searching and finding the required processing resource which cannot be answered
by the system. [1] RD, unlike other constituent elements of the system manager
which operate within the limits of the system, is operating beyond the system and in
the system environment. [2] This leads to a reduction in controlling constrain and
limitations on activities of RD. The most important consequence of the reduction of
these constraints is a lack of a precise view about the nature of events that may
occur in running of the RD activities which may affect the process of activities in
question in some ways (whether positive or negative). [3, 4]

Lack of a precise understanding of elements related to the RD activities makes
the conditions resulting in the failure of RD activities be undebatable when designing
the element, unlike other constituent elements of the system manager. [5, 6, 7] About
other elements of system manager, since the activities related to the element are
executed within the system limits, decisions can be made through analyzing the

Azerbaijan Journal of High Performance Computing, Vol 1, Issue 1, 2018, pp. 3-19
https://doi.org/10.32010/26166127.2018.1.1.3.19

4

	
 	

	
 	

function of the element in situations leading to the failure of RD functionality. This
decision is based on the knowledge of factors influencing RD activities. In case of
RD, since the factors influencing its activities are outside the system limits and
uncontrollable for the system manager, therefore, analyzing the effective factors in
the process of RD activities, and subsequently, analyzing the conditions resulting in
its functions’ failure is more complex.

The reason for focusing on the concept of failure of operations in high
performance computing and processing systems is due to the functional nature of
these types of systems. [11, 12] The main purpose of these systems is to run
activities related to the scientific applications in the shortest possible time, [13, 14]
hence, running activities related to constituent elements of system manager, from the
viewpoint of the functional purpose and its analysis, means increasing the runtime
[15]. As a result, when designing the elements forming system manager,
mechanisms and patterns will be used which reduce failure in the process of running
RD.

The concept of failure of system manager’ operations, particularly RD in
distributed Exascale systems, has a more complex process due to the definition of
the concept of dynamic and interactive nature. [16] Because of the Dynamic and
interactive nature, the computing system faces situations that were not considered in
the initial structure of answering. [17, 18] On the other hand, the dynamic and
interactive nature causes changes in the state of system’s basic elements, such as
processes, the way of interactions and communications of the basic elements with
each other, [19, 20] as well as system limits definition. The nature of these changes is
flooding and a change in one part of the system might change the other part. This
makes the concept named the difference between the real system state and the
perceived system state be definable by an element of system manager. [21]

The occurrence of a dynamic and interactive nature, in many cases, causes the
function of system manager, especially RD, to face challenges and fail. From
system’s functional analysis point of view, failure of RD functionality means
conducting an RD process that cannot meet the requirements of the computing
processes in the system. [22] Also, after retrieving the modified information on the
requirements of the process asking for the resource, RD should re-discover the
needed resource.

The above factors make it necessary to have a thorough understanding of the
concept of dynamic and interactive nature and its impact on indices describing RD
functionality so that decisions can be made on the circumstances leading to failure in
RD. [23] While analyzing the concept of dynamic and interactive nature and its
impact on RD functionality, this paper also analyzes the concept of failure in RD of
distributed Exascale systems. Therefore, it can be discussed what features RD
should have to be able to manage the concept of failure in this type of computing
systems.

2. Basic concepts
This section examines the basic concepts of distributed Exascale systems and

Ehsan Mousavi Khaneghah, et al.

2. Basic concepts

5

	
 	

	
 	

defines RD functionality in them. [24] The reason is the need for a detailed view of
the dynamic and interactive nature and its impact on RD functionality in this type of
computing systems. [23] The dynamic and interactive nature can both affect the
system's constituent elements and RD functionality. In this paper, it is assumed that
RD is not directly influenced by the dynamic and interactive nature and the
occurrence of an event in the computing system and influencing the system state will
change RD functionality.

2.1. What does Exascale System Functionality mean?
In distributed Exascale systems, all the variables and their relationships, as well

as the limits of the computing system are not clear for the designer of the computing
system at the beginning of running the program. [25] Therefore, during implementing
the program, by linking inter-process communication system processes and creating
a new process, a new requirement for a resource is created that has not been taken
into account at the system initial design. Such requests, which are completely
unpredictable, are due to the dynamic and interactive nature. [26] In distributed
Exascale systems, in addition to answering the requirements of the computing
processes to continue their activities, RD should also be able to manage the dynamic
and interactive nature through providing answering structure. [27]

2.2. What does RD functionality in Distributed Exascale Computing Systems
mean?

As one of the units of resource management in computing systems, RD is tasked
with receiving a process request that cannot be answered by the local operating
system and searching for and finding a resource that is matched with the features
and limits of the request outside the computing system. [28] The generating space of
RD can be shown as the following equation:
RD ∷	
 ≪ Process,-./-01, Resource4/1	
 45	
 0601-7 >,

< finding,matching, permission/	
 allocation, remove	
 and	
 add
>, Process	
 State, Global	
 Activity, < Answer, True >	
 >

Eq.1
As can be seen in Eq.1, RD is defined based on Process,-./-01 and

Resource4/1	
 45	
 0601-7 sets. These are the two main sets which define RD. In fact, RD is
a function responsible for mapping Resource4/1	
 45	
 0601-7 to Process,-./-01. To perform
this mapping, RD should use four activities.

In the first activity, RD should find the resource out of the computing system
based on any mechanisms.

For the second activity, according to the system manager policy, RD can provide
the process with either a resource which is 100% matched with the process request
or a resource with a minimum specific resemblance determined by system manager
policy. In traditional computing systems, such as grid and peer-to-peer, RD uses
100% match policy. [29] The reason is the clarity of answering structure. In
distributed Exascale systems, the clarity of answering structure as well as time limits
can minimally be resembled. [30, 31].

RD should have access rights to the resource. These access rights can be either
total or partial. Access rights can also be a function of time or non-compliance with

Azerbaijan Journal of High Performance Computing, 1(1), 2018

6

	
 	

	
 	

time. In total access, RD provides the process with the discovered resource as part
of the local resources of the requesting process. In this case, system manager is
responsible for establishing the transparency. In partial access, RD only allows
specific activities for the requesting process, and the requesting process must
establish and manage a distinct activity (part of a global activity) to run the activity in
the remote resource. [32]

Based on the general policies of system manager, RD should make decisions on
permanent or temporary addition of the computing element containing the requested
resource. If the global activity has a high operating frequency or system manager
operates based on the concept of global activity similarity, then RD will typically
behave according to the concept of permanent addition, and in other cases, based
on process needs and requests. The concept of global activity similarity is used in
computing systems with low frequency of running a global activity, but global
activities carried out by RD are similar to each other. [33] In this situation, system
manager uses a management pattern of the global activity that has the most
similarity in terms of the implementation process, the beneficiary elements, as well as
the activity requests to manage a global activity.

On the other hand, RD should make decisions on reducing system size and
removing unused machines in the system based on system manager policies. One of
the challenges of distributed Exascale systems, as compared to open computing
systems, is the presence of unused machines in the system which increases the
runtime of constituent elements of system manager. In this type of computing
systems, RD should decide on removing unused machines. [34]

Two basic concepts which define RD activities are process state and global
activity. The concept of process state involves the causes of creating and the nature
of the request in the process, and global activity state reflects having or lacking
memory of the request process. [23, 35]

Each activity executed by RD must have attributes of Answer and True. Answer
means whether RD is capable of answering a process request or not.

RD, contrary to load balancer, operates beyond the system limits. The computing
elements outside the computing system lack the necessary constraints to participate
in answering process. On the other hand, these elements do not follow the rules
governing the computing system. Therefore, in the answering process, RD may
encounter a concept known as inability to answer. Based on a criterion, RD should
make decisions on whether it is capable of answering the process request or not.
[36]

Given the definition of the reference system, it can be argued that RD is able to
answer any request in an infinite time and location. On the other hand, in computing
systems, including open computing systems or distributed Exascale systems, a
process creates a request. Each process has a concept called receiving a request in
the appropriate time and location. [12] If the appropriate time and location related to
the process request is violated, the trend of process life may face problems. As a
result, RD Answer means a significant answer to process request. It is more complex
in distributed Exascale systems. In this type of computing systems, the occurrence of

Ehsan Mousavi Khaneghah, et al.

7

	
 	

	
 	

dynamic and interactive events during resource discovery process may change
significance of answering to the request; hence, in such systems, RD requires using
more precise mechanisms to be Answer. [37]

The concept of True points to the fact that the request must be answered
correctly. Correct answer to a request means lack of failure of RD during resource
discovery process.

In this type of computing systems, scalability, and subsequently, RD functionality
is not limited to creating answer structure or adding (or removing) computing
elements to the computing system. Here, RD is also used to deal with the dynamic
and interactive nature. The dynamic and interactive nature leads to the creation of a
new request or changing the constraints and limitations of the current request. In
addition to receiving the requests of processes that need a resource, RD has also
the task of analyzing the request state and the requesting process by some
mechanisms. Moreover, in case of changes in resources and process attributes over
time, RD should be able to manage the situation in a way that does not lead to the
stoppage of the current resource and the start of discovering a new resource, and in
other words, should prevent RD failure. [38]

RD in distributed Exascale systems receives a process request in terms of the
request nature, time and location constraints, and type of requested resource, as
well as the access constraints defined therein. Because of the possibility of changes
in any of the mentioned constraints, the activity related to resource discovery
becomes more complicated. In addition, since the activity related to this element is
beyond the limits of the computing system and the elements do not have any
constraints in giving services to the end of implementing, the likelihood of resource
discovery failure increases. Providing mechanisms and methods to control and
manage it is of great importance in increasing the computing system efficiency.

3. Related work
Aiming at sharing audio files, Napster is one of the first peer-to-peer systems. In

this system, the central management element is intended to carry out the processes
related to finding the resource and establishing the necessary link between the
elements requesting the resource and those containing the resource. Each
computing element provides central management element with the information on
resources that are able to share them with other computing elements. [39, 40] If the
information of the computing element resources changes during the execution of the
program and the updated information is not presented to central management
element, it will redirect query to a wrong computing element and the activity related
to the resource will fail. Furthermore, if central management element has some
defects for any reasons, such as hardware or software, it will be unable to direct the
request and process the query, and thus, executing resource discovery activities will
be stopped. [41]

One of the resource finding mechanisms used in the Gnutella resource sharing
system is flooding. In this method, a processor in the system requests a resource
which local operating system is not able to answer it. In this case, the resource

Azerbaijan Journal of High Performance Computing, 1(1), 2018

8

	
 	

	
 	

request will be spread to all the neighbors of the requesting process. If none of the
neighbors is capable of answering the request, they will send the resource request to
their neighbors. This method can exponentially increase the network overload. [42,
43]

In order to prevent too many queries, an indicator called time to live is used. TTL
is defined in the resource requesting process, indicating that to how many
computing elements, at most, the request message can be spread. When passing
through any computing element, one unit of this indicator value will be reduced. If the
TTL value reaches zero, the activity associated with the resource discovery will be
terminated. Therefore, a failure occurs due to not finding a resource. [44]

Due to system's scalability, computing systems running scientific applications
have a dynamic nature. That is, each computing element can be deleted from or
added to the system and its resource state can be changed. [45]

Paper [46] has proposed a model for establishing a relationship between RD and
load balancer. To efficiently perform resource discovery operations, these two
elements send or receive the necessary information by exchanging command
messages. Load balancer has sufficient knowledge and awareness of resource
states of each of the system’s computing elements and knows how much of the load
work of each of them is being used and will be used in the future. If the load balancer
provides its information to RD, RD will be able to make appropriate decisions
regarding the changing state of computing resources. Therefore, by the indicator of
calculating and predicting computing elements’ workload, this paper prevents
resource discovery failure from the presence or absence of computing elements and
their inability to answer the resource request.

4. Failure-Aware ExaRD
RD, from its systemic point of view, can be considered as a global activity aimed

at finding a resource that is requested by a process in the computing system that
cannot be answered in a local computing system. [47] In traditional computing
systems, such as Grid and Peer to Peer, RD function was defined based on the
independent variable of resource request and the conditions governing the request,
and the dependent variable of finding (or not finding) the resource. The central
element in defining such a function is based on the concept of resource type. [48]
However, in Exascale systems, the concept of dynamic and interactive nature
directly affect RD functionality and its influencing factors. RD functionality is
dependent on Resource Nature Set and Resource Attribute Set. Beta Resource
Nature Set can be written as Eq.2.

RNSOPQRS Beta ∷	
 < RequestVS1/W-, Request16Q-, Request1X7-, RequestP4YS1X4Z,
RAC\-1S, Permission, Allocation >

Eq. 2
As seen in Eq.2, RNA set of Beta request is defined on the four spaces of request

nature, request type, request time limit, and request location limit. In this series,
permission and resource allocation to the process can be defined.

In traditional systems such as Grid and Peer to Peer, RNS does not change

Ehsan Mousavi Khaneghah, et al.

9

	
 	

	
 	

during implementing activities related to RD. [48] On the other hand, RD in this type
of computing systems tries to provide the computing element with a process that its
RAS set will not change during answering the process request.

Any changes in RNS set and the high frequency of changes in RAS set will create
a concept called the failure of RD related activities. In distributed Exascale
computing systems, depending on the dynamic and interactive nature of computing
processes, RNS set of this type of computing processes may change during
answering to a process request or resource discovery. On the other hand, in this
type of computing systems, depending on the distributed nature of the system and
the definition of local autonomy [49], the frequency of RAS set changes may
increase.

When a request is formed in the system, regardless of its cause, and in order to
answer it by load balancer or RD, each request is considered as <time, type,
location> from their perspective. When Beta request is created in alpha process,
either RD or load balancer will be called. At the moment of calling, each of these two
elements considers the triple schema as "Request Image". In traditional computing
systems, Request Image is constant during answering by either of these two
elements. In distributed Exascale systems, due to the events from the dynamic and
interactive nature of such systems, it is possible to make changes in each of the
constituent elements of RI.

Therefore, the dynamic and interactive nature forms Beta request in the system
where its RNS differs from the initial RNS of the global activity, or the Request Image
from it changes during the implementation process of RD or load balancer. Thus,
distributed Exascale systems, needs to have the capability of examining the
constraints governing the request during the program implementation.

Based on the information related to the process state and analysis of process
request state, if a resource discovery mechanism is able to

A) If URS or the User Request Set is a set of process requirements that cannot
be answered in the local machine in the local computing system and is in the form of

<RAC, Limitation time, Limitation Location>,
Then, when examining the URS of a computing element, it must be able to re-

examine the URS with the resource requesting process or the representative
resource requesting element. It is called double verification RNS.

B) It should be able to examine the stated condition in Eq.3 when checking URS
of a computing element.

𝑖𝑖𝑖𝑖	
 𝑈𝑈𝑈𝑈𝑈𝑈 ≡ 𝑅𝑅𝑅𝑅𝑅𝑅 ∷ 	
 𝑅𝑅𝑅𝑅 𝑡𝑡 	
 𝑖𝑖𝑖𝑖	
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐	

	
 kl	
 mlnoplq	
 rpsr

Eq.3

Eq.3 states that if the URS of the computing element is capable of meeting the
RNS of the requesting process, RD can add the new computing element to the
computing system when it does not change system's RI state at the time of
discovery. If adding the new computing element changes RI state of the computing
system, due to the concept of change chain, even if the URS of the computing
element is able to meet RNS, this computing element will be disregarded.

t = zeta is the start of RD operation and t = zeta2 is its completion. During [zeta,

Azerbaijan Journal of High Performance Computing, 1(1), 2018

10

	
 	

	
 	

zeta2] time slot, due to the occurrence of a dynamic and interactive nature, the
computing system is subject to some changes and is considered as a dynamic
system. In terms of changes to the beneficiary elements, system’s dynamism is
important for resource requesting process or activities related to RD. Because the
system is in a dynamic state, RNS is changing. If RNS value at t = zeta is equal to
RNSzeta, RD must find a resource at t = zeta2 that while considering RNS changes
from RNSzeta to RNSzeta2, will not change RI at zeta and zeta2.

Regarding these concepts, it can be argued that the dynamic and interactive
nature influences distributed Exascale systems in two areas: a) a change in request
nature after activating RD; b) a change in RI state after activating RD. It has been
discussed in Eq.4.

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷	
 𝑎𝑎𝑎𝑎𝑎𝑎	
 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 → 𝐶𝐶ℎ𝑎𝑎n𝑔𝑔𝑒𝑒ÇÉÑ 𝑡𝑡 , 𝑅𝑅𝑅𝑅 𝑡𝑡
Eq.4

As shown in Eq.4, the dynamic and interactive nature affects RD in two areas of
RNS time changes due to the occurrence of a dynamic and interactive nature on the
requesting process or its representative, or system’s RI state change which
somehow influences the process request. The concept of RI (t) focuses on two
concepts of system state and the creation of change chain. From the system’s
approach, RI is a function of the independent variable t and its state may change
because of the dynamic and interactive nature either by the requesting process or by
other processes affecting requesting process function. From the change chain
approach, the discovery of a resource whose URS is the same as RNS request
should not cause the formation of a chain of requirements or a new requirement in
the system. Given Eq.4, it can be stated that if RD algorithms used by RD can
support two attributes of function 4 range, then, they can be used in distributed
Exascale systems.

Eq.4 is, in fact, the use of a mapping function to analyze the effect of the dynamic
and interactive nature on RD. Figure.1 displays the schematic model of Eq.4.

As seen in Fig.1, the concept of dynamic and interactive nature affects RD

Figure.1. Schematic model of Eq.4.

Ehsan Mousavi Khaneghah, et al.

11

	
 	

	
 	

functionality. As stated in Eq.4, the effect of this concept on RD functionality causes
the two concepts of RI and RNS to be influences by time. In traditional computing
systems, from the moment of RD activation until answering the request by RD, these
two concepts are constant and do not change.

Given the aforementioned issues, it can be stated that RD is made up of RI, RNS,
URS, and RAC spaces. The formation of dynamic and interactive nature makes it
possible for two spaces to change from time-independent to time-dependent
spaces. As a result, all four spaces are converted into time-dependent variables. If it
is assumed that 𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅𝑅𝑅
𝑈𝑈𝑈𝑈𝑈𝑈
𝑅𝑅𝑅𝑅 , then if we calculate the determinant of this matrix

according to Eq.6,

𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑅𝑅*𝑅𝑅𝑅𝑅 -­‐‑ 𝑈𝑈𝑈𝑈𝑈𝑈*𝑅𝑅𝑅𝑅𝑅𝑅
Eq.6

the matrix determinant will be a 2-line function that maps and describes RD state
for an entry constancy. Consequently, Eq.5 allows the computing system designer to
examine the impact of the three constituent spaces of RD when an element is in a
constant state. Eq.5 can be described in such a way that if we assume that the main
function of RD is to find and allocate resources, then, in RD matrix, we will seek to
find a 2-line function that shows the effect of the constituent elements of RD when
RAS is constant. In traditional computing systems, this function always has a fixed
and constant value. The cause of ⌊RD⌋ constancy is that RNS, RI, URS, and RAC
spaces are not dependent on the changeable independent variable. However, in
distributed Exascale systems, RI and RNS are functions of time; thus, ⌊RD⌋ is a
function of the independent variable of time. Then, Eq.6 will be as follows:
𝑅𝑅𝑅𝑅 r 	
 = 𝑅𝑅𝑅𝑅𝑅𝑅*𝑅𝑅𝑅𝑅 -­‐‑ 𝑈𝑈𝑈𝑈𝑈𝑈*𝑅𝑅𝑅𝑅𝑅𝑅 r

𝑅𝑅𝑅𝑅 r =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 < 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	
 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿	
 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 > .

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡Ésrêëo
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡ríìo r

Eq.6
As shown in Eq.6, the function of RD which is based on the four spaces of RAC,

RI, URS, and RAC and considering time as the independent variable, can be
obtained by calculating the determinant of RD generating matrix. This function is a
matrix function and is defined in the form of inner product of 1*2 matrix by 2*1 matrix.
The first matrix is referred to as limitation matrix and the second one as request
matrix. In the first matrix, constant is any kind of limitation that is defined on RD
process by resource requesting process or the computing system, except for time
and location limitations. In this matrix, time and location limitations are those imposed
by resource requesting process or the computing system on RD in an RD process. In
the second matrix, the request nature and type are described. Each of the four
parameters are considered as functions of the independent variable of time and can
be changed during the runtime of RD activity.

Azerbaijan Journal of High Performance Computing, 1(1), 2018

12

	
 	

	
 	

In order to have a more accurate view on the impact of the above concept on RD
functionality, we need to define RD. Eq.1 shows the generating spaces of RD. Given
Eq.1, RD can be defined as follows:

R𝐷𝐷 =
𝜕𝜕 ïëlñommóòôòö õúlùsúûüò†°†ò¢
£këêo,§•mqoë¶ Çomlêëñoßôò®©ö
𝜕𝜕 ëomlêëño,ëo™êomr,r´no,úlñsr´l•

Eq.7
Eq.7 suggests that RD is an element with the task of answering a process request

process at the right time and location. It has to answer an appropriate request which
is in accordance with the requirements of the requesting process at the right time
and location by taking into account the constraints and limitations defined by the
process or system. Therefore, in Eq.7, the elements influencing RD concept are
derived from the two main elements of RD and time and location limitations. By
solving Eq.7, Eq.8 will be obtained.
𝑅𝑅𝑅𝑅

=

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑠𝑠Ñrsro
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑠𝑠Ñrsro
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕u𝑒𝑒𝑒𝑒𝑒𝑒

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑠𝑠Ñrsro
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑠𝑠Ñrsro
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑙𝑙§ñr´∞´rí
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑙𝑙§ñr´∞´rí
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑙𝑙§ñr´∞´rí
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙§ñr´∞´rí
𝜕𝜕𝜕𝜕o𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝜕𝜕 < 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 >
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑒𝑒Ésrêëo
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑐𝑐𝑒𝑒

𝜕𝜕 < 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 >
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑒𝑒Ésrêëo
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕 < 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 >
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑒𝑒Ésrêë-
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕 < 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 >
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟𝑒𝑒Ésrêëo
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

Eq.8
As can be seen in Eq.8, the derivative of the RD-generating matrix on four main

concepts of RD defines RD. RD described in Eq.8 should be equivalent to RD in
Eq.6. Therefore:
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 < 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒	
 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿	
 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 > .

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡Ésrêëo
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡ríìo r

=

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑠𝑠Ñrsro
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑠𝑠Ñrsro
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑠𝑠Ñrsro
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑠𝑠Ñrsro
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑙𝑙§ñr´∞´rí
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑙𝑙§ñr´∞´rí
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑙𝑙§ñr´∞´rí
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑙𝑙§ñr´∞´rí
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕 < 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 >
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑒𝑒Ésrêëo
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕 < 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 >
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑒𝑒Ésrêëo
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕 < 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝐴𝐴𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 >
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑒𝑒Ésrêëo
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕 < 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 >
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑒𝑒Ésrêëo
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

Eq.9
By differentiating from the left matrix, Eq.8 will be obtained according to the

Ehsan Mousavi Khaneghah, et al.

13

	
 	

	
 	

independent variable of time.
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑡𝑡•srêëo

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
+ 	
 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙	
 𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

+
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕	
 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
*𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡	
 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙*

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑡𝑡ríìo
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

=

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑒𝑒𝑒𝑒𝑠𝑠Ñrsro
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑠𝑠Ñrsro
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑠𝑠Ñrsro
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠Ñrsro
𝜕𝜕𝜕𝜕𝜕𝜕c𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑙𝑙§ñr´∞´rí
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑙𝑙§ñr´∞´rí
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑙𝑙§ñr´∞´rí
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑙𝑙§ñr´∞´rí
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕 < 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 >
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑒𝑒Vsrêëo
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕 < 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 >
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑒𝑒Ésrêëo
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕 < 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 >
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑒𝑒Ésrêëo
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕 < 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 >
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑒𝑒ÉSrêëo
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

Eq.10
By solving Eq.10, it can be concluded that to consider time limitations associated

with RNS and converting RI from a time-dependent function into a time-dependent
function, it should be able to take into account ≥Ço™êomr¥ôò®©ö

≥r´no
, ≥Ço™êomrò¢µö

≥r´no
,

≥õúlùsúûüò†°†ò¢
≥ëomlêëño,úlñsr´l•

, and ≥õúlùsúûüò†°†ò¢
≥r´no

.
Based on Eq.4 and Fig.1, RD can be used in distributed Exascale systems if it

can consider the four mentioned variables. Eq.4 emphasizes that RD can be used in
distributed Exascale systems when:

A) During RD process, RD gets information about RI changes in some way. In
traditional computing systems, an RI is created at the moment of calling and starting
RD operation, based on three concepts of request and time and location limitations
and the main assumption of RD is not changing the created RI during RD process.
However, in distributed Exascale computing systems, RI may change during RD
process due to the occurrence of a dynamic and interactive nature of resource
requesting process or any other process that somehow influences it. From the 4
mentioned variables, ≥Ço™êomrò¢µö

≥r´no
 and ≥õúlùsúû∂ò†°†ò¢

≥ëomlêëño,úlñsr´l•
 will be used to convert RI from a

time-independent variable into a time-dependent variable.
B) RD somehow gets information on RNS changes during RD process.

Regardless of the space for defining RNS variable and the complexities of defining
RNS space, as well as the pattern of defining RNS space, it can be suggested that
this space was created to define the request nature. In traditional computing
systems, the nature of the request that activates RD does not change during running
RD activities. However, in distributed Exascale systems, the occurrence of a dynamic
and interactive nature may lead to a change in request nature. Among the four
mentioned variables, ≥Ço™êomr¥ôò®©ö

≥r´no
 and ≥õúlùsúûüò†°†ò¢

≥r´no
 will be used to get information on

RNS variable during RD process. Therefore, RD can be used in distributed Exascale
systems if conditions (a) to (c) are met.

Azerbaijan Journal of High Performance Computing, 1(1), 2018

14

	
 	

	
 	

A) Variable ≥Ço™êomr¥ôò®©ö
≥r´no

 means that RD should be able to consider changes in
the request nature within time. This variable should be able to provide RD with the
capability of considering RNA changes during RD. Regardless of the pattern of RNS
space definition, the most important reason for creating this space is to define the
request nature. As a result, ≥Ço™êomr¥ôò®©ö

≥r´no
 tries to describe changes in the request

nature or RNS over time. If RD wants to measure ≥Ço™êomr¥ôò®©ö
≥r´no

, it must be able to gets
information on the state of request changes during RD based on a mechanism. The
nature of ≥Ço™êom1¥ôò®©ö

≥r´no
 is of partial derivative. Hence, in the ideal state, it should be

calculated at any moment of RD. On the other hand, RNS changes when the process
activating RD creates a dynamic and interactive nature in its interactions with other
elements of global activity. Although the dynamic and interactive nature and its
occurrence are such that cannot be accurately predicted, but given that the
operations running in the computing systems take advantage of replication model,
decisions need to be made on the time of partial derivative calculation in order to
examine whether RNS is related to the request that has led to global activity or not.

RD uses Eq.11 to decide on RNS change.

∀𝑖𝑖, 𝑗𝑗 ∈ 𝑅𝑅𝑅𝑅𝑛𝑛k´no ∷
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑡𝑡•srêëo

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
	
 𝑖𝑖, 𝛽𝛽 ≠

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑡𝑡•srêëo
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

	
 𝑗𝑗, 𝛽𝛽 => 𝑅𝑅𝑅𝑅	
 𝑖𝑖𝑖𝑖	
 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

Eq.11
Eq.11 states that if the value of ≥Ço™êomr¥ôò®©ö

≥r´no
 of β process changes in i and j

moments, then, RD must refer again to the process activating RD to discover a
resource by using a new RNS, in the event of a change in RNS. Calculating
≥Ço™êomr¥ôò®©ö

≥r´no
 means RD manger should be able to obtain information on the request

nature by using data structure of the operating system.
B) ≥õúlùsúûüò†°†ò¢

≥r´no
 means that RD should be able to consider the process state

changes in the global activity of the time ratio. Otherwise, any other changes in the
functional and behavioral nature of the process RD must be answered by a local
operating system. RD uses ≥õúlùsúûüò†°†ò¢

≥r´no
 to calculate the relative time estimate in

order to calculate the variable mentioned in (A). ≥õúlùsúûüò†°†ò¢
≥r´no

 is a partial derivative
and its interpretation implies that at what times the process role in the global activity
will change. Typically, when the process role in the global activity changes, a
dynamic and interactive nature has occurred. The occurrence of a dynamic and
interactive nature can lead to a change in the request nature; as a result,
≥Ço™êomr¥ôò®©ö

≥r´no
 have to be calculated so that decisions can be made on RNS changes

in the system. Using the concept of the computing activity repeatability, the history of
running the activity, the model governing the global activity, and calculating
≥õúlùsúûüò†°†ò¢

≥r´no
, RD should be able to make decisions on times when calculating the

variable is following the model suggested in Eq.12.

Ehsan Mousavi Khaneghah, et al.

15

	
 	

	
 	

∀𝑖𝑖, 𝑗𝑗	
 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅	
 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ∷
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑙𝑙§ñr´∞´rí

𝜕𝜕𝜕𝜕𝜕𝜕𝑚𝑚𝑒𝑒
𝑖𝑖 ≠

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑙𝑙Oñr´∞´rí
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝑗𝑗

Eq.12
Eq.12 implies that the process state causing the activation of RD, must be

different at two different moments of i and j. Differing states of the process mentioned
in i and j means that the interactions between processes forming the global activity
may lead to a dynamic and interactive nature, and consequently, may change RNS.
After reaching the stable state, the frequency of calculating ≥õúlùsúûüò†°†ò¢

≥r´no
 can be

considered as the calculating times of the variable in (A).
C) ≥Ço™êomrò¢µö

≥r´no
 means calculating changes in request type relative to time

changes. RI variable indicates the concepts of request and time and location
limitations. Calculating ≥Ço™êomrò¢µö

≥r´no
	
 implies that whether RI has changed or not. If

≥Ço™êomrò¢µö
≥r´no

 changes, RD will interpret it as a change in one of the constituent

elements of RI, mostly request change. Like Eq.11, RD can calculate ≥Ço™êomrò¢µö
≥r´no

	
 at i
and j, and if there is a change in the variable, it will return to the process activating
RD to receive the new RI state. As stated in (A), since ≥Ço™êomrò¢µö

≥r´no
 is a partial

derivative variable, as a result, one of the main challenges of ≥Ço™êomrº¢µö
≥r´no

 is the time
and frequency of calculating this variable.

≥õúlùsúûüò†°†ò¢
≥ëomlêëño,úlñsr´l•

 indicates of the frequency of changes in the process activating
global activity in relation to the resource and location limitations governing the global
activity. As discussed about variable (b), the process activating RD, will change due
to interactions with other elements of global activity, which can lead to a dynamic
and interactive nature, and consequently, RI change. Changes in location limitations
of the global activity and resources in the global activity will change the RI state of
the process, thus, this change should be considered in relation to the global activity
state. As stated in (B), using the concept of history, the governing model of the
global activity, as well as the frequency of global activity changes, RD decides on
times to calculate this variable. The frequency obtained for this variable can be
regarded as the frequency of calculating the variable shown in (C).

5. Conclusion
RD can be used in distributed Exascale systems when: (a) it can analyze the

functional and behavioral state of the process in the global activity. This means that
RD should not consider the computing process as an abstract element, rather,
should be able to consider it as part of a global activity. (b) It has mechanisms and
methods to analyze changes in the process request nature during RD process. This
implies that it should either be directly in connection with the process requesting and
activating RD or can analyze the effects of other elements that change the request
nature. It should also be able to get information based on the mechanism of

Azerbaijan Journal of High Performance Computing, 1(1), 2018

16

	
 	

	
 	

checking the process behavior in relation to the frequency of request nature
changes. It means having information on the requests’ nature and their changing
time. (c) It has mechanisms and methods for analyzing the requests’ type. Because
of this, RD should have a pattern for classifying resources as well as answerable
resources and make decisions on changing the request type based on this pattern.
To do such, RD should either be directly in connection with the process requesting
and activating RD or can make decisions on changing the request type by examining
the impacts of factors affecting the process. It should also be able to decide on the
frequency of changing the process request type by time check of the process.

Reference
1. Qureshi, M. B., Dehnavi, M. M., Min-Allah, N., Qureshi, M. S., Hussain, H.,

Rentifis, I., & Zomaya, A. Y. (2014). Survey on grid resource allocation mechanisms.
Journal of Grid Computing, 12(2), 399-441.

2. Black, B., Roersma, J. S., Boelens, J., Dunbar, N., Lange, S., & Swanson, W.
(2014). U.S. Patent No. 8,856,329. Washington, DC: U.S. Patent and Trademark
Office.

3. Souri, A., & Navimipour, N. J. (2014). Behavioral modeling and formal
verification of a resource discovery approach in Grid computing. Expert Systems with
Applications, 41(8), 3831-3849.

4. Samimi, P., Teimouri, Y., & Mukhtar, M. (2016). A combinatorial double
auction resource allocation model in cloud computing. Information Sciences, 357,
201-216.

5. Messina, F., Pappalardo, G., Rosaci, D., Santoro, C., & Sarné, G. M. (2013).
A trust-based approach for a competitive cloud/grid computing scenario. In
Intelligent Distributed Computing VI (pp. 129-138). Springer, Berlin, Heidelberg.

6. Zhong, H., Tao, K., & Zhang, X. (2010, July). An approach to optimized
resource scheduling algorithm for open-source cloud systems. In ChinaGrid
Conference (ChinaGrid), 2010 Fifth Annual (pp. 124-129). IEEE.

7. Banerjee, S., & Hecker, J. P. (2017). A Multi-agent system approach to load-
balancing and resource allocation for distributed computing. In First Complex
Systems Digital Campus World E-Conference 2015 (pp. 41-54). Springer, Cham.

8. Mahmud, R., Kotagiri, R., & Buyya, R. (2018). Fog computing: A taxonomy,
survey and future directions. In Internet of everything (pp. 103-130). Springer,
Singapore.

9. Navimipour, N. J., & Milani, F. S. (2015). A comprehensive study of the
resource discovery techniques in peer-to-peer networks. Peer-to-Peer Networking
and Applications, 8(3), 474-492.

10. Wale, N., Sim, D. G., Jones, M. J., Salathe, R., Day, T., & Read, A. F. (2017).
Resource limitation prevents the emergence of drug resistance by intensifying within-
host competition. Proceedings of the National Academy of Sciences, 114(52), 13774-
13779.

11. Wang, D., He, D., Wang, P., & Chu, C. H. (2015). Anonymous two-factor
authentication in distributed systems: certain goals are beyond attainment. IEEE

Reference
[1].	 Qureshi, M. B., Dehnavi, M. M., Min-Allah, N., Qureshi, M. S., Hussain, H.,

Rentifis, I., & Zomaya, A. Y. (2014). Survey on grid resource allocation mechanisms.
Journal of Grid Computing, 12(2), 399-441.

[2].	 Black, B., Roersma, J. S., Boelens, J., Dunbar, N., Lange, S., & Swanson, W.
(2014). U.S. Patent No. 8,856,329. Washington, DC: U.S. Patent and Trademark Office.

[3].	 Souri, A., & Navimipour, N. J. (2014). Behavioral modeling and formal verifica-
tion of a resource discovery approach in Grid computing. Expert Systems with Appli-
cations, 41(8), 3831-3849.

[4].	 Samimi, P., Teimouri, Y., & Mukhtar, M. (2016). A combinatorial double auction
resource allocation model in cloud computing. Information Sciences, 357, 201-216.

[5].	 Messina, F., Pappalardo, G., Rosaci, D., Santoro, C., & Sarné, G. M. (2013). A
trust-based approach for a competitive cloud/grid computing scenario. In Intelligent
Distributed Computing VI (pp. 129-138). Springer, Berlin, Heidelberg.

[6].	 Zhong, H., Tao, K., & Zhang, X. (2010, July). An approach to optimized re-
source scheduling algorithm for open-source cloud systems. In ChinaGrid Conference
(ChinaGrid), 2010 Fifth Annual (pp. 124-129). IEEE.

[7].	 Banerjee, S., & Hecker, J. P. (2017). A Multi-agent system approach to
load-balancing and resource allocation for distributed computing. In First Complex
Systems Digital Campus World E-Conference 2015 (pp. 41-54). Springer, Cham.

[8].	 Mahmud, R., Kotagiri, R., & Buyya, R. (2018). Fog computing: A taxonomy, sur-
vey and future directions. In Internet of everything (pp. 103-130). Springer, Singapore.

[9].	 Navimipour, N. J., & Milani, F. S. (2015). A comprehensive study of the re-
source discovery techniques in peer-to-peer networks. Peer-to-Peer Networking and
Applications, 8(3), 474-492.

[10].	Wale, N., Sim, D. G., Jones, M. J., Salathe, R., Day, T., & Read, A. F. (2017).
Resource limitation prevents the emergence of drug resistance by intensifying with-
in-host competition. Proceedings of the National Academy of Sciences, 114(52),
13774-13779.

[11].	Wang, D., He, D., Wang, P., & Chu, C. H. (2015). Anonymous two-factor au-
thentication in distributed systems: certain goals are beyond attainment. IEEE Trans-
actions on Dependable and Secure Computing, (1), 1-1.

[12].	Wu, J. (2017). Distributed system design. CRC press.
[13].	Balakrishnan, B., Kothamasu, V. R., & Woods, G. (2015). U.S. Patent No.

9,032,369. Washington, DC: U.S. Patent and Trademark Office.

Ehsan Mousavi Khaneghah, et al.

17

[14].	Li, K., Tang, X., Veeravalli, B., & Li, K. (2015). Scheduling precedence con-
strained stochastic tasks on heterogeneous cluster systems. IEEE Transactions on
computers, 64(1), 191-204.

[15].	Bhalachandra, S., Porterfield, A., & Prins, J. F. (2015, May). Using dynamic
duty cycle modulation to improve energy efficiency in high performance computing.
In Parallel and Distributed Processing Symposium Workshop (IPDPSW), 2015 IEEE
International (pp. 911-918). IEEE.

[16].	Khaneghah, E. M., ShowkatAbad, A. R., & Ghahroodi, R. N. (2018, February).
Challenges of Process Migration to Support Distributed Exascale Computing Environ-
ment. In Proceedings of the 2018 7th International Conference on Software and Com-
puter Applications (pp. 20-24). ACM.

[17].	Babuji, Y. N., Chard, K., Gerow, A., & Duede, E. (2016, October). A secure
data enclave and analytics platform for social scientists. In e-Science (e-Science),
2016 IEEE 12th International Conference on (pp. 337-342). IEEE.

[18].	Totu, L. C., Leth, J., & Wisniewski, R. (2013, June). Control for large scale de-
mand response of thermostatic loads. In ACC (pp. 5023-5028).

[19].	Sadeghi, A. R., Wachsmann, C., & Waidner, M. (2015, June). Security and
privacy challenges in industrial internet of things. In Design Automation Conference
(DAC), 2015 52nd ACM/EDAC/IEEE (pp. 1-6). IEEE.

[20].	Kilian, F., & Luik, O. (2013). U.S. Patent No. 8,533,717. Washington, DC: U.S.
Patent and Trademark Office.

[21].	Xavier, M. G., Neves, M. V., Rossi, F. D., Ferreto, T. C., Lange, T., & De Rose, C.
A. (2013, February). Performance evaluation of container-based virtualization for high
performance computing environments. In Parallel, Distributed and Network-Based Pro-
cessing (PDP), 2013 21st Euromicro International Conference on (pp. 233-240). IEEE.

[22].	Sakadasariya Achyut, R. Survey of Resource and Job Management for Load
Bal-ancing In Grid Computing. Of the IJISME ISSN, 2319-6386.

[23].	Khaneghah, E. M. (2017). U.S. Patent No. 9,613,312. Washington, DC: U.S.
Patent and Trademark Office.

[24].	Mousavi Khaneghah, E., Noorabad Ghahroodi, R., & Reyhani ShowkatAbad, A.
(2018). A mathematical multi-dimensional mechanism to improve process migration ef-
ficiency in peer-to-peer computing environments. Cogent Engineering, 5(1), 1458434.

[25].	Reed, D. A., & Dongarra, J. (2015). Exascale computing and big data. Com-
munications of the ACM, 58(7), 56-68.

[26].	Wang, K., Kulkarni, A., Lang, M., Arnold, D., & Raicu, I. (2016). Exploring the
design tradeoffs for extreme-scale high-performance computing system software.
IEEE Transactions on Parallel and Distributed Systems, 27(4), 1070-1084.

[27].	Wang, K., Zhou, X., Li, T., Zhao, D., Lang, M., & Raicu, I. (2014, October). Op-
timizing load balancing and data-locality with data-aware scheduling. In Big Data (Big
Data), 2014 IEEE International Conference on (pp. 119-128). IEEE.

[28].	Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., &
Roskies, R. (2014). XSEDE: accelerating scientific discovery. Computing in Science &
Engineering, 16(5), 62-74.

[29].	Zhu, X., Yang, L. T., Jiang, H., Thulasiraman, P., & Di Martino, B. (2018). Opti-
mization in distributed information systems.

Azerbaijan Journal of High Performance Computing, 1(1), 2018

18

[30].	Horelik, N. E. (2015). Domain decomposition for Monte Carlo particle transport
simulations of nuclear reactors (Doctoral dissertation, Massachusetts Institute of Tech-
nology).

[31].	Saurav, S. K., Raghu, H. V., & Bapu, S. B. (2017, September). Self-adaptive
power management framework for high performance computing. In Advances in Com-
puting, Communications and Informatics (ICACCI), 2017 International Conference on
(pp. 1913-1918). IEEE.

[32].	Kominar, J. L., & Adams, N. P. (2017). U.S. Patent Application No. 15/152,926.
[33].	Orozco, D., Garcia, E., Pavel, R., Khan, R., & Gao, G. (2011, October). TIDe-

Flow: The time iterated dependency flow execution model. In 2011 First Workshop on
Data-Flow Execution Models for Extreme Scale Computing (pp. 1-9). IEEE.

[34].	Gong, Q., Zhang, L., & Ding, L. (2017). U.S. Patent No. 9,559,898. Washing-
ton, DC: U.S. Patent and Trademark Office.

[35].	Sharifi, M., Mirtaheri, S. L., Khaneghah, E. M., & Khaneghah, Z. M. (2011).
Process Management Reviewed.

[36].	Navimipour, N. J., Rahmani, A. M., Navin, A. H., & Hosseinzadeh, M. (2014).
Resource discovery mechanisms in grid systems: A survey. Journal of Network and
Computer Applications, 41, 389-410

[37].	Zarrin, J., Aguiar, R. L., & Barraca, J. P. (2016). ElCore: Dynamic elastic re-
source management and discovery for future large-scale manycore enabled distribut-
ed systems. Microprocessors and Microsystems, 46, 221-239.

[38].	Sambasivan, R. R., Zheng, A. X., De Rosa, M., Krevat, E., Whitman, S., Strouck-
en, M., & Ganger, G. R. (2011, March). Diagnosing Performance Changes by Compar-
ing Request Flows. In NSDI (Vol. 5, pp. 1-1).

[39].	Gopal, S. V., Rao, N. S., & Naik, S. L. (2016, March). Dynamic sharing of files
from disconnected nodes in peer to peer systems. In Electrical, Electronics, and Opti-
mization Techniques (ICEEOT), International Conference on (pp. 767-770). IEEE.

[40].	Rodrigues, R., & Druschel, P. (2010). Peer-to-peer systems. Communications
of the ACM, 53(10), 72-82.

[41].	Selvaraj, C., & Anand, S. (2012). A survey on security issues of reputation man-
agement systems for peer-to-peer networks. Computer Science Review, 6(4), 145-160.

[42].	Bandara, H. D., & Jayasumana, A. P. (2013). Collaborative applications over
peer-to-peer systems–challenges and solutions. Peer-to-Peer Networking and Appli-
cations, 6(3), 257-276.

[43].	Asghari, S., & Navimipour, N. J. (2018). Resource discovery in the peer to peer
networks using an inverted ant colony optimization algorithm. Peer-to-Peer Networking
and Applications, 1-14.

[44].	Palmieri, F. (2017). Bayesian resource discovery in infrastructure-less net-
works. Information Sciences, 376, 95-109.

[45].	Jiang, C., Gao, L., Duan, L., & Huang, J. (2018). Scalable mobile crowdsens-
ing via peer-to-peer data sharing. IEEE Transactions on Mobile Computing, 17(4), 898-
912.

[46].	Arab, M. N., & Sharifi, M. (2014). A model for communication between re-
source discovery and load balancing units in computing environments. The Journal of
Supercomputing, 68(3), 1538-1555.

Ehsan Mousavi Khaneghah, et al.

19

[47].	Thomas, D., Baron, J., & Raymond, M. A. (2015). U.S. Patent Application No.
13/930,955.

[48].	Hussain, H., Malik, S. U. R., Hameed, A., Khan, S. U., Bickler, G., Min-Allah, N.,
& Kolodziej, J. (2013). A survey on resource allocation in high performance distributed
computing systems. Parallel Computing, 39(11), 709-736.

[49].	Yu, W., Liu, D., & Yu, N. (2013). Feeder control error and its application in
coordinate control of active distribution network [J]. Proceedings of the CSEE, 33(13),
108-115.

Submitted 01.02.2018
Accepted 02.05.2018

Azerbaijan Journal of High Performance Computing, 1(1), 2018

