
141

Authentication of Crns by Using BAN Logic
Israa N. Alsalhi, Salah A. Albermany
Kufa University, Najaf, Iraq, israan.alsalhi@student.uokufa.edu.iq, Salah.albermany@
uokufa.edu.iq

*Correspondence: Israa
N. Alsalhi, Kufa University,
Najaf, Iraq, sraan.alsalhi@

student.uokufa.edu.iq

Abstract
In broadband wireless communications, one of the main problems
facing it is the limited availability of the spectrum needed to provide
high-speed telecommunications services at any time and anywhere,
since all radio frequencies are being reserved for different
communications systems. Accordingly, a cognitive radio network
(CRN) proposal was proposed to solve the problem of the limited
spectrum by enhancing the overall spectrum utilization and provide
an adequate spectrum for broadband wireless communications.
Despite the different methods of protection used in CRNs, they may
be exposed to external attacks and to provide security, we will have
a high-security protocol analysis using BAN logic. BAN logic is used
to analyze the protocol using to authentication; In this paper, we
offer the highest protection in the contact against various attacks.
We are using authentication of the ElGamal algorithm and analysis
via BAN logic to show if it is achieving the authentication and secure
communication to be used in CRN.

Keyword: Cognitive Radio Network, BAN Logic, Security,
Spectrum Sharing, authentication, protocol, ElGamal

1. Introduction
The concept of “cognitive radio(CR)” is first presented by Mitola & Maguire, 1999. It

is a new approach in wireless communications that Mitola later describe in his doctoral
dissertation (Mitola, 2002). The main idea of the cognitive radio is that through the
surrounding environment, it can be learned and communication in order to realize the
existing spectrum in the space, reduce and limit the incidence of con-flicts (Tang &
Wu, 2012).

CR is a promising environment-sensitive technique that tries to overcome the
inherent non-efficient use of the spectrum is used through the application of sensing
the spectrum constraints, spectrum management, spectrum sharing and mobility
spec-trum (Alhakami, Mansour, Safdar, & Albermany, 2013, October).

The main tasks of CRs are sensing the spectrum, spectrum management, mobil-
ity spectrum, and spectrum sharing (Parvin, Hussain, Hussain, Han, Tian & Chang,
2012). The main objective of CR is to determine the white spaces (spectrum holes or
unused spectrum) in the primary spectrum and effi-ciency in the use of this spectrum.
It is used to detect without damaging the primary user. It can be detected from the
transmitted signal by using only one or more meth-ods including filtering matched,

Azerbaijan Journal of High Performance Computing, Vol. 2, Issue 2, 2019, pp. 141-157
https://doi.org/10.32010/26166127.2019.2.2.141.157

142

detection cyclostationary feature, energy detection, collaborative detection (Spectrum
sensor with a collaborative effort of CR multiple), and intervene based on the detection
method including spectrum management (analy-sis plus decision making) to choose
the best spectrum appropriate for users of knowledge. Mobility spectrum allocation
is the best possible range of movement during the process of the user’s knowledge.
Finally, spectrum sharing is a way to schedule just in the use of the spectrum. Today,
more than 5000 million devices are in use; it is expected that it will be more than 10 billion
by 2017 and about 100 bil-lion by the year 2025. This number includes smartphones,
tablets, and laptops to mobile networks. Radios cognitive future availability of new
technology with nano-technology and numerous advantages and features include
smart antennas, the new device included) with the definition of radio spectrum sensing
program, measurement of the spectrum, monitoring of middle income, guidance, self-
regulating, and control mechanisms to adapt, learning, identify policies and monitoring.
It requires the de-velopment and introduction of new technology and measuring
appropriate security policies. So security at every step of cognitive wireless networks
is a difficult tasks (Reddy, 2013, June).

However, as is the case with many novel technologies, Studies and preliminary
research did not focus on the security areas of CR. Security is usually “pulled on” after
the truth by adding some arrangement of linking authentication and encryption. This
typically works well for data reflecting a wireless network, but superfluous for the things
essential to run Wireless link itself. We need to look at menaces. We de-fine three
classes of attacks: Sensory handling attacks against policy radios, self-propagating
conduct leading CR viruses, and faith manipulation attacks against learn-ing radios. All
kinds of attacks dealing with the behavior of a CR, so that works either sub-optimally or
until maliciously (Clancy & Goergen, 2008, May).

Despite the presence of a trusted entity in the central CRNs caring for key man-
agement, documentation, and so on, the challenge of providing security still a
critical challenge in the decentralized architecture through not found such an entity
(Mishra, Mathew & Lau, 2016). Compared to the centralized, from the infor-mation
contained in a central dedicated CRNs, are more prone to nonstandard behav-ior,
such as fraud, tapping, Ministry of Foreign Affairs and replay attacks. You can target
these weaknesses through the inherent weaknesses in the safe design of MAC
protocols that are used to provide the vital authentication mechanisms and secure
connection. Therefore, we should make every effort to ensure the security aspects
strong enough, simpler authentication, authorization, integrity, confidentiality and
non-repudiation.

Used on a large scale and a large number of security technologies, on a
symmet-rical basis (such as DES) and asymmetric encryption (such as RSA) We
can achieve security in networks (Stallings, 2017).

In this paper, we will use the ElGamal encryption, even though the certification
authority (CA) and digital certificate (DC) technologies play an important role in
providing security against any malicious users. Digital signatures (DS) can provide
more safety to ensure integrity and non-repudiation. It is very important to make
sure of any design that meets the security needs of the protocol and analyzes
the require-ments of security fully before being released. We will use one of the

Alsalhi et al.

143

methods of anal-ysis and verification of security protocols. It is BAN logic (Burrows,
Abadi & Needham, 1989). In this paper, a novel MAC protocol for secure networks
Cognitive radio (SMC) have been proposed and analyzed using formal logic BAN
(Syverson, P., & Cervesato, I., 2000, September). A logic that is applied to the
study of the suggested protocol in order to ensure that the proposed protocol is
strict enough in terms of the main security aspects.

2. Related Work
MAC protocol plays an important role in the spectrum (Bhandari & Moh, 2015).

Channel joint control is the most challenging in CR networks are a bottle-neck,
and any threat is considered a threat to the network (Idoudi, Daimi & Saed, 2014,
July). So we have to provide security to ensure the integrity of the network security
and there are many studies in this area. For example: Elkashlan, Wang, Duong,
Karagiannidis & Nallanathan, (2014) proposed physical-layer security development
in cognitive multiantenna eavesdropping chan-nels. In passive wiretap tries to
evaluate the secrecy performance, we adopt the secrecy cutout probability as a
measure of beneficial performance where it is considered the cognitive wiretap
channel and as a proposed multiple antennas to secure the broadcast-ing at the
physical layer, where the eavesdropper hears the transmission from the sec-ondary
transmitter to the secondary receiver (Thakre & Dixit, 2014). This is to discover the
threats from the wireless communication and sense the null spectrum band by
Energy sensing method and to work in two ways of threats like (jamming attack and
primary user emulation attack). These two are the major threats of the CRN wireless
communication environment (Zhang, Lu, Cheng, Mark, & Shen, 2013).

Fig. 1: Communication in CRNs

Azerbaijan Journal of High Performance Computing, 2 (2), 2019

144

Looked at access to the cooperative spectrum for CRNs, which is a goal to en-
hancement the secure transmission of the primary user via cooperating the second
user that would be invented by assured transmission opportunities (Tang, L., &
Wu, J., 2012). It gives the first details about the analysis of the security problems
encoun-tered by the CRN and enters the key issues about CRN. Then, according
to the non-consistencies between the CRN and the wireless network current, it
analyzes and dis-cusses the access spectrum and artificial intelligence security
dynamic. Lastly, it con-cludes that the security difficulties of the cross-layer layout.

3. System Model.
In this system, the user authentication through the server where it is generating

public key from the server in cooperation with users has to be known to the parties
and in return, are generating a private key that each party is only known to the Party
concerned. The authentication scheme can be illustrated as follows:

3.1. The Proposed User Authentication Scheme
In this section, a user authentication scheme based on ElGamal encryption and

analy-sis via BAN Logic is discussed. The proposed scheme is divided into three
phases: Setup phase, User authentication phase, and encryption phase. In the
setup phase, CA produces system parameters and distributed them to users. In the
second phase, users finish their identities authentication with the assistance of their
public/ private keys and also the public key of CA. In the user encryption phase,
users obtain their pri-vate/public key pairs by registering with CA.

The Setup Phase
Key Generation
With ElGamal, just the receiver needs to generate a key previously and publish it.
The following steps will be taken by Node B to generate his key pair:
• Prime and group generation
The server generates a large prime q and the generator (a) of a multiplicative
Private Key selection
Node B selects an integer (XB) less than (q–1). We will deal with him here as a

private exponent.
• Public key assembling
From this we can calculate the public key portion (a"#	 mod q). The public key of

Bob in the ElGamal cryptosystem is the triplet (a; q; YB) and his private key will be
(XB).

• Public key publishing
The public key now needs to be published using some present with the key server

or other means; for this reason, Node A can get hold of it.
• Encryption Procedure
To encrypt a message M to Node B, Alice needs to get his public key triplet (a; q;

YB) from a key server. For the encryption of the plaintext message M, node A performs
the following steps:

• Obtain the public key
As explained above, Node A has to obtain the public key part (a; q; YB) from Node

B.
• Present M for encoding
Write M as an integer (0 < M < q - 1).
• Select random exponent
Node A will choose a random exponent (k1) that lies on the second party's private

exponent in the Diffie-Hellman key exchange. The randomness is an essential factor
as the likelihood to estimate the k gives a sensible amount of the Information necessary
in order for the attacker to receive the decrypted message.

• Compute key
To transfer the random exponent k1 to Node B, Node A computes ((YB)k1 mod q)

and merge it with the ciphertext that is sent to Node B.
Encrypt the plaintext
Node A encrypts the message M to the ciphertext C.
The User Authentication Phase
MSG 1: A ® S: A, B;
MSG 2: S ®B: {NB, # (a, q), KS} KS-1;
MSG 3: B®S: {NA, YB, KS, A} KB;
MSG 4: S ®A: {NA, #(M) , KS, B} KS-1 ;
MSG 5: A ®B: {NA, C1, C2, KA} KA;
MSG 6: B ®A: {K, M', KA} KB;

The Encryption Phase
Algorithm (1): Authentication using (ElGamal algorithm)
Input: Request from CHs.
Output: Authenticate or not.

1 - CHs sends a request to server S for node A wants to communicate with node

B.
2 - Server selects two random numbers {a, q}, where a < q

a: Generator number
 q: Random prime number
 The server sends {a, q, request from CHs} to node B

3 - B = '
Selects		(X#) < 	 (q	– 	1): as	secret	key																								
Computes		Y# = a"#	mod	q: sends	to	the	server				

4 - Server= 'Public	key	{a,	q,Y#}					and				sends	it	to	node	A		v								Sends	a	plain	text	as	an	integer	M,		0	 < 	M	 < 	q	– 	1

5 - A=

⎩
⎪
⎨

⎪
⎧Select integer number (k1), 0 < k1 < q – 1

K =(YB)k1 mod q
Cipher text (C1, C2) ,C1 = ak1 mod q, C2 = M K mod q
Sends {C1, C2, YA, M}	to node B

6 - B=

⎩
⎪⎪
⎨

⎪⎪
⎧K2 = CS

"#		mod	q																																																																									
Mʹ	 = 	CU	KUVS	mod	q																																																																			
CʹS	 = 	aWS	mod	q																																																																											
CʹU = 	Mʹ	K	mod	q																																																																										
A	is	authenticated		and	sends	{Cʹ1,	Cʹ2} to A, if		Mʹ	 = 	M
A	is	not	authenticated																																											Otherwise		

7 - CHs sent request to the server for node B wants to communicate with node
C.

8 - Server=' Selects two random number	(a1,q1)
Server sends	{a1, q1,request from	CHS} to node C 			

 Where a1: Generator number and q1: Random prime number.

9 - C=' Selects	an	integer	
(Xc) < 	q1	– 	1 ,as a	secret	key	

YC =	a"Z		mod	q,			sends	the	result	to	the	server					

10 - S= 'Public key {a1, q1, YC} and sents it to node B
Sends a plain text as an integer M, where 0 < M < q1 – 1

11 - B=

⎩
⎪
⎨

⎪
⎧ Selects an integer number (k1), 0<k1<q1-1

K = (YC)k1 mod q1
Cipher text (C3 and C4), C3=ak1 mod q1 , C4=M1K mod q1
Sends {C3 , C4 , YC , M }to node C

12 - C=

⎩
⎪⎪
⎨

⎪⎪
⎧K2= C3

XC mod q1
M'

1=C4K2
-1 mod q1

C'
3=ak1 mod q1

C'
4=M'1Kmod q1

B is authenticated and send \C'3, C'4]to B , If M'1 = M
B is not authenticated otherwise

The original messages of authentication phase are representing as follow:

MSG 1: CHs ® S: A, B from CHs
MSG 2: S ® B: {NB, # (a, q), KS} KS-1 from S
MSG 3: B ® S: {NA, YB, KS, A} KB from B
MSG 4: S ® A: {NA, # (M), KS, B} KS-1 from S
MSG 5: A ® B: {NA, C1, C2, KA} KA from A
MSG 6: B ® A: {K, M', KA} KB from B
MSG 7: CHs ® S: B, C from CHs
MSG 8: S ® C: {NC, # (a1, q1), KS} KS-1 from S
MSG 9: C ® S: {NB, Yc, KS, B} KC from C
MSG 10: S ® B: {NB, # (M), KS, C} KS-1 from S
MSG 11: B ® C: {NB, C1, C2, KB} KB from B
MSG 12: C ® B: {Nc, K, M', Kc} KC from C.

Alsalhi et al.

145

The Setup Phase
Key Generation
With ElGamal, just the receiver needs to generate a key previously and publish it.
The following steps will be taken by Node B to generate his key pair:
• Prime and group generation
The server generates a large prime q and the generator (a) of a multiplicative
Private Key selection
Node B selects an integer (XB) less than (q–1). We will deal with him here as a

private exponent.
• Public key assembling
From this we can calculate the public key portion (a"#	 mod q). The public key of

Bob in the ElGamal cryptosystem is the triplet (a; q; YB) and his private key will be
(XB).

• Public key publishing
The public key now needs to be published using some present with the key server

or other means; for this reason, Node A can get hold of it.
• Encryption Procedure
To encrypt a message M to Node B, Alice needs to get his public key triplet (a; q;

YB) from a key server. For the encryption of the plaintext message M, node A performs
the following steps:

• Obtain the public key
As explained above, Node A has to obtain the public key part (a; q; YB) from Node

B.
• Present M for encoding
Write M as an integer (0 < M < q - 1).
• Select random exponent
Node A will choose a random exponent (k1) that lies on the second party's private

exponent in the Diffie-Hellman key exchange. The randomness is an essential factor
as the likelihood to estimate the k gives a sensible amount of the Information necessary
in order for the attacker to receive the decrypted message.

• Compute key
To transfer the random exponent k1 to Node B, Node A computes ((YB)k1 mod q)

and merge it with the ciphertext that is sent to Node B.
Encrypt the plaintext
Node A encrypts the message M to the ciphertext C.
The User Authentication Phase
MSG 1: A ® S: A, B;
MSG 2: S ®B: {NB, # (a, q), KS} KS-1;
MSG 3: B®S: {NA, YB, KS, A} KB;
MSG 4: S ®A: {NA, #(M) , KS, B} KS-1 ;
MSG 5: A ®B: {NA, C1, C2, KA} KA;
MSG 6: B ®A: {K, M', KA} KB;

The Encryption Phase
Algorithm (1): Authentication using (ElGamal algorithm)
Input: Request from CHs.
Output: Authenticate or not.

1 - CHs sends a request to server S for node A wants to communicate with node

B.
2 - Server selects two random numbers {a, q}, where a < q

a: Generator number
 q: Random prime number
 The server sends {a, q, request from CHs} to node B

3 - B = '
Selects		(X#) < 	 (q	– 	1): as	secret	key																								
Computes		Y# = a"#	mod	q: sends	to	the	server				

4 - Server= 'Public	key	{a,	q,Y#}					and				sends	it	to	node	A		v								Sends	a	plain	text	as	an	integer	M,		0	 < 	M	 < 	q	– 	1

5 - A=

⎩
⎪
⎨

⎪
⎧Select integer number (k1), 0 < k1 < q – 1

K =(YB)k1 mod q
Cipher text (C1, C2) ,C1 = ak1 mod q, C2 = M K mod q
Sends {C1, C2, YA, M}	to node B

6 - B=

⎩
⎪⎪
⎨

⎪⎪
⎧K2 = CS

"#		mod	q																																																																									
Mʹ	 = 	CU	KUVS	mod	q																																																																			
CʹS	 = 	aWS	mod	q																																																																											
CʹU = 	Mʹ	K	mod	q																																																																										
A	is	authenticated		and	sends	{Cʹ1,	Cʹ2} to A, if		Mʹ	 = 	M
A	is	not	authenticated																																											Otherwise		

7 - CHs sent request to the server for node B wants to communicate with node
C.

8 - Server=' Selects two random number	(a1,q1)
Server sends	{a1, q1,request from	CHS} to node C 			

 Where a1: Generator number and q1: Random prime number.

9 - C=' Selects	an	integer	
(Xc) < 	q1	– 	1 ,as a	secret	key	

YC =	a"Z		mod	q,			sends	the	result	to	the	server					

10 - S= 'Public key {a1, q1, YC} and sents it to node B
Sends a plain text as an integer M, where 0 < M < q1 – 1

11 - B=

⎩
⎪
⎨

⎪
⎧ Selects an integer number (k1), 0<k1<q1-1

K = (YC)k1 mod q1
Cipher text (C3 and C4), C3=ak1 mod q1 , C4=M1K mod q1
Sends {C3 , C4 , YC , M }to node C

12 - C=

⎩
⎪⎪
⎨

⎪⎪
⎧K2= C3

XC mod q1
M'

1=C4K2
-1 mod q1

C'
3=ak1 mod q1

C'
4=M'1Kmod q1

B is authenticated and send \C'3, C'4]to B , If M'1 = M
B is not authenticated otherwise

The original messages of authentication phase are representing as follow:

MSG 1: CHs ® S: A, B from CHs
MSG 2: S ® B: {NB, # (a, q), KS} KS-1 from S
MSG 3: B ® S: {NA, YB, KS, A} KB from B
MSG 4: S ® A: {NA, # (M), KS, B} KS-1 from S
MSG 5: A ® B: {NA, C1, C2, KA} KA from A
MSG 6: B ® A: {K, M', KA} KB from B
MSG 7: CHs ® S: B, C from CHs
MSG 8: S ® C: {NC, # (a1, q1), KS} KS-1 from S
MSG 9: C ® S: {NB, Yc, KS, B} KC from C
MSG 10: S ® B: {NB, # (M), KS, C} KS-1 from S
MSG 11: B ® C: {NB, C1, C2, KB} KB from B
MSG 12: C ® B: {Nc, K, M', Kc} KC from C.

The Setup Phase
Key Generation
With ElGamal, just the receiver needs to generate a key previously and publish it.
The following steps will be taken by Node B to generate his key pair:
• Prime and group generation
The server generates a large prime q and the generator (a) of a multiplicative
Private Key selection
Node B selects an integer (XB) less than (q–1). We will deal with him here as a

private exponent.
• Public key assembling
From this we can calculate the public key portion (a"#	 mod q). The public key of

Bob in the ElGamal cryptosystem is the triplet (a; q; YB) and his private key will be
(XB).

• Public key publishing
The public key now needs to be published using some present with the key server

or other means; for this reason, Node A can get hold of it.
• Encryption Procedure
To encrypt a message M to Node B, Alice needs to get his public key triplet (a; q;

YB) from a key server. For the encryption of the plaintext message M, node A performs
the following steps:

• Obtain the public key
As explained above, Node A has to obtain the public key part (a; q; YB) from Node

B.
• Present M for encoding
Write M as an integer (0 < M < q - 1).
• Select random exponent
Node A will choose a random exponent (k1) that lies on the second party's private

exponent in the Diffie-Hellman key exchange. The randomness is an essential factor
as the likelihood to estimate the k gives a sensible amount of the Information necessary
in order for the attacker to receive the decrypted message.

• Compute key
To transfer the random exponent k1 to Node B, Node A computes ((YB)k1 mod q)

and merge it with the ciphertext that is sent to Node B.
Encrypt the plaintext
Node A encrypts the message M to the ciphertext C.
The User Authentication Phase
MSG 1: A ® S: A, B;
MSG 2: S ®B: {NB, # (a, q), KS} KS-1;
MSG 3: B®S: {NA, YB, KS, A} KB;
MSG 4: S ®A: {NA, #(M) , KS, B} KS-1 ;
MSG 5: A ®B: {NA, C1, C2, KA} KA;
MSG 6: B ®A: {K, M', KA} KB;

The Encryption Phase
Algorithm (1): Authentication using (ElGamal algorithm)
Input: Request from CHs.
Output: Authenticate or not.

1 - CHs sends a request to server S for node A wants to communicate with node

B.
2 - Server selects two random numbers {a, q}, where a < q

a: Generator number
 q: Random prime number
 The server sends {a, q, request from CHs} to node B

3 - B = '
Selects		(X#) < 	 (q	– 	1): as	secret	key																								
Computes		Y# = a"#	mod	q: sends	to	the	server				

4 - Server= 'Public	key	{a,	q,Y#}					and				sends	it	to	node	A		v								Sends	a	plain	text	as	an	integer	M,		0	 < 	M	 < 	q	– 	1

5 - A=

⎩
⎪
⎨

⎪
⎧Select integer number (k1), 0 < k1 < q – 1

K =(YB)k1 mod q
Cipher text (C1, C2) ,C1 = ak1 mod q, C2 = M K mod q
Sends {C1, C2, YA, M}	to node B

6 - B=

⎩
⎪⎪
⎨

⎪⎪
⎧K2 = CS

"#		mod	q																																																																									
Mʹ	 = 	CU	KUVS	mod	q																																																																			
CʹS	 = 	aWS	mod	q																																																																											
CʹU = 	Mʹ	K	mod	q																																																																										
A	is	authenticated		and	sends	{Cʹ1,	Cʹ2} to A, if		Mʹ	 = 	M
A	is	not	authenticated																																											Otherwise		

7 - CHs sent request to the server for node B wants to communicate with node
C.

8 - Server=' Selects two random number	(a1,q1)
Server sends	{a1, q1,request from	CHS} to node C 			

 Where a1: Generator number and q1: Random prime number.

9 - C=' Selects	an	integer	
(Xc) < 	q1	– 	1 ,as a	secret	key	

YC =	a"Z		mod	q,			sends	the	result	to	the	server					

10 - S= 'Public key {a1, q1, YC} and sents it to node B
Sends a plain text as an integer M, where 0 < M < q1 – 1

11 - B=

⎩
⎪
⎨

⎪
⎧ Selects an integer number (k1), 0<k1<q1-1

K = (YC)k1 mod q1
Cipher text (C3 and C4), C3=ak1 mod q1 , C4=M1K mod q1
Sends {C3 , C4 , YC , M }to node C

12 - C=

⎩
⎪⎪
⎨

⎪⎪
⎧K2= C3

XC mod q1
M'

1=C4K2
-1 mod q1

C'
3=ak1 mod q1

C'
4=M'1Kmod q1

B is authenticated and send \C'3, C'4]to B , If M'1 = M
B is not authenticated otherwise

The original messages of authentication phase are representing as follow:

MSG 1: CHs ® S: A, B from CHs
MSG 2: S ® B: {NB, # (a, q), KS} KS-1 from S
MSG 3: B ® S: {NA, YB, KS, A} KB from B
MSG 4: S ® A: {NA, # (M), KS, B} KS-1 from S
MSG 5: A ® B: {NA, C1, C2, KA} KA from A
MSG 6: B ® A: {K, M', KA} KB from B
MSG 7: CHs ® S: B, C from CHs
MSG 8: S ® C: {NC, # (a1, q1), KS} KS-1 from S
MSG 9: C ® S: {NB, Yc, KS, B} KC from C
MSG 10: S ® B: {NB, # (M), KS, C} KS-1 from S
MSG 11: B ® C: {NB, C1, C2, KB} KB from B
MSG 12: C ® B: {Nc, K, M', Kc} KC from C.

Azerbaijan Journal of High Performance Computing, 2 (2), 2019

146

The Setup Phase
Key Generation
With ElGamal, just the receiver needs to generate a key previously and publish it.
The following steps will be taken by Node B to generate his key pair:
• Prime and group generation
The server generates a large prime q and the generator (a) of a multiplicative
Private Key selection
Node B selects an integer (XB) less than (q–1). We will deal with him here as a

private exponent.
• Public key assembling
From this we can calculate the public key portion (a"#	 mod q). The public key of

Bob in the ElGamal cryptosystem is the triplet (a; q; YB) and his private key will be
(XB).

• Public key publishing
The public key now needs to be published using some present with the key server

or other means; for this reason, Node A can get hold of it.
• Encryption Procedure
To encrypt a message M to Node B, Alice needs to get his public key triplet (a; q;

YB) from a key server. For the encryption of the plaintext message M, node A performs
the following steps:

• Obtain the public key
As explained above, Node A has to obtain the public key part (a; q; YB) from Node

B.
• Present M for encoding
Write M as an integer (0 < M < q - 1).
• Select random exponent
Node A will choose a random exponent (k1) that lies on the second party's private

exponent in the Diffie-Hellman key exchange. The randomness is an essential factor
as the likelihood to estimate the k gives a sensible amount of the Information necessary
in order for the attacker to receive the decrypted message.

• Compute key
To transfer the random exponent k1 to Node B, Node A computes ((YB)k1 mod q)

and merge it with the ciphertext that is sent to Node B.
Encrypt the plaintext
Node A encrypts the message M to the ciphertext C.
The User Authentication Phase
MSG 1: A ® S: A, B;
MSG 2: S ®B: {NB, # (a, q), KS} KS-1;
MSG 3: B®S: {NA, YB, KS, A} KB;
MSG 4: S ®A: {NA, #(M) , KS, B} KS-1 ;
MSG 5: A ®B: {NA, C1, C2, KA} KA;
MSG 6: B ®A: {K, M', KA} KB;

The Encryption Phase
Algorithm (1): Authentication using (ElGamal algorithm)
Input: Request from CHs.
Output: Authenticate or not.

1 - CHs sends a request to server S for node A wants to communicate with node

B.
2 - Server selects two random numbers {a, q}, where a < q

a: Generator number
 q: Random prime number
 The server sends {a, q, request from CHs} to node B

3 - B = '
Selects		(X#) < 	 (q	– 	1): as	secret	key																								
Computes		Y# = a"#	mod	q: sends	to	the	server				

4 - Server= 'Public	key	{a,	q,Y#}					and				sends	it	to	node	A		v								Sends	a	plain	text	as	an	integer	M,		0	 < 	M	 < 	q	– 	1

5 - A=

⎩
⎪
⎨

⎪
⎧Select integer number (k1), 0 < k1 < q – 1

K =(YB)k1 mod q
Cipher text (C1, C2) ,C1 = ak1 mod q, C2 = M K mod q
Sends {C1, C2, YA, M}	to node B

6 - B=

⎩
⎪⎪
⎨

⎪⎪
⎧K2 = CS

"#		mod	q																																																																									
Mʹ	 = 	CU	KUVS	mod	q																																																																			
CʹS	 = 	aWS	mod	q																																																																											
CʹU = 	Mʹ	K	mod	q																																																																										
A	is	authenticated		and	sends	{Cʹ1,	Cʹ2} to A, if		Mʹ	 = 	M
A	is	not	authenticated																																											Otherwise		

7 - CHs sent request to the server for node B wants to communicate with node
C.

8 - Server=' Selects two random number	(a1,q1)
Server sends	{a1, q1,request from	CHS} to node C 			

 Where a1: Generator number and q1: Random prime number.

9 - C=' Selects	an	integer	
(Xc) < 	q1	– 	1 ,as a	secret	key	

YC =	a"Z		mod	q,			sends	the	result	to	the	server					

10 - S= 'Public key {a1, q1, YC} and sents it to node B
Sends a plain text as an integer M, where 0 < M < q1 – 1

11 - B=

⎩
⎪
⎨

⎪
⎧ Selects an integer number (k1), 0<k1<q1-1

K = (YC)k1 mod q1
Cipher text (C3 and C4), C3=ak1 mod q1 , C4=M1K mod q1
Sends {C3 , C4 , YC , M }to node C

12 - C=

⎩
⎪⎪
⎨

⎪⎪
⎧K2= C3

XC mod q1
M'

1=C4K2
-1 mod q1

C'
3=ak1 mod q1

C'
4=M'1Kmod q1

B is authenticated and send \C'3, C'4]to B , If M'1 = M
B is not authenticated otherwise

The original messages of authentication phase are representing as follow:

MSG 1: CHs ® S: A, B from CHs
MSG 2: S ® B: {NB, # (a, q), KS} KS-1 from S
MSG 3: B ® S: {NA, YB, KS, A} KB from B
MSG 4: S ® A: {NA, # (M), KS, B} KS-1 from S
MSG 5: A ® B: {NA, C1, C2, KA} KA from A
MSG 6: B ® A: {K, M', KA} KB from B
MSG 7: CHs ® S: B, C from CHs
MSG 8: S ® C: {NC, # (a1, q1), KS} KS-1 from S
MSG 9: C ® S: {NB, Yc, KS, B} KC from C
MSG 10: S ® B: {NB, # (M), KS, C} KS-1 from S
MSG 11: B ® C: {NB, C1, C2, KB} KB from B
MSG 12: C ® B: {Nc, K, M', Kc} KC from C.

Alsalhi et al.

147

Fig. 2: . Authentication using (ElGamal algorithm)

The Setup Phase
Key Generation
With ElGamal, just the receiver needs to generate a key previously and publish it.
The following steps will be taken by Node B to generate his key pair:
• Prime and group generation
The server generates a large prime q and the generator (a) of a multiplicative
Private Key selection
Node B selects an integer (XB) less than (q–1). We will deal with him here as a

private exponent.
• Public key assembling
From this we can calculate the public key portion (a"#	 mod q). The public key of

Bob in the ElGamal cryptosystem is the triplet (a; q; YB) and his private key will be
(XB).

• Public key publishing
The public key now needs to be published using some present with the key server

or other means; for this reason, Node A can get hold of it.
• Encryption Procedure
To encrypt a message M to Node B, Alice needs to get his public key triplet (a; q;

YB) from a key server. For the encryption of the plaintext message M, node A performs
the following steps:

• Obtain the public key
As explained above, Node A has to obtain the public key part (a; q; YB) from Node

B.
• Present M for encoding
Write M as an integer (0 < M < q - 1).
• Select random exponent
Node A will choose a random exponent (k1) that lies on the second party's private

exponent in the Diffie-Hellman key exchange. The randomness is an essential factor
as the likelihood to estimate the k gives a sensible amount of the Information necessary
in order for the attacker to receive the decrypted message.

• Compute key
To transfer the random exponent k1 to Node B, Node A computes ((YB)k1 mod q)

and merge it with the ciphertext that is sent to Node B.
Encrypt the plaintext
Node A encrypts the message M to the ciphertext C.
The User Authentication Phase
MSG 1: A ® S: A, B;
MSG 2: S ®B: {NB, # (a, q), KS} KS-1;
MSG 3: B®S: {NA, YB, KS, A} KB;
MSG 4: S ®A: {NA, #(M) , KS, B} KS-1 ;
MSG 5: A ®B: {NA, C1, C2, KA} KA;
MSG 6: B ®A: {K, M', KA} KB;

The Encryption Phase
Algorithm (1): Authentication using (ElGamal algorithm)
Input: Request from CHs.
Output: Authenticate or not.

1 - CHs sends a request to server S for node A wants to communicate with node

B.
2 - Server selects two random numbers {a, q}, where a < q

a: Generator number
 q: Random prime number
 The server sends {a, q, request from CHs} to node B

3 - B = '
Selects		(X#) < 	 (q	– 	1): as	secret	key																								
Computes		Y# = a"#	mod	q: sends	to	the	server				

4 - Server= 'Public	key	{a,	q,Y#}					and				sends	it	to	node	A		v								Sends	a	plain	text	as	an	integer	M,		0	 < 	M	 < 	q	– 	1

5 - A=

⎩
⎪
⎨

⎪
⎧Select integer number (k1), 0 < k1 < q – 1

K =(YB)k1 mod q
Cipher text (C1, C2) ,C1 = ak1 mod q, C2 = M K mod q
Sends {C1, C2, YA, M}	to node B

6 - B=

⎩
⎪⎪
⎨

⎪⎪
⎧K2 = CS

"#		mod	q																																																																									
Mʹ	 = 	CU	KUVS	mod	q																																																																			
CʹS	 = 	aWS	mod	q																																																																											
CʹU = 	Mʹ	K	mod	q																																																																										
A	is	authenticated		and	sends	{Cʹ1,	Cʹ2} to A, if		Mʹ	 = 	M
A	is	not	authenticated																																											Otherwise		

7 - CHs sent request to the server for node B wants to communicate with node
C.

8 - Server=' Selects two random number	(a1,q1)
Server sends	{a1, q1,request from	CHS} to node C 			

 Where a1: Generator number and q1: Random prime number.

9 - C=' Selects	an	integer	
(Xc) < 	q1	– 	1 ,as a	secret	key	

YC =	a"Z		mod	q,			sends	the	result	to	the	server					

10 - S= 'Public key {a1, q1, YC} and sents it to node B
Sends a plain text as an integer M, where 0 < M < q1 – 1

11 - B=

⎩
⎪
⎨

⎪
⎧ Selects an integer number (k1), 0<k1<q1-1

K = (YC)k1 mod q1
Cipher text (C3 and C4), C3=ak1 mod q1 , C4=M1K mod q1
Sends {C3 , C4 , YC , M }to node C

12 - C=

⎩
⎪⎪
⎨

⎪⎪
⎧K2= C3

XC mod q1
M'

1=C4K2
-1 mod q1

C'
3=ak1 mod q1

C'
4=M'1Kmod q1

B is authenticated and send \C'3, C'4]to B , If M'1 = M
B is not authenticated otherwise

The original messages of authentication phase are representing as follow:

MSG 1: CHs ® S: A, B from CHs
MSG 2: S ® B: {NB, # (a, q), KS} KS-1 from S
MSG 3: B ® S: {NA, YB, KS, A} KB from B
MSG 4: S ® A: {NA, # (M), KS, B} KS-1 from S
MSG 5: A ® B: {NA, C1, C2, KA} KA from A
MSG 6: B ® A: {K, M', KA} KB from B
MSG 7: CHs ® S: B, C from CHs
MSG 8: S ® C: {NC, # (a1, q1), KS} KS-1 from S
MSG 9: C ® S: {NB, Yc, KS, B} KC from C
MSG 10: S ® B: {NB, # (M), KS, C} KS-1 from S
MSG 11: B ® C: {NB, C1, C2, KB} KB from B
MSG 12: C ® B: {Nc, K, M', Kc} KC from C.

Azerbaijan Journal of High Performance Computing, 2 (2), 2019

148

4. Security and Performance Analysis
4.1. Security analysis by BAN logic
Burrows-Abadi-Needham(BAN) Logic is One of the methods for analyzing

authentication protocols; It is a logic for reasoning about authentication protocol in
terms of belief statements (Abadi, M., & Tuttle, M. R., 1991, August, Wessels, J., & BV,
C. F., 2001). It is using different symbols in the cryptographic scheme as follows:
①	P believes X: P |≡X;
②	p receive X: p ⊳X;
③ P send X: P|～X;
④ P controls X: P | ⇒ X;
⑤ X is fresh: #(X);

⑥ P and Q shared by the key K: p
,
↔ Q；

⑦ ciphertext of X encrypted by the key K: {X}K;
Rule of BAN logic:
Message meaning: This rule allow the identity of the sender of an encrypted

message to be deduced from the encryption key used.

p	| ≡ 	Q
,
↔ p, p	 ⊳ {x},

p	| ≡ Q| ∼ x 																																															(1)

The key K shares Q and P. So, if P receives a message encrypted by K, it must
come from Q (P ignores its messages).

Nonce-verification:-This rule allow belief from freshly uttered message to be derived
p	| ≡ #(x), p	| ≡ Q| ∼ x

p	| ≡ Q| ≡ x 																																												(2)

Jurisdiction rule: This rule allows belief based on jurisdiction to be derived .

p	| ≡ 	Q x,⟹
, p	| ≡ Q| ≡ x
p	| ≡ x 																																									(3)

The idealized protocol as follows:
Message (1) and message (7) will be deleted because it does not contain an

encrypted message. The rest of the messages will be represented as follow:

MSG 2: B ⊳{NB, # (a, q),
=>
?@S} KS-1

MSG 3: S ⊳{NA, YB,	
=>
?@S} KB

MSG 4: A ⊳{NA, # (M),
=>
?@S} KS-1

MSG 5: B ⊳ {NA, C1, C2,	
=A
?@A} KA

MSG 6: A ⊳ {K, M',
=A
?@A} KB

MSG 8: C⊳ {NC, # (a1, q1),
=>
?@ S} KS-1

MSG 9: S 	⊳{NB, Yc,
=>
?@S} KC

MSG 10: B ⊳{NB, # (M),
=>
?@S} KS-1

MSG 11: C ⊳{NB, C1, C2,
=B
?@B} KB

MSG 12: B ⊳{K, M',
=B
?@B} KC

State assumption about the original message
S|	# NB (1.1) 𝑆𝑆| ≡

=E?@S (1.16)
				S| ≡ #a																																									(1.2) B| ≡

IJ
?@S (1.17)

S| ≡ #q (1.3) 𝐵𝐵| ≡
=L?@B (1.18)

S| ≡ # NA (1.4) 𝐴𝐴| ≡
=>
?@S (1.19)

𝑆𝑆| ≡ #M (1.5) 𝐴𝐴| ≡
=A
?@A (1.20)

B| ≡ # NA (1.6) B| ≡
IA
?@A (1.21)

𝐴𝐴| ≡ # NA (1.7) A| ≡
=L?@B (1.22)

𝑆𝑆| ≡
=B
?@B (1.8) 𝐵𝐵	| ≡ S| ⟹

=>
?@ S (1.23)

S	|≡ B| ⟹
=>
?@ S (1.9) A	|≡ S| ⟹	

=>
?@ S	 (1.24)

B	|≡ A| ⟹	
=O?@ A																						(1.10) 					A	|≡ B| ⟹

=O?@ 𝐴𝐴																							(1.24)

C| ≡
=E?@ S (1.11) C| ≡ #(NC)																														(1.26)

C	| ≡ 	S	 ⟹
=>
?@ S (1.12) B| ≡ 𝐶𝐶 ⟹

=L?@B (1.27)

𝐵𝐵	| ≡ S| ⟹
=>
?@ 𝑆𝑆 (1.13) C	|≡ B| ⟹	

=L?@ B (1.28)

S| ≡
=T
?@ C (1.14) C	| ≡ #(NB) (1.29)

						B| ≡
=U?@C																																	(1.15) 𝑆𝑆	|≡ C| ⟹	

=>
?@ S (1.30)

			

Apply rule:

MSG 2: B ⊳ {NB, # (a, q),
=>
?@S} KS-1from S

By applying equation (1) to message (2), produces the following:
	W|≡

XE?@J	,W	⊳{	YW	,#	(Z	,[),
XE
?@W}IJ\]

W	|≡J|∼
XE?@J	

																																	(1,2)

By applying equation (2) to message (2), produces the following:
W	|≡#(Y^),W	|≡J|∼

XE?@J		

W	|≡J|≡
XE?@J

																																											 (2.2)

By applying equation (3) to message (2), produces the following:
W	|≡	J	⟹

XE
?@J	,_	|≡`|≡a

W	|≡
XE?@J

																																			(3.2)

The result from equation (2.2) and (3.2) are: B	|≡ S| ≡
=E?@ S																																						 (2.2.1)

B	| ≡
=E?@ S																																																								 (3.2.1)

MSG 3: S ⊳ {NA, YB,	
=>
?@S} KB

By applying equation (1) to message (3), produces the following:
J|≡

XL
?⎯@W	,c	Y^	,dW	,

XE
?@JeIW

J	|≡W|∼
XE
?@J

																																									(1.3)

By applying equation (2) to message (3), produces the following:
_	|≡#(fg),J	|≡W|∼

XE
?@J

J	|≡W|≡
XE?@J

																																																	(2.3)

By applying equation (3) to message (3), produces the following:
>	|≡W|⟹	

XE
?@J,J	|≡W|≡

XE
?@J

J	|≡
XE?@J

																									 (3.3)

The result from equation (2.3) and (3.3) are: S	|≡ B| ≡
=>
?@ S (2.3.1)

 S	| ≡
Ih?@ S																																																						(3.3.1)

MSG 4: A ⊳ {NA, # (M) ,
=>
?@S } KS-1

By applying equation (1) to message (4), produces the following:
^|≡

iE
?@J,^	⊳	{	Y^,#(j)	,

XE
?@J	}	IJ\]	

^	|≡J|∼
XE
?@J	

																				(1.4)

By applying equation (2) to message (4), produces the following:

Alsalhi et al.

149

4. Security and Performance Analysis
4.1. Security analysis by BAN logic
Burrows-Abadi-Needham(BAN) Logic is One of the methods for analyzing

authentication protocols; It is a logic for reasoning about authentication protocol in
terms of belief statements (Abadi, M., & Tuttle, M. R., 1991, August, Wessels, J., & BV,
C. F., 2001). It is using different symbols in the cryptographic scheme as follows:
①	P believes X: P |≡X;
②	p receive X: p ⊳X;
③ P send X: P|～X;
④ P controls X: P | ⇒ X;
⑤ X is fresh: #(X);

⑥ P and Q shared by the key K: p
,
↔ Q；

⑦ ciphertext of X encrypted by the key K: {X}K;
Rule of BAN logic:
Message meaning: This rule allow the identity of the sender of an encrypted

message to be deduced from the encryption key used.

p	| ≡ 	Q
,
↔ p, p	 ⊳ {x},

p	| ≡ Q| ∼ x 																																															(1)

The key K shares Q and P. So, if P receives a message encrypted by K, it must
come from Q (P ignores its messages).

Nonce-verification:-This rule allow belief from freshly uttered message to be derived
p	| ≡ #(x), p	| ≡ Q| ∼ x

p	| ≡ Q| ≡ x 																																												(2)

Jurisdiction rule: This rule allows belief based on jurisdiction to be derived .

p	| ≡ 	Q x,⟹
, p	| ≡ Q| ≡ x
p	| ≡ x 																																									(3)

The idealized protocol as follows:
Message (1) and message (7) will be deleted because it does not contain an

encrypted message. The rest of the messages will be represented as follow:

MSG 2: B ⊳{NB, # (a, q),
=>
?@S} KS-1

MSG 3: S ⊳{NA, YB,	
=>
?@S} KB

MSG 4: A ⊳{NA, # (M),
=>
?@S} KS-1

MSG 5: B ⊳ {NA, C1, C2,	
=A
?@A} KA

MSG 6: A ⊳ {K, M',
=A
?@A} KB

MSG 8: C⊳ {NC, # (a1, q1),
=>
?@ S} KS-1

MSG 9: S 	⊳{NB, Yc,
=>
?@S} KC

MSG 10: B ⊳{NB, # (M),
=>
?@S} KS-1

MSG 11: C ⊳{NB, C1, C2,
=B
?@B} KB

MSG 12: B ⊳{K, M',
=B
?@B} KC

State assumption about the original message
S|	# NB (1.1) 𝑆𝑆| ≡

=E?@S (1.16)
				S| ≡ #a																																									(1.2) B| ≡

IJ
?@S (1.17)

S| ≡ #q (1.3) 𝐵𝐵| ≡
=L?@B (1.18)

S| ≡ # NA (1.4) 𝐴𝐴| ≡
=>
?@S (1.19)

𝑆𝑆| ≡ #M (1.5) 𝐴𝐴| ≡
=A
?@A (1.20)

B| ≡ # NA (1.6) B| ≡
IA
?@A (1.21)

𝐴𝐴| ≡ # NA (1.7) A| ≡
=L?@B (1.22)

𝑆𝑆| ≡
=B
?@B (1.8) 𝐵𝐵	| ≡ S| ⟹

=>
?@ S (1.23)

S	|≡ B| ⟹
=>
?@ S (1.9) A	|≡ S| ⟹	

=>
?@ S	 (1.24)

B	|≡ A| ⟹	
=O?@ A																						(1.10) 					A	|≡ B| ⟹

=O?@ 𝐴𝐴																							(1.24)

C| ≡
=E?@ S (1.11) C| ≡ #(NC)																														(1.26)

C	| ≡ 	S	 ⟹
=>
?@ S (1.12) B| ≡ 𝐶𝐶 ⟹

=L?@B (1.27)

𝐵𝐵	| ≡ S| ⟹
=>
?@ 𝑆𝑆 (1.13) C	|≡ B| ⟹	

=L?@ B (1.28)

S| ≡
=T
?@ C (1.14) C	| ≡ #(NB) (1.29)

						B| ≡
=U?@C																																	(1.15) 𝑆𝑆	|≡ C| ⟹	

=>
?@ S (1.30)

			

Apply rule:

MSG 2: B ⊳ {NB, # (a, q),
=>
?@S} KS-1from S

By applying equation (1) to message (2), produces the following:
	W|≡

XE?@J	,W	⊳{	YW	,#	(Z	,[),
XE
?@W}IJ\]

W	|≡J|∼
XE?@J	

																																	(1,2)

By applying equation (2) to message (2), produces the following:
W	|≡#(Y^),W	|≡J|∼

XE?@J		

W	|≡J|≡
XE?@J

																																											 (2.2)

By applying equation (3) to message (2), produces the following:
W	|≡	J	⟹

XE
?@J	,_	|≡`|≡a

W	|≡
XE?@J

																																			(3.2)

The result from equation (2.2) and (3.2) are: B	|≡ S| ≡
=E?@ S																																						 (2.2.1)

B	| ≡
=E?@ S																																																								 (3.2.1)

MSG 3: S ⊳ {NA, YB,	
=>
?@S} KB

By applying equation (1) to message (3), produces the following:
J|≡

XL
?⎯@W	,c	Y^	,dW	,

XE
?@JeIW

J	|≡W|∼
XE
?@J

																																									(1.3)

By applying equation (2) to message (3), produces the following:
_	|≡#(fg),J	|≡W|∼

XE
?@J

J	|≡W|≡
XE?@J

																																																	(2.3)

By applying equation (3) to message (3), produces the following:
>	|≡W|⟹	

XE
?@J,J	|≡W|≡

XE
?@J

J	|≡
XE?@J

																									 (3.3)

The result from equation (2.3) and (3.3) are: S	|≡ B| ≡
=>
?@ S (2.3.1)

 S	| ≡
Ih?@ S																																																						(3.3.1)

MSG 4: A ⊳ {NA, # (M) ,
=>
?@S } KS-1

By applying equation (1) to message (4), produces the following:
^|≡

iE
?@J,^	⊳	{	Y^,#(j)	,

XE
?@J	}	IJ\]	

^	|≡J|∼
XE
?@J	

																				(1.4)

By applying equation (2) to message (4), produces the following:

4. Security and Performance Analysis
4.1. Security analysis by BAN logic
Burrows-Abadi-Needham(BAN) Logic is One of the methods for analyzing

authentication protocols; It is a logic for reasoning about authentication protocol in
terms of belief statements (Abadi, M., & Tuttle, M. R., 1991, August, Wessels, J., & BV,
C. F., 2001). It is using different symbols in the cryptographic scheme as follows:
①	P believes X: P |≡X;
②	p receive X: p ⊳X;
③ P send X: P|～X;
④ P controls X: P | ⇒ X;
⑤ X is fresh: #(X);

⑥ P and Q shared by the key K: p
,
↔ Q；

⑦ ciphertext of X encrypted by the key K: {X}K;
Rule of BAN logic:
Message meaning: This rule allow the identity of the sender of an encrypted

message to be deduced from the encryption key used.

p	| ≡ 	Q
,
↔ p, p	 ⊳ {x},

p	| ≡ Q| ∼ x 																																															(1)

The key K shares Q and P. So, if P receives a message encrypted by K, it must
come from Q (P ignores its messages).

Nonce-verification:-This rule allow belief from freshly uttered message to be derived
p	| ≡ #(x), p	| ≡ Q| ∼ x

p	| ≡ Q| ≡ x 																																												(2)

Jurisdiction rule: This rule allows belief based on jurisdiction to be derived .

p	| ≡ 	Q x,⟹
, p	| ≡ Q| ≡ x
p	| ≡ x 																																									(3)

The idealized protocol as follows:
Message (1) and message (7) will be deleted because it does not contain an

encrypted message. The rest of the messages will be represented as follow:

MSG 2: B ⊳{NB, # (a, q),
=>
?@S} KS-1

MSG 3: S ⊳{NA, YB,	
=>
?@S} KB

MSG 4: A ⊳{NA, # (M),
=>
?@S} KS-1

MSG 5: B ⊳ {NA, C1, C2,	
=A
?@A} KA

MSG 6: A ⊳ {K, M',
=A
?@A} KB

MSG 8: C⊳ {NC, # (a1, q1),
=>
?@ S} KS-1

MSG 9: S 	⊳{NB, Yc,
=>
?@S} KC

MSG 10: B ⊳{NB, # (M),
=>
?@S} KS-1

MSG 11: C ⊳{NB, C1, C2,
=B
?@B} KB

MSG 12: B ⊳{K, M',
=B
?@B} KC

State assumption about the original message
S|	# NB (1.1) 𝑆𝑆| ≡

=E?@S (1.16)
				S| ≡ #a																																									(1.2) B| ≡

IJ
?@S (1.17)

S| ≡ #q (1.3) 𝐵𝐵| ≡
=L?@B (1.18)

S| ≡ # NA (1.4) 𝐴𝐴| ≡
=>
?@S (1.19)

𝑆𝑆| ≡ #M (1.5) 𝐴𝐴| ≡
=A
?@A (1.20)

B| ≡ # NA (1.6) B| ≡
IA
?@A (1.21)

𝐴𝐴| ≡ # NA (1.7) A| ≡
=L?@B (1.22)

𝑆𝑆| ≡
=B
?@B (1.8) 𝐵𝐵	| ≡ S| ⟹

=>
?@ S (1.23)

S	|≡ B| ⟹
=>
?@ S (1.9) A	|≡ S| ⟹	

=>
?@ S	 (1.24)

B	|≡ A| ⟹	
=O?@ A																						(1.10) 					A	|≡ B| ⟹

=O?@ 𝐴𝐴																							(1.24)

C| ≡
=E?@ S (1.11) C| ≡ #(NC)																														(1.26)

C	| ≡ 	S	 ⟹
=>
?@ S (1.12) B| ≡ 𝐶𝐶 ⟹

=L?@B (1.27)

𝐵𝐵	| ≡ S| ⟹
=>
?@ 𝑆𝑆 (1.13) C	|≡ B| ⟹	

=L?@ B (1.28)

S| ≡
=T
?@ C (1.14) C	| ≡ #(NB) (1.29)

						B| ≡
=U?@C																																	(1.15) 𝑆𝑆	|≡ C| ⟹	

=>
?@ S (1.30)

			

Apply rule:

MSG 2: B ⊳ {NB, # (a, q),
=>
?@S} KS-1from S

By applying equation (1) to message (2), produces the following:
	W|≡

XE?@J	,W	⊳{	YW	,#	(Z	,[),
XE
?@W}IJ\]

W	|≡J|∼
XE?@J	

																																	(1,2)

By applying equation (2) to message (2), produces the following:
W	|≡#(Y^),W	|≡J|∼

XE?@J		

W	|≡J|≡
XE?@J

																																											 (2.2)

By applying equation (3) to message (2), produces the following:
W	|≡	J	⟹

XE
?@J	,_	|≡`|≡a

W	|≡
XE?@J

																																			(3.2)

The result from equation (2.2) and (3.2) are: B	|≡ S| ≡
=E?@ S																																						 (2.2.1)

B	| ≡
=E?@ S																																																								 (3.2.1)

MSG 3: S ⊳ {NA, YB,	
=>
?@S} KB

By applying equation (1) to message (3), produces the following:
J|≡

XL
?⎯@W	,c	Y^	,dW	,

XE
?@JeIW

J	|≡W|∼
XE
?@J

																																									(1.3)

By applying equation (2) to message (3), produces the following:
_	|≡#(fg),J	|≡W|∼

XE
?@J

J	|≡W|≡
XE?@J

																																																	(2.3)

By applying equation (3) to message (3), produces the following:
>	|≡W|⟹	

XE
?@J,J	|≡W|≡

XE
?@J

J	|≡
XE?@J

																									 (3.3)

The result from equation (2.3) and (3.3) are: S	|≡ B| ≡
=>
?@ S (2.3.1)

 S	| ≡
Ih?@ S																																																						(3.3.1)

MSG 4: A ⊳ {NA, # (M) ,
=>
?@S } KS-1

By applying equation (1) to message (4), produces the following:
^|≡

iE
?@J,^	⊳	{	Y^,#(j)	,

XE
?@J	}	IJ\]	

^	|≡J|∼
XE
?@J	

																				(1.4)

By applying equation (2) to message (4), produces the following:

Azerbaijan Journal of High Performance Computing, 2 (2), 2019

150

4. Security and Performance Analysis
4.1. Security analysis by BAN logic
Burrows-Abadi-Needham(BAN) Logic is One of the methods for analyzing

authentication protocols; It is a logic for reasoning about authentication protocol in
terms of belief statements (Abadi, M., & Tuttle, M. R., 1991, August, Wessels, J., & BV,
C. F., 2001). It is using different symbols in the cryptographic scheme as follows:
①	P believes X: P |≡X;
②	p receive X: p ⊳X;
③ P send X: P|～X;
④ P controls X: P | ⇒ X;
⑤ X is fresh: #(X);

⑥ P and Q shared by the key K: p
,
↔ Q；

⑦ ciphertext of X encrypted by the key K: {X}K;
Rule of BAN logic:
Message meaning: This rule allow the identity of the sender of an encrypted

message to be deduced from the encryption key used.

p	| ≡ 	Q
,
↔ p, p	 ⊳ {x},

p	| ≡ Q| ∼ x 																																															(1)

The key K shares Q and P. So, if P receives a message encrypted by K, it must
come from Q (P ignores its messages).

Nonce-verification:-This rule allow belief from freshly uttered message to be derived
p	| ≡ #(x), p	| ≡ Q| ∼ x

p	| ≡ Q| ≡ x 																																												(2)

Jurisdiction rule: This rule allows belief based on jurisdiction to be derived .

p	| ≡ 	Q x,⟹
, p	| ≡ Q| ≡ x
p	| ≡ x 																																									(3)

The idealized protocol as follows:
Message (1) and message (7) will be deleted because it does not contain an

encrypted message. The rest of the messages will be represented as follow:

MSG 2: B ⊳{NB, # (a, q),
=>
?@S} KS-1

MSG 3: S ⊳{NA, YB,	
=>
?@S} KB

MSG 4: A ⊳{NA, # (M),
=>
?@S} KS-1

MSG 5: B ⊳ {NA, C1, C2,	
=A
?@A} KA

MSG 6: A ⊳ {K, M',
=A
?@A} KB

MSG 8: C⊳ {NC, # (a1, q1),
=>
?@ S} KS-1

MSG 9: S 	⊳{NB, Yc,
=>
?@S} KC

MSG 10: B ⊳{NB, # (M),
=>
?@S} KS-1

MSG 11: C ⊳{NB, C1, C2,
=B
?@B} KB

MSG 12: B ⊳{K, M',
=B
?@B} KC

State assumption about the original message
S|	# NB (1.1) 𝑆𝑆| ≡

=E?@S (1.16)
				S| ≡ #a																																									(1.2) B| ≡

IJ
?@S (1.17)

S| ≡ #q (1.3) 𝐵𝐵| ≡
=L?@B (1.18)

S| ≡ # NA (1.4) 𝐴𝐴| ≡
=>
?@S (1.19)

𝑆𝑆| ≡ #M (1.5) 𝐴𝐴| ≡
=A
?@A (1.20)

B| ≡ # NA (1.6) B| ≡
IA
?@A (1.21)

𝐴𝐴| ≡ # NA (1.7) A| ≡
=L?@B (1.22)

𝑆𝑆| ≡
=B
?@B (1.8) 𝐵𝐵	| ≡ S| ⟹

=>
?@ S (1.23)

S	|≡ B| ⟹
=>
?@ S (1.9) A	|≡ S| ⟹	

=>
?@ S	 (1.24)

B	|≡ A| ⟹	
=O?@ A																						(1.10) 					A	|≡ B| ⟹

=O?@ 𝐴𝐴																							(1.24)

C| ≡
=E?@ S (1.11) C| ≡ #(NC)																														(1.26)

C	| ≡ 	S	 ⟹
=>
?@ S (1.12) B| ≡ 𝐶𝐶 ⟹

=L?@B (1.27)

𝐵𝐵	| ≡ S| ⟹
=>
?@ 𝑆𝑆 (1.13) C	|≡ B| ⟹	

=L?@ B (1.28)

S| ≡
=T
?@ C (1.14) C	| ≡ #(NB) (1.29)

						B| ≡
=U?@C																																	(1.15) 𝑆𝑆	|≡ C| ⟹	

=>
?@ S (1.30)

			

Apply rule:

MSG 2: B ⊳ {NB, # (a, q),
=>
?@S} KS-1from S

By applying equation (1) to message (2), produces the following:
	W|≡

XE?@J	,W	⊳{	YW	,#	(Z	,[),
XE
?@W}IJ\]

W	|≡J|∼
XE?@J	

																																	(1,2)

By applying equation (2) to message (2), produces the following:
W	|≡#(Y^),W	|≡J|∼

XE?@J		

W	|≡J|≡
XE?@J

																																											 (2.2)

By applying equation (3) to message (2), produces the following:
W	|≡	J	⟹

XE
?@J	,_	|≡`|≡a

W	|≡
XE?@J

																																			(3.2)

The result from equation (2.2) and (3.2) are: B	|≡ S| ≡
=E?@ S																																						 (2.2.1)

B	| ≡
=E?@ S																																																								 (3.2.1)

MSG 3: S ⊳ {NA, YB,	
=>
?@S} KB

By applying equation (1) to message (3), produces the following:
J|≡

XL
?⎯@W	,c	Y^	,dW	,

XE
?@JeIW

J	|≡W|∼
XE
?@J

																																									(1.3)

By applying equation (2) to message (3), produces the following:
_	|≡#(fg),J	|≡W|∼

XE
?@J

J	|≡W|≡
XE?@J

																																																	(2.3)

By applying equation (3) to message (3), produces the following:
>	|≡W|⟹	

XE
?@J,J	|≡W|≡

XE
?@J

J	|≡
XE?@J

																									 (3.3)

The result from equation (2.3) and (3.3) are: S	|≡ B| ≡
=>
?@ S (2.3.1)

 S	| ≡
Ih?@ S																																																						(3.3.1)

MSG 4: A ⊳ {NA, # (M) ,
=>
?@S } KS-1

By applying equation (1) to message (4), produces the following:
^|≡

iE
?@J,^	⊳	{	Y^,#(j)	,

XE
?@J	}	IJ\]	

^	|≡J|∼
XE
?@J	

																				(1.4)

By applying equation (2) to message (4), produces the following:

!	|≡#('!),!	|≡*|	∼
,-
./*	

!	|≡*|≡	
,-
./*	

																																																				(2.4)

By applying equation (3) to message (4), produces the following:

	0	|≡*|⟹
,-
./*	,2	|≡3|≡4

!	|≡	
,-
./*	

																																								(3.4)

The result from equation (2.4) and (3.4) are: A	|≡ S| ≡	
78
./ S																																				 (2.4.1)

 A	| ≡
7-./ S (3.4.1)

MSG 5: B ⊳ {NA, C1, C2,	
70
./A} KA

By applying equation (1) to message (5), produces the following:
	:|≡

;<
./!	,:	⊳	{	'!	,>?,>@,

,<.⎯/!}	C!

:	|≡!|∼	
,<.⎯/!

																										 (1.5)

By applying equation (2) to message (5), produces the following:
:	|≡#('!),:	|≡!|∼	

,<.⎯/!

:	|≡!|≡	
,<.⎯/!

																																									 (2.5)

By applying equation (3) to message (5), produces the following:
:	|≡!|⟹	

,<.⎯/!	,:	|≡!|≡	
,<.⎯/!

:	|≡
,<.⎯/!

																																			 (3.5)

The result from equation (2.5) and (3.5) are: B	|≡ A| ≡	
7<./ A																																		(2.5.1)

B	| ≡
7<./ A																																															(3.5.1)

MSG 6: A ⊳ {K, M',
7<./ 𝐴𝐴 } KB

By applying equation (1) to message (6), produces the following:
!|≡

,F.⎯/:,!	⊳	G	C,HI,
,<.⎯/0	JC:	

!	|≡:|∼
,<.⎯/0

																											 (1.6)

By applying equation (2) to message (6), produces the following:
!	|≡#('!),!	|≡:|∼

,<.⎯/0

!	|≡:|≡
,<.⎯/0

																																					 (2.6)

By applying equation (3) to message (6), produces the following:
!	|≡:|⟹

,<.⎯/!	,!	|≡:|≡
,<.⎯/0

!	|≡
<
→!

																																	 (3.6)

The result from equation (2.6) and (3.6) are:

A	|≡ B| ≡
7<./ 𝐴𝐴																																																			 (2.6.1)

 A	| ≡
0
→ A																																																									 (3.6.1)

MSG 8: C ⊳ {	NC	, #	(a1	, q1), KS	} KS-1
By applying equation (1) to message (8), produces the following:

	>|≡
,-./*	,>	⊳	{	'>	,#	(R?	,S?),C*	}	C*TU

V	|≡*|∼
,-./*	

																																		(1.8)

By applying equation (2) to message (8), produces the following:
>|≡#('>),>	|≡*|∼

,-./*		

>|≡*|≡
,-./*

																																																(2.8)

By applying equation (3) to message (8), produces the following:
>	|≡	*	⟹

,-
./*	,>|≡*|≡

,-./*

>	|≡
,-./*

																																											(3.8)

The result from equation (2.8) and (3.8) are: C	|≡ S| ≡
7-./ S																																				 (2.8.1)

 C| ≡
7-./ S (3.8.1)

MSG 9: S	 ⊳ 	 {	NB	, YC	,
78
./ S}	KC

By applying equation (1) to message (9), produces the following:
*|≡

,X
./>	,*	⊳	{	':	,Y>	,

,-
./*}	C>	

*	|≡>|∼
,-
./*

																										 (1.9)

By applying equation (2) to message (9), produces the following:
*	|≡#(':),*	|≡>|∼

,-
./*		

*	|≡>|≡
,-./*

																																			(2.9)

By applying equation (3) to message (9), produces the following:
8	|≡>|⟹	

,-
./*,*	|≡>|≡

,-
./*

*	|≡
,-./*

																																														(3.9)

The result from equation (2.9) and (3.9) are:	S	|≡ C| ≡
78
./ S (2.9.1)

 S	| ≡
7-./ S (3.9.1)

MSG 10: S ® B	 ⊳ 	 {	NB, #(M)	,
78
./ S	}	KS-1

By applying equation (1) to message (10), produces the following:

𝑅𝑅1 = :|≡
;-
./*,:	⊳	{	':,#(H)	,

,-
./*	}	C*]?	

:	|≡*|∼
,-
./*	

																					(1.10)

By applying equation (2) to message (10), produces the following:

𝑅𝑅2 = :	|≡#(':),:	|≡*|	∼
,-
./*	

:	|≡*|≡	
,-
./*	

																																										(2.10)

By applying equation (3) to message (10), produces the following:

𝑅𝑅3 =	`	|≡*|⟹
,-
./*,:	|≡*|≡	

,-
./*

:	|≡	
,-
./*	

																																 (3.10)

The result from equation (2.10) and (3.10) is: B	|≡ S| ≡	
78
./ S	 (2.10.1)

 B	| ≡
7-./ S (3.10.1)

MSG 11: B ® C	 ⊳ 	 {	NB	, C1, C2,
7F./ B} KB

By applying equation (1) to message (11), produces the following:
	:|≡

;F
./:	,>	⊳	{	':	,>?,>@,

,F.⎯/:}	C:

>	|≡:|∼	
,F.⎯/:

																												(1.11)

By applying equation (2) to message (11), produces the following:
>	|≡#(':),>	|≡:|∼	

,F.⎯/:

>	|≡:|≡	
,F.⎯/:

																																								(2.11)

By applying equation (3) to message (11), produces the following:
>	|≡:|⟹	

,F.⎯/:,V|≡:|≡	
,F.⎯/:

>|≡
,F.⎯/:

																																(3.11)

The result from equation (2.11) and (3.11) is: C	|≡ B| ≡	
7F./ B																														 (2.11.1)

 C| ≡
7F./ B (3.11.1)

MSG 12: C® B	 ⊳ 	 a	K,Mb,
7F./ 𝐵𝐵	d} KC

By applying equation (1) to message (12), produces the following:
:|≡

,X.⎯/>,:	⊳	G	C,HI,
,F.⎯/`	JC>	

:	|≡>|∼
,F.⎯/`

																														 (1.12)

By applying equation (2) to message (12), produces the following:
:	|≡#(':),:	|≡>|∼

,F.⎯/`

:	|≡>|≡
,F.⎯/`

																																			 (2.12.)

By applying equation (3) to message (12), produces the following:
:	|≡>|⟹

,F.⎯/:	,:	|≡>|≡
,F.⎯/`

:	|≡
F
→:

																																										(3.12)

The result from equation (2.12) and (3.12) is B	| ≡ C| ≡
7F./𝐵𝐵 (2.12.1)

Alsalhi et al.

151

!	|≡#('!),!	|≡*|	∼
,-
./*	

!	|≡*|≡	
,-
./*	

																																																				(2.4)

By applying equation (3) to message (4), produces the following:

	0	|≡*|⟹
,-
./*	,2	|≡3|≡4

!	|≡	
,-
./*	

																																								(3.4)

The result from equation (2.4) and (3.4) are: A	|≡ S| ≡	
78
./ S																																				 (2.4.1)

 A	| ≡
7-./ S (3.4.1)

MSG 5: B ⊳ {NA, C1, C2,	
70
./A} KA

By applying equation (1) to message (5), produces the following:
	:|≡

;<
./!	,:	⊳	{	'!	,>?,>@,

,<.⎯/!}	C!

:	|≡!|∼	
,<.⎯/!

																										 (1.5)

By applying equation (2) to message (5), produces the following:
:	|≡#('!),:	|≡!|∼	

,<.⎯/!

:	|≡!|≡	
,<.⎯/!

																																									 (2.5)

By applying equation (3) to message (5), produces the following:
:	|≡!|⟹	

,<.⎯/!	,:	|≡!|≡	
,<.⎯/!

:	|≡
,<.⎯/!

																																			 (3.5)

The result from equation (2.5) and (3.5) are: B	|≡ A| ≡	
7<./ A																																		(2.5.1)

B	| ≡
7<./ A																																															(3.5.1)

MSG 6: A ⊳ {K, M',
7<./ 𝐴𝐴 } KB

By applying equation (1) to message (6), produces the following:
!|≡

,F.⎯/:,!	⊳	G	C,HI,
,<.⎯/0	JC:	

!	|≡:|∼
,<.⎯/0

																											 (1.6)

By applying equation (2) to message (6), produces the following:
!	|≡#('!),!	|≡:|∼

,<.⎯/0

!	|≡:|≡
,<.⎯/0

																																					 (2.6)

By applying equation (3) to message (6), produces the following:
!	|≡:|⟹

,<.⎯/!	,!	|≡:|≡
,<.⎯/0

!	|≡
<
→!

																																	 (3.6)

The result from equation (2.6) and (3.6) are:

A	|≡ B| ≡
7<./ 𝐴𝐴																																																			 (2.6.1)

 A	| ≡
0
→ A																																																									 (3.6.1)

MSG 8: C ⊳ {	NC	, #	(a1	, q1), KS	} KS-1
By applying equation (1) to message (8), produces the following:

	>|≡
,-./*	,>	⊳	{	'>	,#	(R?	,S?),C*	}	C*TU

V	|≡*|∼
,-./*	

																																		(1.8)

By applying equation (2) to message (8), produces the following:
>|≡#('>),>	|≡*|∼

,-./*		

>|≡*|≡
,-./*

																																																(2.8)

By applying equation (3) to message (8), produces the following:
>	|≡	*	⟹

,-
./*	,>|≡*|≡

,-./*

>	|≡
,-./*

																																											(3.8)

The result from equation (2.8) and (3.8) are: C	|≡ S| ≡
7-./ S																																				 (2.8.1)

 C| ≡
7-./ S (3.8.1)

MSG 9: S	 ⊳ 	 {	NB	, YC	,
78
./ S}	KC

By applying equation (1) to message (9), produces the following:
*|≡

,X
./>	,*	⊳	{	':	,Y>	,

,-
./*}	C>	

*	|≡>|∼
,-
./*

																										 (1.9)

By applying equation (2) to message (9), produces the following:
*	|≡#(':),*	|≡>|∼

,-
./*		

*	|≡>|≡
,-./*

																																			(2.9)

By applying equation (3) to message (9), produces the following:
8	|≡>|⟹	

,-
./*,*	|≡>|≡

,-
./*

*	|≡
,-./*

																																														(3.9)

The result from equation (2.9) and (3.9) are:	S	|≡ C| ≡
78
./ S (2.9.1)

 S	| ≡
7-./ S (3.9.1)

MSG 10: S ® B	 ⊳ 	 {	NB, #(M)	,
78
./ S	}	KS-1

By applying equation (1) to message (10), produces the following:

𝑅𝑅1 = :|≡
;-
./*,:	⊳	{	':,#(H)	,

,-
./*	}	C*]?	

:	|≡*|∼
,-
./*	

																					(1.10)

By applying equation (2) to message (10), produces the following:

𝑅𝑅2 = :	|≡#(':),:	|≡*|	∼
,-
./*	

:	|≡*|≡	
,-
./*	

																																										(2.10)

By applying equation (3) to message (10), produces the following:

𝑅𝑅3 =	`	|≡*|⟹
,-
./*,:	|≡*|≡	

,-
./*

:	|≡	
,-
./*	

																																 (3.10)

The result from equation (2.10) and (3.10) is: B	|≡ S| ≡	
78
./ S	 (2.10.1)

 B	| ≡
7-./ S (3.10.1)

MSG 11: B ® C	 ⊳ 	 {	NB	, C1, C2,
7F./ B} KB

By applying equation (1) to message (11), produces the following:
	:|≡

;F
./:	,>	⊳	{	':	,>?,>@,

,F.⎯/:}	C:

>	|≡:|∼	
,F.⎯/:

																												(1.11)

By applying equation (2) to message (11), produces the following:
>	|≡#(':),>	|≡:|∼	

,F.⎯/:

>	|≡:|≡	
,F.⎯/:

																																								(2.11)

By applying equation (3) to message (11), produces the following:
>	|≡:|⟹	

,F.⎯/:,V|≡:|≡	
,F.⎯/:

>|≡
,F.⎯/:

																																(3.11)

The result from equation (2.11) and (3.11) is: C	|≡ B| ≡	
7F./ B																														 (2.11.1)

 C| ≡
7F./ B (3.11.1)

MSG 12: C® B	 ⊳ 	 a	K,Mb,
7F./ 𝐵𝐵	d} KC

By applying equation (1) to message (12), produces the following:
:|≡

,X.⎯/>,:	⊳	G	C,HI,
,F.⎯/`	JC>	

:	|≡>|∼
,F.⎯/`

																														 (1.12)

By applying equation (2) to message (12), produces the following:
:	|≡#(':),:	|≡>|∼

,F.⎯/`

:	|≡>|≡
,F.⎯/`

																																			 (2.12.)

By applying equation (3) to message (12), produces the following:
:	|≡>|⟹

,F.⎯/:	,:	|≡>|≡
,F.⎯/`

:	|≡
F
→:

																																										(3.12)

The result from equation (2.12) and (3.12) is B	| ≡ C| ≡
7F./𝐵𝐵 (2.12.1)

Azerbaijan Journal of High Performance Computing, 2 (2), 2019

152

!	|≡#('!),!	|≡*|	∼
,-
./*	

!	|≡*|≡	
,-
./*	

																																																				(2.4)

By applying equation (3) to message (4), produces the following:

	0	|≡*|⟹
,-
./*	,2	|≡3|≡4

!	|≡	
,-
./*	

																																								(3.4)

The result from equation (2.4) and (3.4) are: A	|≡ S| ≡	
78
./ S																																				 (2.4.1)

 A	| ≡
7-./ S (3.4.1)

MSG 5: B ⊳ {NA, C1, C2,	
70
./A} KA

By applying equation (1) to message (5), produces the following:
	:|≡

;<
./!	,:	⊳	{	'!	,>?,>@,

,<.⎯/!}	C!

:	|≡!|∼	
,<.⎯/!

																										 (1.5)

By applying equation (2) to message (5), produces the following:
:	|≡#('!),:	|≡!|∼	

,<.⎯/!

:	|≡!|≡	
,<.⎯/!

																																									 (2.5)

By applying equation (3) to message (5), produces the following:
:	|≡!|⟹	

,<.⎯/!	,:	|≡!|≡	
,<.⎯/!

:	|≡
,<.⎯/!

																																			 (3.5)

The result from equation (2.5) and (3.5) are: B	|≡ A| ≡	
7<./ A																																		(2.5.1)

B	| ≡
7<./ A																																															(3.5.1)

MSG 6: A ⊳ {K, M',
7<./ 𝐴𝐴 } KB

By applying equation (1) to message (6), produces the following:
!|≡

,F.⎯/:,!	⊳	G	C,HI,
,<.⎯/0	JC:	

!	|≡:|∼
,<.⎯/0

																											 (1.6)

By applying equation (2) to message (6), produces the following:
!	|≡#('!),!	|≡:|∼

,<.⎯/0

!	|≡:|≡
,<.⎯/0

																																					 (2.6)

By applying equation (3) to message (6), produces the following:
!	|≡:|⟹

,<.⎯/!	,!	|≡:|≡
,<.⎯/0

!	|≡
<
→!

																																	 (3.6)

The result from equation (2.6) and (3.6) are:

A	|≡ B| ≡
7<./ 𝐴𝐴																																																			 (2.6.1)

 A	| ≡
0
→ A																																																									 (3.6.1)

MSG 8: C ⊳ {	NC	, #	(a1	, q1), KS	} KS-1
By applying equation (1) to message (8), produces the following:

	>|≡
,-./*	,>	⊳	{	'>	,#	(R?	,S?),C*	}	C*TU

V	|≡*|∼
,-./*	

																																		(1.8)

By applying equation (2) to message (8), produces the following:
>|≡#('>),>	|≡*|∼

,-./*		

>|≡*|≡
,-./*

																																																(2.8)

By applying equation (3) to message (8), produces the following:
>	|≡	*	⟹

,-
./*	,>|≡*|≡

,-./*

>	|≡
,-./*

																																											(3.8)

The result from equation (2.8) and (3.8) are: C	|≡ S| ≡
7-./ S																																				 (2.8.1)

 C| ≡
7-./ S (3.8.1)

MSG 9: S	 ⊳ 	 {	NB	, YC	,
78
./ S}	KC

By applying equation (1) to message (9), produces the following:
*|≡

,X
./>	,*	⊳	{	':	,Y>	,

,-
./*}	C>	

*	|≡>|∼
,-
./*

																										 (1.9)

By applying equation (2) to message (9), produces the following:
*	|≡#(':),*	|≡>|∼

,-
./*		

*	|≡>|≡
,-./*

																																			(2.9)

By applying equation (3) to message (9), produces the following:
8	|≡>|⟹	

,-
./*,*	|≡>|≡

,-
./*

*	|≡
,-./*

																																														(3.9)

The result from equation (2.9) and (3.9) are:	S	|≡ C| ≡
78
./ S (2.9.1)

 S	| ≡
7-./ S (3.9.1)

MSG 10: S ® B	 ⊳ 	 {	NB, #(M)	,
78
./ S	}	KS-1

By applying equation (1) to message (10), produces the following:

𝑅𝑅1 = :|≡
;-
./*,:	⊳	{	':,#(H)	,

,-
./*	}	C*]?	

:	|≡*|∼
,-
./*	

																					(1.10)

By applying equation (2) to message (10), produces the following:

𝑅𝑅2 = :	|≡#(':),:	|≡*|	∼
,-
./*	

:	|≡*|≡	
,-
./*	

																																										(2.10)

By applying equation (3) to message (10), produces the following:

𝑅𝑅3 =	 `	|≡*|⟹
,-
./*,:	|≡*|≡	

,-
./*

:	|≡	
,-
./*	

																																 (3.10)

The result from equation (2.10) and (3.10) is: B	|≡ S| ≡	
78
./ S	 (2.10.1)

 B	| ≡
7-./ S (3.10.1)

MSG 11: B ® C	 ⊳ 	 {	NB	, C1, C2,
7F./ B} KB

By applying equation (1) to message (11), produces the following:
	:|≡

;F
./:	,>	⊳	{	':	,>?,>@,

,F.⎯/:}	C:

>	|≡:|∼	
,F.⎯/:

																												(1.11)

By applying equation (2) to message (11), produces the following:
>	|≡#(':),>	|≡:|∼	

,F.⎯/:

>	|≡:|≡	
,F.⎯/:

																																								(2.11)

By applying equation (3) to message (11), produces the following:
>	|≡:|⟹	

,F.⎯/:,V|≡:|≡	
,F.⎯/:

>|≡
,F.⎯/:

																																(3.11)

The result from equation (2.11) and (3.11) is: C	|≡ B| ≡	
7F./ B																														 (2.11.1)

 C| ≡
7F./ B (3.11.1)

MSG 12: C® B	 ⊳ 	 a	K,Mb,
7F./ 𝐵𝐵	d} KC

By applying equation (1) to message (12), produces the following:
:|≡

,X.⎯/>,:	⊳	G	C,HI,
,F.⎯/`	JC>	

:	|≡>|∼
,F.⎯/`

																														 (1.12)

By applying equation (2) to message (12), produces the following:
:	|≡#(':),:	|≡>|∼

,F.⎯/`

:	|≡>|≡
,F.⎯/`

																																			 (2.12.)

By applying equation (3) to message (12), produces the following:
:	|≡>|⟹

,F.⎯/:	,:	|≡>|≡
,F.⎯/`

:	|≡
F
→:

																																										(3.12)

The result from equation (2.12) and (3.12) is B	| ≡ C| ≡
7F./𝐵𝐵 (2.12.1)

Alsalhi et al.

153

!	|≡#('!),!	|≡*|	∼
,-
./*	

!	|≡*|≡	
,-
./*	

																																																				(2.4)

By applying equation (3) to message (4), produces the following:

	0	|≡*|⟹
,-
./*	,2	|≡3|≡4

!	|≡	
,-
./*	

																																								(3.4)

The result from equation (2.4) and (3.4) are: A	|≡ S| ≡	
78
./ S																																				 (2.4.1)

 A	| ≡
7-./ S (3.4.1)

MSG 5: B ⊳ {NA, C1, C2,	
70
./A} KA

By applying equation (1) to message (5), produces the following:
	:|≡

;<
./!	,:	⊳	{	'!	,>?,>@,

,<.⎯/!}	C!

:	|≡!|∼	
,<.⎯/!

																										 (1.5)

By applying equation (2) to message (5), produces the following:
:	|≡#('!),:	|≡!|∼	

,<.⎯/!

:	|≡!|≡	
,<.⎯/!

																																									 (2.5)

By applying equation (3) to message (5), produces the following:
:	|≡!|⟹	

,<.⎯/!	,:	|≡!|≡	
,<.⎯/!

:	|≡
,<.⎯/!

																																			 (3.5)

The result from equation (2.5) and (3.5) are: B	|≡ A| ≡	
7<./ A																																		(2.5.1)

B	| ≡
7<./ A																																															(3.5.1)

MSG 6: A ⊳ {K, M',
7<./ 𝐴𝐴 } KB

By applying equation (1) to message (6), produces the following:
!|≡

,F.⎯/:,!	⊳	G	C,HI,
,<.⎯/0	JC:	

!	|≡:|∼
,<.⎯/0

																											 (1.6)

By applying equation (2) to message (6), produces the following:
!	|≡#('!),!	|≡:|∼

,<.⎯/0

!	|≡:|≡
,<.⎯/0

																																					 (2.6)

By applying equation (3) to message (6), produces the following:
!	|≡:|⟹

,<.⎯/!	,!	|≡:|≡
,<.⎯/0

!	|≡
<
→!

																																	 (3.6)

The result from equation (2.6) and (3.6) are:

A	|≡ B| ≡
7<./ 𝐴𝐴																																																			 (2.6.1)

 A	| ≡
0
→ A																																																									 (3.6.1)

MSG 8: C ⊳ {	NC	, #	(a1	, q1), KS	} KS-1
By applying equation (1) to message (8), produces the following:

	>|≡
,-./*	,>	⊳	{	'>	,#	(R?	,S?),C*	}	C*TU

V	|≡*|∼
,-./*	

																																		(1.8)

By applying equation (2) to message (8), produces the following:
>|≡#('>),>	|≡*|∼

,-./*		

>|≡*|≡
,-./*

																																																(2.8)

By applying equation (3) to message (8), produces the following:
>	|≡	*	⟹

,-
./*	,>|≡*|≡

,-./*

>	|≡
,-./*

																																											(3.8)

The result from equation (2.8) and (3.8) are: C	|≡ S| ≡
7-./ S																																				 (2.8.1)

 C| ≡
7-./ S (3.8.1)

MSG 9: S	 ⊳ 	 {	NB	, YC	,
78
./ S}	KC

By applying equation (1) to message (9), produces the following:
*|≡

,X
./>	,*	⊳	{	':	,Y>	,

,-
./*}	C>	

*	|≡>|∼
,-
./*

																										 (1.9)

By applying equation (2) to message (9), produces the following:
*	|≡#(':),*	|≡>|∼

,-
./*		

*	|≡>|≡
,-./*

																																			(2.9)

By applying equation (3) to message (9), produces the following:
8	|≡>|⟹	

,-
./*,*	|≡>|≡

,-
./*

*	|≡
,-./*

																																														(3.9)

The result from equation (2.9) and (3.9) are:	S	|≡ C| ≡
78
./ S (2.9.1)

 S	| ≡
7-./ S (3.9.1)

MSG 10: S ® B	 ⊳ 	 {	NB, #(M)	,
78
./ S	}	KS-1

By applying equation (1) to message (10), produces the following:

𝑅𝑅1 = :|≡
;-
./*,:	⊳	{	':,#(H)	,

,-
./*	}	C*]?	

:	|≡*|∼
,-
./*	

																					(1.10)

By applying equation (2) to message (10), produces the following:

𝑅𝑅2 = :	|≡#(':),:	|≡*|	∼
,-
./*	

:	|≡*|≡	
,-
./*	

																																										(2.10)

By applying equation (3) to message (10), produces the following:

𝑅𝑅3 =	`	|≡*|⟹
,-
./*,:	|≡*|≡	

,-
./*

:	|≡	
,-
./*	

																																 (3.10)

The result from equation (2.10) and (3.10) is: B	|≡ S| ≡	
78
./ S	 (2.10.1)

 B	| ≡
7-./ S (3.10.1)

MSG 11: B ® C	 ⊳ 	 {	NB	, C1, C2,
7F./ B} KB

By applying equation (1) to message (11), produces the following:
	:|≡

;F
./:	,>	⊳	{	':	,>?,>@,

,F.⎯/:}	C:

>	|≡:|∼	
,F.⎯/:

																												(1.11)

By applying equation (2) to message (11), produces the following:
>	|≡#(':),>	|≡:|∼	

,F.⎯/:

>	|≡:|≡	
,F.⎯/:

																																								(2.11)

By applying equation (3) to message (11), produces the following:
>	|≡:|⟹	

,F.⎯/:,V|≡:|≡	
,F.⎯/:

>|≡
,F.⎯/:

																																(3.11)

The result from equation (2.11) and (3.11) is: C	|≡ B| ≡	
7F./ B																														 (2.11.1)

 C| ≡
7F./ B (3.11.1)

MSG 12: C® B	 ⊳ 	 a	K,Mb,
7F./ 𝐵𝐵	d} KC

By applying equation (1) to message (12), produces the following:
:|≡

,X.⎯/>,:	⊳	G	C,HI,
,F.⎯/`	JC>	

:	|≡>|∼
,F.⎯/`

																														 (1.12)

By applying equation (2) to message (12), produces the following:
:	|≡#(':),:	|≡>|∼

,F.⎯/`

:	|≡>|≡
,F.⎯/`

																																			 (2.12.)

By applying equation (3) to message (12), produces the following:
:	|≡>|⟹

,F.⎯/:	,:	|≡>|≡
,F.⎯/`

:	|≡
F
→:

																																										(3.12)

The result from equation (2.12) and (3.12) is B	| ≡ C| ≡
7F./𝐵𝐵 (2.12.1)

 B	| ≡
%
→ B (3.12.1)

We arrive at the sub-goal of the protocol

A	|≡ B| ≡
()*+ 𝐴𝐴																																																									 (2.6.1)

𝐵𝐵|≡ A| ≡	
()*+ A																																																							(2.5.1)

B	| ≡ C| ≡
(/*+ 𝐵𝐵 (2.12.1)

𝐶𝐶|≡ B| ≡	
(/*+ B																																																				 (2.11.1)

Also, we arrive at the goal of the protocol

A| ≡
()*+ A (3.6.1)

 B| ≡
1
→ A (3.5.1)

B| ≡
(/*+ B																																																																					(3.12.1)

 C| ≡
(/*+ B (3.11.1)

Hence, the protocol is secure because we arrive at the goal and sub-goal, and each
principle knows the other.

 4.2. Performance analysis, Attack resistance and functionality:
The attack resistance of the proposed scheme is compared with that of four

other schemes as in table (1). The comparison in terms of mutual trust, Session key
agree-ment, Replay attack resistance, Man-in-the-middle attack resistance, off-
line diction-ary attack resistance. The comparison with Secure delegation based
authentication protocol for wireless rooming service in Tsai, Lo & Wu, (2012), Trust-
Based Authentication for Secure Communication in Cognitive Radio Networks in
Parvin, Han, Tian & Hussain, (2010, December), A new authen-tication scheme for
wireless ad hoc network in Xingliang & Shilian (2012, October), and A Dynamic

Azerbaijan Journal of High Performance Computing, 2 (2), 2019

154

User Authentication Scheme for Wireless Sensor Network in Wong, Zheng, Cao &
Wang. (2006, June).

- Replay attack prevention: In a replay attack, An attacker can capture the
package and resend these packets after another period (Butt, M. A., 2013).
The nonce makes the message of the current communication different from the
messages of past communi-cations. Therefore, the protocol is secure against
replay attacks and offline dictionary attacks.

- Man-in-the-middle attack prevention: In this type of attack, the attacker tries
to spy on the communication between two users communicating with each other
via a net-work. A man-in-the-middle attack is not possible in the proposed method
because our proposal is based on mutual authentication, in which random numbers,
refreshed with each iteration of the protocol, are used.

The performance analysis shows that our proposed scheme performs better
than other existing user authentication schemes.

Practical aspect:
- We are programming BAN logic depending on the environment of C# language.

Moreover, apply the ElGamal protocol to the rule of BAN logic. The input is the
protocol of ElGamal, rules of BAN logic, and assumptions while Output will consist
of idealize form and message which proving that protocol is secure. The executing

Table 1. Performance comparison

Function-
ally

Tsai, Lo &
Wu. (2012)

Parvin, Han,
Tian & Hussain.
(2010, Decem-

ber)

Xingliang,
& Shilian.

(2012, Oc-
tober)

 Wong, Zheng,
Cao & Wang.
(2006, June)

Pro-
posed

scheme

mutual
trust No No Yes No Yes

Session
key agree-

ment
Yes No Yes No Yes

Replay
attack re-
sistance

Yes Yes No yes Yes

Man-in-the
middle

attack re-
sistance

No No Yes No Yes

off-line
dictionary

attack
yes Yes No yes Yes

Alsalhi et al.

155

Fig. 3: The result of executing the proposed scheme in C# programming

of the program show that this protocol is secure as in figure (2):

5. Conclusionsn
This paper proposes a security protocol for mutual authentication in cognitive radio

networks, which are performing exchanged authentication between the sender and
recipient. Then the data is encrypted and sent securely decrypted by the recipient and
to ensure the authenticity of the work of the Protocol and the integrity of the data from
the various attacks on the network. We analyzed the protocol using BAN logic which has
proved that he did not prevent the attacks only, but achieved the best per-formance of
the system.	

References
Abadi, M., & Tuttle, M. R. (1991, August). A semantics for a logic of authentication.

In PODC (Vol. 91, pp. 201-216).
Alhakami, W., Mansour, A., Safdar, G. A., & Albermany, S. (2013, October). A se-

cure MAC protocol for cognitive radio networks (SMCRN). In 2013 Science and Infor-
mation Conference (pp. 796-803). IEEE.

Bhandari, S., & Moh, S. (2015). A survey of MAC protocols for cognitive radio body

Azerbaijan Journal of High Performance Computing, 2 (2), 2019

156

area networks. Sensors, 15(4), 9189-9209.
Burrows, M., Abadi, M., & Needham, R. M. (1989). A logic of authentication. Pro-

ceedings of the Royal Society of London. A. Mathematical and Physical Scienc-
es, 426(1871), 233-271.

Butt, M. A. (2013). Cognitive radio network: Security enhancements. Journal of
Global Research in Computer Science, 4(2), 36-41.

Clancy, T. C., & Goergen, N. (2008, May). Security in cognitive radio networks:
Threats and mitigation. In 2008 3rd International Conference on Cognitive Radio Ori-
ented Wireless Networks and Communications (CrownCom 2008) (pp. 1-8). IEEE.

Elkashlan, M., Wang, L., Duong, T. Q., Karagiannidis, G. K., & Nallanathan, A.
(2014). On the security of cognitive radio networks. IEEE Transactions on Vehicular
Technology, 64(8), 3790-3795.

Idoudi, H., Daimi, K., & Saed, M. (2014, July). Security challenges in cognitive radio
networks. In Proceedings of the World Congress on Engineering (Vol. 1, pp. 2-4).

Mishra, V., Mathew, J., & Lau, C. T. (2016). QoS and Energy Management in Cog-
nitive Radio Network: Case Study Approach. Springer.

Mitola, J. I. (2002). Cognitive radio. An integrated agent architecture for software
defined radio.

Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: making software radios more
personal. IEEE personal communications, 6(4), 13-18.

Parvin, S., Han, S., Tian, B., & Hussain, F. K. (2010, December). Trust-based au-
thentication for secure communication in cognitive radio networks. In 2010 IEEE/IFIP
International Conference on Embedded and Ubiquitous Computing (pp. 589-596).
IEEE.

Parvin, S., Hussain, F. K., Hussain, O. K., Han, S., Tian, B., & Chang, E. (2012).
Cognitive radio network security: A survey. Journal of Network and Computer Applica-
tions, 35(6), 1691-1708.

Reddy, Y. B. (2013, June). Security issues and threats in cognitive radio net-
works. In The ninth advanced international conference on telecommunications (AICT
2013) (pp. 84-89).

Stallings, W. (2017). Cryptography and network security: principles and prac-
tice (pp. 92-95). Upper Saddle River: Pearson

Syverson, P., & Cervesato, I. (2000, September). The logic of authentication proto-
cols. In International School on Foundations of Security Analysis and Design (pp. 63-
137). Springer, Berlin, Heidelberg.

Tang, L., & Wu, J. (2012). Research and analysis on cognitive radio network secu-
rity. Wireless Sensor Network, 4(04), 120.

Thakre, S., & Dixit, S. (2014). Security Threats and Detection Technique in Cognitive
radio Network. International Journal of Emerging Technology and Advanced Engineer-
ing, 4(2).

Tsai, J. L., Lo, N. W., & Wu, T. C. (2012). Secure delegation-based authentication
protocol for wireless roaming service. IEEE Communications Letters, 16(7), 1100-1102.

Alsalhi et al.

157

Wessels, J., & BV, C. F. (2001). Application of BAN-logic. CMG FINANCE BV, 19,
1-23.

Wong, K. H., Zheng, Y., Cao, J., & Wang, S. (2006, June). A dynamic user au-
thentication scheme for wireless sensor networks. In IEEE International Conference
on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06) (Vol. 1, pp.
8-pp). IEEE.

Xingliang, Z., & Shilian, X. (2012, October). A new authentication scheme for Wire-
less Ad Hoc Network. In 2012 International Conference on Information Management,
Innovation Management and Industrial Engineering (Vol. 2, pp. 312-315). IEEE.

Zhang, N., Lu, N., Cheng, N., Mark, J. W., & Shen, X. S. (2013). Cooperative spec-
trum access towards secure information transfer for CRNs. IEEE Journal on Selected
Areas in Communications, 31(11), 2453-2464.

Submitted 12.09.2019
Accepted 15.11.2019

Azerbaijan Journal of High Performance Computing, 2 (2), 2019

