
139

The Hybrid Process and Data Monitoring 
Tools for High Performance Computing 
Systems
Farid Jafarov

Azerbaijan State Oil and Industry University, Baku, Azerbaijan, 
feridcefer@hotmail.com

*Correspondence: 
Farid Jafarov, Azerbaijan 

State Oil and Industry Uni-
versity, Baku, Azerbaijan, 
feridcefer@hotmail.com

Abstract
Due to the growing demand for parallel programs and mathematical 
and industrial problems that require high performance computing, 
cluster systems are one of the essential parts of the computing world. 
Clusters have different features, and there are multiple topics can 
be studied while working in these systems. In this paper, the related 
issues about visualization procedure in clusters will be discussed, 
analyzed, and researched. There are quite similar visualization 
manners in a cluster environment, like the visualization of hardware 
usage, process flow, data flow, environmental data, etc. And the 
majority of contemporary monitoring tools were prepared with a 
particular target; for example, Nagios was developed to mainly 
monitor network and devices related to the work of the network. 
Hence, it is almost impossible to find a unique tool that can be 
used for most of the purposes mentioned above. This paper will 
mention the possibilities of having unique monitoring tools for most 
cluster systems.

Keyword: High performance computing, Clusters, Visualization 
tools, Daemons, Monitoring

Azerbaijan Journal of High Performance Computing, Vol 3, Issue 1, 2020, pp. 139-146
https://doi.org/10.32010/26166127.2020.3.1.139.146

1. Introduction
There is a growing demand for high performance computing in almost all areas in which 

computation speed is a crucial matter. To improve computing speed in many cases, scientists 
use different techniques such as parallel computation, in which HPC centers play an integral 
role. High Performance Computing Centers, namely, the computers connected, work 
together to solve a massive computational problem. Hence, in general, High-Performance 
Computing clusters are the connection of multiple nodes and the master (server) nodes, 
which handle most of the heavy lifting of the system. Nodes and servers are connected with 
fast local area networks into each other. The jobs are executed on these systems being 
parallel and skyrocket the execution time. 

Obviously, in this type of messy environment, always some downsides occur. Thus, 
someone needs to see what is going on and where the problem comes from. Or else, while 
executing a program to stabilize and analyze the job, machine states, environmental issues 
(humidity, temperature, etc.). This is the time the visualization for HPC comes into place. This 
is not the new problem, so there are quite a few visualization tools that exist for that since 



140

2000 and before. There are quite many monitoring tools like Ganglia, Nagios, HPC-toolkit, 
CluMON, Supermon, ClOver, Zabbix, and so on (Montaldo, D., Mocskos, E., & Slezak, D. F., 
2009; Adhianto, L., Banerjee, S., Fagan, M., et al., 2010). 

System administrators often need to decide which visualization tool to use in their systems. 
In this place, it is important to define the advantages and disadvantages of these tools. For 
example, the administrator should know that if he needs to analyze the custom metrics of 
the CPU, he needs to write additional configuration scripts using C or python and use it in 
Ganglia. Or, the administrator who uses Nagios should be aware of how it is simple to add 
plug-ins in it. The administrator of HPC clusters in which there are thousands of cores should 
be careful about Zabbix, as large scale implementations of 10.000+ are not useful with this 
tool.

In general, CPU cycles, CPU idle, RAM use, Storage, I/O, GPU utilization, network flow, 
job states are in the most important key features list for the system administrators to see. 
Collecting and sending all the useful requirements to the server is the job of local daemons, 
which is located in the nodes. The daemons collect data from system logs, services hierarchy, 
hardware, and send them to listen to daemons, which is located in the server. Generally, 
the incoming data is huge, and taking into account that, some amount of data comes from 
dozens of nodes to analyze, save and show them to the administrator required a few tools or 
services to work on. Namely, the daemon analyzes the data and convert it into the format that 
can be saved into databases. Showing collected data is in the response of web application 
which reads data from databases and turns it into graphs, diagrams, charts, tables. 

Sometimes, the combination of the visualization tools is used in the HPC clusters. It affects 
the workload of the systems over than its need. If the user’s purpose is to analyze specific 
metrics and also apply some custom plug-ins, then they will need to use Ganglia and Nagios 
at the same time. In this situation, it might be asked, is it not possible to build the unique 
visualization tool that can be used for almost all purposes? Developing this type of imaginary 
tool is practically impossible. Because, by the simple view, the services used in this tool 
cannot be workable or error-free for all distributions. Besides, the development period will be 
longer than usual. Furthermore, as it needs to use more powerful daemons, it will affect the 
performance of the system much than other previous tools.

In the 2nd section, it will be discussed different visualization tools that are used by a large 
community. The architecture of those tools, the daemons which they use, etc. details will be 
discussed separately. In the end, there is a table that represents positives and drawbacks 
using those mentioned tools. In the 3rd section, an approach to achieve a unique solution 
to the problem will be given and explained. The important monitoring functionalities will be 
mentioned in bullet form, and later on, will be described in detail. The 4th and at the same 
time, the final section, will demonstrate the conclusion of the work.

2. Related work
In the contemporary world, most of the monitoring tools exist, and the majority of them 

focus on the particular dimension of measurement. For example, some part of tools mainly 
chooses job state analyzing as the main target to measure, but others are used to monitor 

Farid Jafarov



141

hardware-specific metrics. There are also the monitoring tools that take care of scalability 
while monitoring most.

Ganglia is a scalable distributed monitoring system that was created for large localized 
clusters, namely high-performance computing systems or even widely distributed Grids 
(Montaldo, D., Mocskos, E., & Slezak, D. F., 2009; Massie, M. L., Chun, B. N., & Culler, D. 
E., 2004; Sacerdoti, F. D., Katz, M. J., Massie, M. L., & Culler, D. E., 2003). Ganglia differs 
from other monitoring tools by the architectural approach that it is used in (Montaldo, D., 
Mocskos, E., & Slezak, D. F., 2009; Massie, M. L., Chun, B. N., & Culler, D. E., 2004; 
Sacerdoti, F. D., Katz, M. J., Massie, M. L., & Culler, D. E., 2003). Gmond (Ganglia 
monitoring daemon) and gmetad (Ganglia meta daemon) are the main daemons used in 
Ganglia. Ganglia uses Round Robin Databases (RRD tool) as the data storage (Massie, 
M. L., Chun, B. N., & Culler, D. E., 2004; Massie, M., Li, B., Nicholes, B., Vuksan, V., et 
al., 2012). Gmond should be installed in each node, and the task of gmond is to collect 
metric data from different hardware devices. Gmond sent the collected data into Gmetad 
using XML streams, which is sent by TCP connections (Massie, M., Li, B., Nicholes, B., 
Vuksan, V., et al., 2012). The job of gmetad is to process the incoming data and convert it 
into the custom formats, which can be readable for RRD tool (Massie, M. L., Chun, B. N., 
& Culler, D. E., 2004; Massie, M., Li, B., Nicholes, B., Vuksan, V., et al., 2012). From this 
point on, the scripts which were coded using PHP, fetch data from RRDs and convert it into 
human-readable graphs and diagrams. Although RRD tools are very useful and system 
efficient, using write/read periodically might lead to performance bottlenecks (Massie, M., 
Li, B., Nicholes, B., Vuksan, V., et al., 2012). Especially, its archiving techniques make too 
many updates causing unnecessary disk I/O. Unlike other modern visualization tools, the 
ganglia alert system is not well prepared for the needs of administrators. Besides, having 
the individual view for each cluster might look fancy, but when the number of nodes comes 
over thousands to get the general view of cluster health to become a trouble. 

Nagios is the monitoring tool for cluster systems and networks (Montaldo, D., Mocskos, 
E., & Slezak, D. F., 2009; Burgess, C., 2005). The power of Nagios comes from its plug-in 
based architecture. Nagios itself knows nothing about the system hardware or software. 
Nagios shows the incoming data from plug-ins. There are currently many ready plug-ins 
available for community use, including IMAP, HTTP, FTP, POP3, SSH, CPU Load, DHCP, 
Disk Usage, Unix/Linux, Memory Usage, Current Users, Netware Servers, Windows, Routers 
and Switches, and others. Since there are no restrictions or criteria, different database 
software tools can be used (Montaldo, D., Mocskos, E., & Slezak, D. F., 2009; Burgess, 
C., 2005). The Nagios itself only works on server and ping data from the plug-ins which 
work on different hosts(nodes) (Burgess, C., 2005). Thus, the simple web interface shows 
the information in different graphs and charts to administrators. Additionally, Nagios has 
a notification system; whenever something goes wrong on the system, its alerting system 
sends emails, SMS, or push notifications to the defined users (Montaldo, D., Mocskos, E., 
& Slezak, D. F., 2009). Again, one of the drawbacks of the Nagios is its lack of general view 
of cluster healthiness and dependency over plug-ins.

An increasing number of technological and scientific research has increased the 

Azerbaijan Journal of High Performance Computing, 3 (1), 2020



142

demand on HPC clusters, which lead to the development of exascale systems. The 
exascale systems capable of executing a quintillion (10^18) floating-point operations 
in a second. At the same time, it enables for science and business more opportunities 
than ever. The storage capacity, processors’ architecture, and other hardware details of 
these systems are too complex to monitor with current visualization tools. The efficient 
monitoring and management of extreme-scale HPC environments mandate the utilization 
of automation and the discovery of bottlenecks in dynamically changing production 
environments. Unlike the traditional visualization tools, the newly developed visualization 
tools for exascale systems monitor the environmental features such as cooling, humidity, 
etc. which might influence the performance of the system. The alerting system is one of 
the key features of traditional visualization tools. These systems work well with a small 
number of computers; however, when the numbers pass thousands, the limitless number 
of alerts might confuse system administrators. Hence, finding out the actual problem might 
be harder or else impossible. So, the designers of contemporary monitoring tools have 
tried to minimize the duplication of alerts for common problems using machine learning 
algorithms. This strategy made alerting systems stricter than the previous ones to show the 
actual problem. OMNI (Operations Monitoring and Notification Infrastructure) is one of the 
powerful visualization tools that was developed for efficient monitoring of exascale HPC 
systems (Bautista, E., Romanus, M., Davis, T., Whitney, C., & Kubaska, T., 2019. Integrating 
Kubernetes, Prometheus, and Grafana platforms, the power of the device doubled (Sukhija, 
N., & Bautista, E., 2019). These platforms make OMNI available for dynamic deployment, 
proactive alert management, data visualizations, and predictive analytics to avoid outages. 
Scalability, management of multiple alerts, and an opportunity to see practical metrics in 
a single view and other well-prepared properties push OMNI in front of Nagios, Ganglia, 
Zabbix, Spiceworks, etc. (Sukhija, N., & Bautista, E., 2019). However, in this stage, it needs 
to notify for the small HPC clusters deploying traditional tools is useful and practical for their 
light-weight resource use, rather than OMNI (Sukhija, N., & Bautista, E., 2019).
Table 1. Advantages and disadvantages of Ganglia, Nagios, and OMNI with respect to the 
special features.
Features Ganglia Nagios OMNI
Advanced web UI for visualization of hardware + + +
Completely free to use + - +
Open-source (or prepared by the configuration of 
open-source software tools) + + +

Automatic device discovery - - +
High level of robustness against system failures + - +
Modern alert system - + +
Smart alert system - - +
Works out of the main cluster manager architecture + + +

Farid Jafarov



143

Table 1 demonstrates the positive and negative sides of the tools discussed above. 
As can be seen from the table, all of the visualization tools have modern WEB UI, which 
meets almost all requirements for users and system administrators. Furthermore, all of 
them are open-source, which means the users can modify and their custom functionalities 
into them with solid knowledge. “+” sign in front of the feature illustrates that the tool has 
this capability. “-” defines the tool mentioned in the top of the column does not have the 
feature mentioned in a row. It can be clearly seen that none of the tools above can monitor 
job/process state monitoring. Besides, the features like automatic device discovery, smart 
alert system are only available in OMNI. However, neither OMNI nor Ganglia can monitor 
network flow and devices as detailed as Nagios. Above, it is not handy to write all features 
and compare them into the table; only strong points were mentioned and compared.

3. Our approach
The continuing development of scientific and industrial problems which require longer 

execution time and use massive data to achieve successful results in the end. In the 
contemporary world, to solve the majority of those problems, the supercomputers or high-
performance computing clusters are used. Certainly, the users (or system administrators) 
need to see detailed monitoring information about the status of jobs and also usage of 
hardware details of cluster nodes. Today’s monitoring tools can monitor hardware usage 
of nodes in high scrutiny. However, finding a visualization tool that can monitor process 
and data flow in the cluster is not easy. There are multiple reasons that monitoring tools 
developers and designers avoid creating tools for job monitoring. Maybe the strongest 
point is the dissimilarity of architectures used in cluster systems. Namely, the daemons can 
track the job and data flow in the X cluster manager tool, cannot be used to do the same 
job with the Y cluster manager tool. Hence, the majority of tools cannot monitor the process 
and data flow of clusters while executing the process. Furthermore, the monitoring tools 
which can be used for visualizing hardware usage, process, and data flow is approximately 
impossible to find. 

Thus, it can be seen in the points mentioned above, the cluster world needs one unique 
tool which can monitor hardware details, process, and data flow, respectively. Firstly, it is 
not a straightforward problem to handle with just one paper. There are multiple challenges 
to achieve this type of tool. Firstly, the daemons should be chosen for each purpose. 
Namely, if it is wanted to get hardware details of nodes in the cluster, then there should 

High-level job state/resource monitoring - - -
Advanced web UI for JOB state/resource visualiza-
tion - - -

Handy for small-sized clusters + + -
Active development team support - + +
Monitor network flow & devices in high scrutiny - + -
Active community support + + -

Azerbaijan Journal of High Performance Computing, 3 (1), 2020



144

be at least one daemon in for each node that collects hardware usage specifications from 
logs, etc. places and send them into listener daemons in server. A similar situation should 
happen for monitoring of process flow and data flow in cluster systems. It is important to 
have multiple high robust daemons to achieve this visualization tool. In every node, there 
should be services that finalize the job of monitoring both from the node and server-side. 
The required daemons will be listed above in general:

a) The daemons for collect metrics data from hardware details
b) The daemons for process flow tracking and monitoring
c) The daemons for data flow visualization
d) The daemons for monitoring network flow and devices
Certainly, to achieve high robust and scalable visualization tool like one mentioned 

above will not be possible with only using a few services. The ones mentioned above are 
the key daemons of the ideal monitoring tool. 

As other traditional monitoring tools, there is always one important feature that should 
be considered first while designing the visualization tool. It is the availability of monitoring 
hardware resource usage and device states of nodes in the cluster. The gmond daemon 
was used in Ganglia is a great example of this type of daemon. Gmond can collect any 
type of low-level hardware detail like CPU idle, CPU usage, etc. by default. Hence, there 
should be at least one strong daemon in this monitoring environment to cope with the 
problems of metrics collection from hardware sections. Furthermore, this daemon should 
be prepared with low-level programming languages, namely with C. In this case, adding 
and removing custom scripts to get monitored data from exact devices in high scrutiny will 
be possible for system administrators or specific end users. 

As one of the main targets of this imaginary visualization tool to design visualization 
tools for the collection process flow, this daemon should be taken into account in the first 
place. Before diving deeper in detail, it needs to be mentioned that to collect process 
(job) flow information from nodes is not an easy as collect hardware monitoring details. 
There are quite a few constraints that prevent achieving comfort in the visualization of 
process flow. For instance, the differences in cluster manager tools, architectural problems 
occurred by operating systems, etc. are just a few examples of dozens of constraints. First, 
all of the problems should be considered before applying this daemon into visualization 
tool architecture. Since the process flow is highly dynamic and is able to generate big 
data in a few minutes, the dangerous sides of those kinds of daemons should be counted 
beforehand. For example, the slurmd daemon collects and tracks process flow information 
in high scrutiny from each node in the cluster (Jette, M., & Grondona, M., 2003). Even it 
separates incoming data with respect to racks, computers, and targeted jobs. Slurmd 
daemon will be great to use for this purpose. However, the main downside of this daemon is 
that it can only work within SLURM architecture (Jette, M., & Grondona, M., 2003). Namely, 
using slurmd for this purpose decreases the portability of the monitoring tool, dramatically. 

With regards to the monitoring of job data within the cluster is maybe the hardest side 
of the job. Since the data often comes into big data because of the dynamic architecture of 

Farid Jafarov



145

parallel programs. The data flow between nodes of cluster and server will create massive 
headless data streaming in cluster systems. The daemons which should monitor and 
track these data flows should count dozens of specifications, including resource usage of 
RAM and other important hardware details. As it is known well, the data which is created 
while executing programs is volatile and processed over RAM. And reading that required 
information to get data flow in detail requires the possibility of speaking with the lowest level 
operating system architecture.

Additionally, the data flow should be authenticated to be aware of how streaming 
happens between nodes or even in nodes’ local memory. This part is as important as 
the previous section because data means everything for the parallel programs. Most of 
the jobs depend on it, and if the corrupted data or any other problems occur during the 
execution process, it may lead to uncontrollable behavior and results. 

Last but not least, as the network is essential for clusters like the CPU, etc. it is necessary 
to be able to what is going on with network flow and devices. Besides, all the mentioned 
daemons and services above need to strong network connection and speed to fulfill the 
user requirements and purposes. Hence, to visualize network flow, the device and status 
of connections require another separate daemon or services which should collect data of 
network status, connection states, and usage of the general network in cluster systems. For 
example, Nagios is one of the best tools which is used to visualize almost everything related 
to the network from devices to protocols. However, Nagios uses a different approach than 
daemons, and they are not using low-level coding languages. Thus, it is required to have 
the daemon to monitor the network and collect its data in the central server. 

Finally, managing all those mentioned daemons should happen in the monitoring 
servers. It happens with other daemons that work only on the servers. Managing this type 
of incoming data and saving them in local databases requires many jobs. Even separating 
one of the nodes would be great because the daemons are used in nodes for monitoring 
and will generate sending tons of data from large scale clusters. Therefore, all of these 
issues should be counted and analyzed beforehand. 

4. Conclusion
As can be seen from all the above topics, the visualization procedure of high-

performance computing clusters does not only mean to collect and share data between 
daemons. It is more than that. While monitoring data, dozens of obstacles could arise.

With regards to creating a unique visualization tool for monitoring process flow, data 
flow, and hardware usage monitoring at the same time, neither easy nor impossible. After 
all, it is possible to use the experience of monitoring tools which was made beforehand. 
There are tools for monitoring hardware, and also there are tools for visualization of process, 
job states. Hence, there are already written daemons for all of the desired features for the 
unique monitoring tool. It is possible to make a unique tool with those daemons (or some 
new ones could be prepared by purpose). It will be the long term and full of hardships 
period to achieve the desired result. 

Azerbaijan Journal of High Performance Computing, 3 (1), 2020



146

Besides, collecting data from multiple sources using and saving them for future use 
is another primary task that should be challenged in this imaginary visualization tool. 
Fortunately, today’s multiple database tools can cope with tons of real-time data, without 
having too much trouble.

Finally, all prospects point out the possibility of having one unique tool in the cluster 
visualization sphere. Surely, this will make the life of cluster administrators and users easier 
than ever because they use at least 2-3 monitoring tools in their system to achieve similar 
results, which may be provided with only one tool. 

References
Adhianto, L., Banerjee, S., Fagan, M., et al. (2010). HPCToolkit: Tools for performance 

analysis of optimized parallel programs. Concurrency and Computation: Practice and Ex-
perience, 22(6), 685-701. 

Bautista, E., Romanus, M., Davis, T., Whitney, C., & Kubaska, T. (2019, August). Col-
lecting, monitoring, and analyzing facility and systems data at the national energy research 
scientific computing center. In Proceedings of the 48th International Conference on Paral-
lel Processing: Workshops (pp. 1-9).

Burgess, C. (2005). The Nagios Book. http://www.xmarks.com/site/www.nagiosbook.
org/PRERELEASE_The_Nagios_Book.pdf (07 November 2012 )

Massie, M. L., Chun, B. N., & Culler, D. E. (2004). The ganglia distributed monitoring 
system: design, implementation, and experience. Parallel Computing, 30(7), 817-840.

Massie, M., Li, B., Nicholes, B., Vuksan, V., et al. (2012). Monitoring with Ganglia: track-
ing dynamic host and application metrics at scale. “ O’Reilly Media, Inc.”.

Montaldo, D., Mocskos, E., & Slezak, D. F. (2009) Clover: Efficient Monitoring of HPC 
Clusters. 

Sacerdoti, F. D., Katz, M. J., Massie, M. L., & Culler, D. E. (2003, December). Wide area 
cluster monitoring with ganglia. In 2003 Proceedings IEEE International Conference on 
Cluster Computing (p. 289). IEEE

Sukhija, N., & Bautista, E. (2019, August). Towards a Framework for Monitoring and An-
alyzing High Performance Computing Environments Using Kubernetes and Prometheus. 
In 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted 
Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Inter-
net of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/
SCI) (pp. 257-262). IEEE.

Yoo, A. B., Jette, M. A., & Grondona, M. (2003, June). Slurm: Simple linux utility for 
resource management. In Workshop on Job Scheduling Strategies for Parallel Processing 
(pp. 44-60). Springer, Berlin, Heidelberg. 

Submitted 22.01.2020
Accepted 29.05.2020

Farid Jafarov


