
214

Applying Multiple Multidimensional Knapsack
Problem to Dynamic Load Balancing in
Distributed Exascale computing environment
Ulphat Bakhishoff
Department of General and Applied Mathematics, Azerbaijan State Oil and Industry
University, Baku, Azerbaijan, ulfat.baxıshov@asoiu.edu.az

*Correspondence:
Ulphat Bakhishoff,

Department of General
and Applied Mathematics,

Azerbaijan State Oil
and Industry University,
Baku, Azerbaijan, ulfat.
baxıshov@asoiu.edu.az

Abstract
Dynamic and Interactive nature of the processes in the Distributed
Exascale computing system requires the system to be able to
make Load Balancing in runtime. In this paper proposed applying
Multiple Multidimensional Knapsack Problem for overcome
imbalance at time of occurrence of the dynamic and interactive
event at Distributed Exascale computing environment.

Keywords: distributed exascale computing, load balancing,
dynamic and interactive event, multiple knapsack problem.

1. Introduction
Exascale computing systems are the type of distributed systems which can perform

at least one exaflop operation per second [1] in dynamic and interactive nature [2]. In
the dynamic and interactive nature, both processes requirements and resource attributes
are dynamically changeable [2]. In this case, it is impossible to map the workload of the
processes to the resources at design time. On the other hand, it can occur dynamic and
interactive events which can be handled only runtime. That’s why Load balancer of the
system have to be run continuously and should handle imbalances at runtime. In the
distributed system, each node has their operating system, and they manage their resources
themselves. However, in Exascale systems when dynamic and interactive events occurred,
it is possible the local machine cannot process some actions. This results in an imbalance
in system, and these actions are marked as global activities [3, 4]. The load balancer
of the system should assign these activities to another machine can do remain part. In
centralized systems, central machine collects information from other machines and makes
load balancing [5, 6]. However, in such systems, there is an excellent dependence from a
central machine. Considering dynamicity of resources in Exascale systems, if resources of
the central machine are changed or central machine is stopped completely, then it needed
to get information about the current state of the system, creating new central machine and
migrating central processes to the new central machine.

However, in P2P systems, there is no dependence from any central machine. In this
case, each machine should be informed enough about other machines for deciding the
new configurations.

2. Related works
In [7], the systems state vector is used to determine if the system is in a stable state or

not. If the current state vector of the system is different from the stable state vector, HPCS

Azerbaijan Journal of High Performance Computing, Vol 1, Issue 2, 2018, pp. 214-218
https://doi.org/10.32010/26166127.2018.1.2.214.218

215

manager tries to bring the system to the old known stable state or waits for the system to
reach to the new stable state. It is activated while the length or angle difference occurred
between the current state vector and the known stable state vector of the system.

In [9], proposed load balancing model based on supply and demand model for four types
of resources – File, Memory, I/O, and CPU. For this model, each machine independently tries
solving imbalance, working in supply or demand mode. However, deciding on choosing the
mode, it needed to gain information about all active nodes [9] in the system.

In [2], machines in the system, are negative and positive loaded where positively loaded
machines are machines which getting loaded for this model, the state of each machine
evaluated from perspectives of other machines. The positively loaded machines use status
of other machines from the perspective of itself for distributing extra loads. It supplies
opportunity making load balancing in each machine in a fully distributed system without
being dependent any central machine. However, this model requires calculated load
value. Considering each process may require multiple types of resource and additionally
in Exascale system resource attributes are dynamically changeable, it needed to make
a rule for calculating the overall load of a system based on a load of each type of the
resource of the system.

3. The load balancing model
Let us consider that there has 𝑁𝑁 machine in the distributed system. Each machine

in the distributed system has 𝐶𝐶# capability where 𝑖𝑖 = 1,𝑁𝑁(((((is the index of the machine.
On the other hand, consider that there 𝑀𝑀 process in the queue and each process has
𝑅𝑅+ requirement and 𝑃𝑃+ profit, where 𝑗𝑗 = 1,𝑀𝑀((((((is the index of the process. At this time
considered one-time-policy for processes, so, each process can be executed only one
time [2]. However, in dynamic load balancing techniques, it is possible reassignment
[8]. Taking into account that, for the paper the task is finalizing work in minimal time,
using maximally available resource [2], the profit of the process can be the execution
time (i.e., CPU call count) saving in respect of the maximal process execution time,
and it can be calculated as following:

𝑃𝑃+ = max
12324

𝑇𝑇3 − 𝑇𝑇+, 𝑗𝑗 = 1,𝑀𝑀(((((((1)

Here 𝑇𝑇3 is the execution time of 𝑘𝑘89 process. So, which process finishes earlier it is
more valuable.

Considering this the main task can be given as following:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚	𝑧𝑧 =@@𝑃𝑃+𝑋𝑋#+

4

+B1

C

#B1

 (2)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑡𝑡𝑡𝑡	@𝑅𝑅+𝑋𝑋#+ ≤ 𝐶𝐶#, 𝑖𝑖 = 1,𝑁𝑁(((((
4

+B1

 (3)

@𝑋𝑋#+ ≤ 1
C

#B1

, 𝑗𝑗 = 1,𝑀𝑀(((((((4)

𝑋𝑋#+ = K1, 𝑖𝑖𝑖𝑖	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝	𝑗𝑗	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑡𝑡𝑡𝑡	𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖𝑖𝑖	𝑖𝑖
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒	 	 		(5)	

Here 𝑧𝑧 is a gained total profit and 𝑋𝑋#+ is the process assignment configuration that
indicates which process assigned to which machine. The load balancer should solve
this process to assign processes to resources. The task is the Dynamic Programming
problem named 0-1 Multiple Knapsack Problem (0-1MKP) [9]. There are several
polynomial time solutions [10, 11] for this problem. Considering that process
requirement may be not only for one resource but also for multiple resources, the
parameter 𝑅𝑅 should be defined as multidimensional. In this case, the problem become
0-1 Multiple Multidimensional Knapsack Problem (0-1MMKP) [12].

This model applies to traditional systems. However, in Exascale systems, the load
balancer should handle dynamic and interactive events too [2]. That's why it should be
activated based on dynamic and interactive events.

 3.1. Handling unintentional communications of processes with the system.
The processes defined here, are not processes, which can be executed in the local

machine in given response time. So, in the paper, it's looked at the processes which
cannot be executed in the local machine within given response time [3]. In this case
occurs global activity [2, 3]. Therefore, the processes mentioned above are the total
collections of global activities. In this case, the capability of each machine for global
activities is dependent on the total capability of the machine and total requirements of
internal processes.

𝐶𝐶# = 𝐶𝐶#8X8YZ − @ 	𝑅𝑅+
+∈#\8]^\YZ

, 𝑖𝑖 = 1,𝑁𝑁((((((6)

So, the capabilities of the machines are dynamically changing. On the other hand,
in Exascale systems, process requirements and resource attributes are dynamically
changeable [7]. For this reason, the parameters 𝐶𝐶#, 𝐶𝐶#8X8YZ, and 𝑅𝑅+ from the model which
described above, should be defined as 𝐶𝐶#(𝑡𝑡), 𝐶𝐶#8X8YZ(𝑡𝑡), and 𝑅𝑅+(𝑡𝑡) properly. If the current
effective resources [7] are not enough to finish the task in the given time limit, new
resources have to be discovered [13]. It means that, after resource discovery, the
resource count also changed.

For this reason, the machine count parameter 𝑁𝑁 should also be defined a time-
dependent, 𝑁𝑁(𝑡𝑡). Here 𝑡𝑡 denotes the current time moment. The load balancer should
be activated at this time moment and should calculate current capabilities of the
machine with following instead of equation 6.

𝐶𝐶#(𝑡𝑡) = 𝐶𝐶#8X8YZ(𝑡𝑡) − @ 	𝑅𝑅+(𝑡𝑡)
+∈#\8]^\YZ

, 𝑖𝑖 = 1,𝑁𝑁(𝑡𝑡)((((((((((7)

In a distributed system each machine can calculate its current capability with
equation 7, and share results with others.

 3.2. Handling unintentional forks or communications between processes
At the same time, considering a process being able to fork new processor able to

communicate with another process in Exascale systems [14], the process count
parameter 𝑀𝑀 which described the above model, should also be defined as dependent
from current time moment – 𝑀𝑀(𝑡𝑡). The new processes have their execution times.
Considering this at equation 1:

𝑃𝑃+(𝑡𝑡) = max
12324(8)

𝑇𝑇3 − 𝑇𝑇+, 𝑗𝑗 = 1,𝑀𝑀(𝑡𝑡)((((((((((8)

3.3. 0-1Multiple knapsack model for Exascale system.
Considering these conditions, the model described above, turn to the following

form.

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚	𝑧𝑧(𝑡𝑡) = @ @ 𝑃𝑃+(𝑡𝑡)𝑋𝑋#+

4(8)

+B1

C(8)

#B1

 (9)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑡𝑡𝑡𝑡	 @ 𝑅𝑅+(𝑡𝑡)𝑋𝑋#+ ≤ 𝐶𝐶#(𝑡𝑡), 𝑖𝑖 = 1,𝑁𝑁(𝑡𝑡)(((((((((
4(8)

+B1

 (10)

@𝑋𝑋#+ ≤ 1
C(8)

#B1

, 𝑗𝑗 = 1,𝑀𝑀(𝑡𝑡)((((((((((11)

𝑋𝑋#+ = K1, 𝑖𝑖𝑖𝑖	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝	𝑗𝑗	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑡𝑡𝑡𝑡	𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖𝑖𝑖	𝑖𝑖
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒	 	 (12)	

In this model, the parameters 𝑁𝑁(𝑡𝑡),𝑀𝑀(𝑡𝑡), 𝑃𝑃+(𝑡𝑡), 𝑅𝑅+(𝑡𝑡), 𝐶𝐶#(𝑡𝑡), 𝑧𝑧(𝑡𝑡) are time-dependent,
but there is not any functional dependency between these parameters and current time
moment. These parameters denote values at observation time.

Azerbaijan Journal of High Performance Computing, 1(2), 2018

216

3. The load balancing model
Let us consider that there has 𝑁𝑁 machine in the distributed system. Each machine

in the distributed system has 𝐶𝐶# capability where 𝑖𝑖 = 1,𝑁𝑁(((((is the index of the machine.
On the other hand, consider that there 𝑀𝑀 process in the queue and each process has
𝑅𝑅+ requirement and 𝑃𝑃+ profit, where 𝑗𝑗 = 1,𝑀𝑀((((((is the index of the process. At this time
considered one-time-policy for processes, so, each process can be executed only one
time [2]. However, in dynamic load balancing techniques, it is possible reassignment
[8]. Taking into account that, for the paper the task is finalizing work in minimal time,
using maximally available resource [2], the profit of the process can be the execution
time (i.e., CPU call count) saving in respect of the maximal process execution time,
and it can be calculated as following:

𝑃𝑃+ = max
12324

𝑇𝑇3 − 𝑇𝑇+, 𝑗𝑗 = 1,𝑀𝑀(((((((1)

Here 𝑇𝑇3 is the execution time of 𝑘𝑘89 process. So, which process finishes earlier it is
more valuable.

Considering this the main task can be given as following:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚	𝑧𝑧 =@@𝑃𝑃+𝑋𝑋#+

4

+B1

C

#B1

 (2)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑡𝑡𝑡𝑡	@𝑅𝑅+𝑋𝑋#+ ≤ 𝐶𝐶#, 𝑖𝑖 = 1,𝑁𝑁(((((
4

+B1

 (3)

@𝑋𝑋#+ ≤ 1
C

#B1

, 𝑗𝑗 = 1,𝑀𝑀(((((((4)

𝑋𝑋#+ = K1, 𝑖𝑖𝑖𝑖	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝	𝑗𝑗	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑡𝑡𝑡𝑡	𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖𝑖𝑖	𝑖𝑖
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒	 	 		(5)	

Here 𝑧𝑧 is a gained total profit and 𝑋𝑋#+ is the process assignment configuration that
indicates which process assigned to which machine. The load balancer should solve
this process to assign processes to resources. The task is the Dynamic Programming
problem named 0-1 Multiple Knapsack Problem (0-1MKP) [9]. There are several
polynomial time solutions [10, 11] for this problem. Considering that process
requirement may be not only for one resource but also for multiple resources, the
parameter 𝑅𝑅 should be defined as multidimensional. In this case, the problem become
0-1 Multiple Multidimensional Knapsack Problem (0-1MMKP) [12].

This model applies to traditional systems. However, in Exascale systems, the load
balancer should handle dynamic and interactive events too [2]. That's why it should be
activated based on dynamic and interactive events.

 3.1. Handling unintentional communications of processes with the system.
The processes defined here, are not processes, which can be executed in the local

machine in given response time. So, in the paper, it's looked at the processes which
cannot be executed in the local machine within given response time [3]. In this case
occurs global activity [2, 3]. Therefore, the processes mentioned above are the total
collections of global activities. In this case, the capability of each machine for global
activities is dependent on the total capability of the machine and total requirements of
internal processes.

𝐶𝐶# = 𝐶𝐶#8X8YZ − @ 	𝑅𝑅+
+∈#\8]^\YZ

, 𝑖𝑖 = 1,𝑁𝑁((((((6)

So, the capabilities of the machines are dynamically changing. On the other hand,
in Exascale systems, process requirements and resource attributes are dynamically
changeable [7]. For this reason, the parameters 𝐶𝐶#, 𝐶𝐶#8X8YZ, and 𝑅𝑅+ from the model which
described above, should be defined as 𝐶𝐶#(𝑡𝑡), 𝐶𝐶#8X8YZ(𝑡𝑡), and 𝑅𝑅+(𝑡𝑡) properly. If the current
effective resources [7] are not enough to finish the task in the given time limit, new
resources have to be discovered [13]. It means that, after resource discovery, the
resource count also changed.

For this reason, the machine count parameter 𝑁𝑁 should also be defined a time-
dependent, 𝑁𝑁(𝑡𝑡). Here 𝑡𝑡 denotes the current time moment. The load balancer should
be activated at this time moment and should calculate current capabilities of the
machine with following instead of equation 6.

𝐶𝐶#(𝑡𝑡) = 𝐶𝐶#8X8YZ(𝑡𝑡) − @ 	𝑅𝑅+(𝑡𝑡)
+∈#\8]^\YZ

, 𝑖𝑖 = 1,𝑁𝑁(𝑡𝑡)((((((((((7)

In a distributed system each machine can calculate its current capability with
equation 7, and share results with others.

 3.2. Handling unintentional forks or communications between processes
At the same time, considering a process being able to fork new processor able to

communicate with another process in Exascale systems [14], the process count
parameter 𝑀𝑀 which described the above model, should also be defined as dependent
from current time moment – 𝑀𝑀(𝑡𝑡). The new processes have their execution times.
Considering this at equation 1:

𝑃𝑃+(𝑡𝑡) = max
12324(8)

𝑇𝑇3 − 𝑇𝑇+, 𝑗𝑗 = 1,𝑀𝑀(𝑡𝑡)((((((((((8)

3.3. 0-1Multiple knapsack model for Exascale system.
Considering these conditions, the model described above, turn to the following

form.

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚	𝑧𝑧(𝑡𝑡) = @ @ 𝑃𝑃+(𝑡𝑡)𝑋𝑋#+

4(8)

+B1

C(8)

#B1

 (9)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑡𝑡𝑡𝑡	 @ 𝑅𝑅+(𝑡𝑡)𝑋𝑋#+ ≤ 𝐶𝐶#(𝑡𝑡), 𝑖𝑖 = 1,𝑁𝑁(𝑡𝑡)(((((((((
4(8)

+B1

 (10)

@𝑋𝑋#+ ≤ 1
C(8)

#B1

, 𝑗𝑗 = 1,𝑀𝑀(𝑡𝑡)((((((((((11)

𝑋𝑋#+ = K1, 𝑖𝑖𝑖𝑖	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝	𝑗𝑗	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑡𝑡𝑡𝑡	𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖𝑖𝑖	𝑖𝑖
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒	 	 (12)	

In this model, the parameters 𝑁𝑁(𝑡𝑡),𝑀𝑀(𝑡𝑡), 𝑃𝑃+(𝑡𝑡), 𝑅𝑅+(𝑡𝑡), 𝐶𝐶#(𝑡𝑡), 𝑧𝑧(𝑡𝑡) are time-dependent,
but there is not any functional dependency between these parameters and current time
moment. These parameters denote values at observation time.

Ulphat Bakhishoff

217

Conclusion
The proposed model is applicable with state of the system at time t. This time moment

is the moment of occurrence of the dynamic and interactive event of the Exascale system.
This model solves challenge described in [4]. In distributed Exascale computing system
equation 6 and equation 7 can be calculated in each machine and shared with others.
However, equation 9 should be calculated in each loaded machine and should result from
the same configuration X. The main problem is collecting information about all powerful
machines and all global activities which occurred in the machine which isn’t directly
connected with the current machine. If the value of each calculated X configurations is
same, it means all global activities until time moment t are handled, in other words, all
dynamic and interactive events of Distributed Exascale system occurred until time moment
t are handled. The ratio of the count of matching values of all configurations to the count of
elements of the configuration matrix denotes success rate of the load balancing.

 
References
[1] Shalf, J., Dosanjh, S., & Morrison, J. (2010, June). Exascale computing

technology challenges. In International Conference on High Performance Computing
for Computational Science (pp. 1-25). Springer, Berlin, Heidelberg.

[2] Mirtaheri, S. L., & Grandinetti, L. (2017). Dynamic load balancing in distributed
exascale computing systems. Cluster Computing, 20(4), 3677-3689.

[3] Sharma, S., Singh, S., & Sharma, M. (2008). Performance analysis of load
balancing algorithms. World Academy of Science, Engineering and Technology, 38(3),
269-272.

[4] Khaneghah, E. M., Mollasalehi, F., Aliev, A. R., Ismayilova, N., Bakhishoff, U.

3. The load balancing model
Let us consider that there has 𝑁𝑁 machine in the distributed system. Each machine

in the distributed system has 𝐶𝐶# capability where 𝑖𝑖 = 1,𝑁𝑁(((((is the index of the machine.
On the other hand, consider that there 𝑀𝑀 process in the queue and each process has
𝑅𝑅+ requirement and 𝑃𝑃+ profit, where 𝑗𝑗 = 1,𝑀𝑀((((((is the index of the process. At this time
considered one-time-policy for processes, so, each process can be executed only one
time [2]. However, in dynamic load balancing techniques, it is possible reassignment
[8]. Taking into account that, for the paper the task is finalizing work in minimal time,
using maximally available resource [2], the profit of the process can be the execution
time (i.e., CPU call count) saving in respect of the maximal process execution time,
and it can be calculated as following:

𝑃𝑃+ = max
12324

𝑇𝑇3 − 𝑇𝑇+, 𝑗𝑗 = 1,𝑀𝑀(((((((1)

Here 𝑇𝑇3 is the execution time of 𝑘𝑘89 process. So, which process finishes earlier it is
more valuable.

Considering this the main task can be given as following:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚	𝑧𝑧 =@@𝑃𝑃+𝑋𝑋#+

4

+B1

C

#B1

 (2)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑡𝑡𝑡𝑡	@𝑅𝑅+𝑋𝑋#+ ≤ 𝐶𝐶#, 𝑖𝑖 = 1,𝑁𝑁(((((
4

+B1

 (3)

@𝑋𝑋#+ ≤ 1
C

#B1

, 𝑗𝑗 = 1,𝑀𝑀(((((((4)

𝑋𝑋#+ = K1, 𝑖𝑖𝑖𝑖	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝	𝑗𝑗	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑡𝑡𝑡𝑡	𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖𝑖𝑖	𝑖𝑖
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒	 	 		(5)	

Here 𝑧𝑧 is a gained total profit and 𝑋𝑋#+ is the process assignment configuration that
indicates which process assigned to which machine. The load balancer should solve
this process to assign processes to resources. The task is the Dynamic Programming
problem named 0-1 Multiple Knapsack Problem (0-1MKP) [9]. There are several
polynomial time solutions [10, 11] for this problem. Considering that process
requirement may be not only for one resource but also for multiple resources, the
parameter 𝑅𝑅 should be defined as multidimensional. In this case, the problem become
0-1 Multiple Multidimensional Knapsack Problem (0-1MMKP) [12].

This model applies to traditional systems. However, in Exascale systems, the load
balancer should handle dynamic and interactive events too [2]. That's why it should be
activated based on dynamic and interactive events.

 3.1. Handling unintentional communications of processes with the system.
The processes defined here, are not processes, which can be executed in the local

machine in given response time. So, in the paper, it's looked at the processes which
cannot be executed in the local machine within given response time [3]. In this case
occurs global activity [2, 3]. Therefore, the processes mentioned above are the total
collections of global activities. In this case, the capability of each machine for global
activities is dependent on the total capability of the machine and total requirements of
internal processes.

𝐶𝐶# = 𝐶𝐶#8X8YZ − @ 	𝑅𝑅+
+∈#\8]^\YZ

, 𝑖𝑖 = 1,𝑁𝑁((((((6)

So, the capabilities of the machines are dynamically changing. On the other hand,
in Exascale systems, process requirements and resource attributes are dynamically
changeable [7]. For this reason, the parameters 𝐶𝐶#, 𝐶𝐶#8X8YZ, and 𝑅𝑅+ from the model which
described above, should be defined as 𝐶𝐶#(𝑡𝑡), 𝐶𝐶#8X8YZ(𝑡𝑡), and 𝑅𝑅+(𝑡𝑡) properly. If the current
effective resources [7] are not enough to finish the task in the given time limit, new
resources have to be discovered [13]. It means that, after resource discovery, the
resource count also changed.

For this reason, the machine count parameter 𝑁𝑁 should also be defined a time-
dependent, 𝑁𝑁(𝑡𝑡). Here 𝑡𝑡 denotes the current time moment. The load balancer should
be activated at this time moment and should calculate current capabilities of the
machine with following instead of equation 6.

𝐶𝐶#(𝑡𝑡) = 𝐶𝐶#8X8YZ(𝑡𝑡) − @ 	𝑅𝑅+(𝑡𝑡)
+∈#\8]^\YZ

, 𝑖𝑖 = 1,𝑁𝑁(𝑡𝑡)((((((((((7)

In a distributed system each machine can calculate its current capability with
equation 7, and share results with others.

 3.2. Handling unintentional forks or communications between processes
At the same time, considering a process being able to fork new processor able to

communicate with another process in Exascale systems [14], the process count
parameter 𝑀𝑀 which described the above model, should also be defined as dependent
from current time moment – 𝑀𝑀(𝑡𝑡). The new processes have their execution times.
Considering this at equation 1:

𝑃𝑃+(𝑡𝑡) = max
12324(8)

𝑇𝑇3 − 𝑇𝑇+, 𝑗𝑗 = 1,𝑀𝑀(𝑡𝑡)((((((((((8)

3.3. 0-1Multiple knapsack model for Exascale system.
Considering these conditions, the model described above, turn to the following

form.

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚	𝑧𝑧(𝑡𝑡) = @ @ 𝑃𝑃+(𝑡𝑡)𝑋𝑋#+

4(8)

+B1

C(8)

#B1

 (9)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑡𝑡𝑡𝑡	 @ 𝑅𝑅+(𝑡𝑡)𝑋𝑋#+ ≤ 𝐶𝐶#(𝑡𝑡), 𝑖𝑖 = 1,𝑁𝑁(𝑡𝑡)(((((((((
4(8)

+B1

 (10)

@𝑋𝑋#+ ≤ 1
C(8)

#B1

, 𝑗𝑗 = 1,𝑀𝑀(𝑡𝑡)((((((((((11)

𝑋𝑋#+ = K1, 𝑖𝑖𝑖𝑖	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝	𝑗𝑗	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑡𝑡𝑡𝑡	𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖𝑖𝑖	𝑖𝑖
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒	 	 (12)	

In this model, the parameters 𝑁𝑁(𝑡𝑡),𝑀𝑀(𝑡𝑡), 𝑃𝑃+(𝑡𝑡), 𝑅𝑅+(𝑡𝑡), 𝐶𝐶#(𝑡𝑡), 𝑧𝑧(𝑡𝑡) are time-dependent,
but there is not any functional dependency between these parameters and current time
moment. These parameters denote values at observation time.

Azerbaijan Journal of High Performance Computing, 1(2), 2018

218

(2018, July-August) Challenges of Load Balancing to Support Distributed Exascale
Computing Environment. In the 24th International Conference on Parallel and Distributed
Processing Techniques & Applications, Parallel and Distributed Processing + HPC
and Data Science (pp. 100-106), Las Vegas, Nevada.

[5] Sinha, P., & Zoltners, A. A. (1979). The multiple-choice knapsack
problem. Operations Research, 27(3), 503-515.

[6] Balachandar, S. R., & Kannan, K. (2008). A new polynomial time algorithm for
0–1 multiple knapsack problem based on dominant principles. Applied Mathematics
and Computation, 202(1), 71-77.

[7] Chekuri, C., & Khanna, S. (2005). A polynomial time approximation scheme for
the multiple knapsack problem. SIAM Journal on Computing, 35(3), 713-728.

[8] Raja Balachandar, S., & Kannan, K. (2011). A Heuristic Algorithm for Resource
Allocation/Reallocation Problem. Journal of Applied Mathematics, 2011.

[9] Sharifi, M., Mirtaheri, S. L., & Khaneghah, E. M. (2010). A dynamic framework
for integrated management of all types of resources in P2P systems. The Journal of
Supercomputing, 52(2), 149-170.

[10] Khaneghah, E. M. (2017). U.S. Patent No. 9,613,312. Washington, DC: U.S.
Patent and Trademark Office.

[11] Khaneghah, E. M., & Sharifi, M. (2014). AMRC: an algebraic model for
reconfiguration of high performance cluster computing systems at runtime. The Journal
of Supercomputing, 67(1), 1-30.

[12] Khaneghah, E. M., ShowkatAbad, A. R., & Ghahroodi, R. N. (2018, February).
Challenges of Process Migration to Support Distributed Exascale Computing
Environment. In Proceedings of the 2018 7th International Conference on Software and
Computer Applications (pp. 20-24). ACM.

Submitted 11.07.2018
Accepted 31.10.2018

Ulphat Bakhishoff

