
15

An Integrated Approach To Manage Iaas 
With Software-Defined Infrastructure (SDI) 
Management And Control System (MCS)
Muhammad Bayat1, Hasan Hani2

1MajdRayan Intelligent Computing, Qom, Iran, m.bayat@qom.ac.ir
2University of Qom, Qom, Iran, hani@qom.ac.ir

*Correspondence: 
Muhammad Bayat, 

MajdRayan Intelligent 
Computing, Qom, Iran, 

m.bayat@qom.ac.ir

Abstract
Cloud computing is developing and spreading very quickly. One 
of the most important issues among cloud service providers is 
efficient resource allocation. The IaaS layer is responsible for 
providing the resources needed for cloud services. The automatic 
resource allocation to the workloads is another concern for cloud 
service providers. Current approaches in infra-structure as a 
service (IaaS) that use three separate resource management 
(compute, storage, and network resource management) are not 
capable of re-sponding to applications and multimedia services 
that need a guaranteed quality of services. Some applications 
and end-to-end quality of services depend on the performance 
of computing, network, and storage resources. Therefore 
these resources must be controlled and managed altogether. 
In this research, we first describe available architectures that 
integrate and manage heterogeneous resources. Then, we 
propose a software-defined infrastruc-ture (SDI) management 
and control system (MCS) architecture that incorpo-rates IaaS 
resource management based on the performance, integrated 
re-source management, support from heterogeneous sources, 
overhead reduc-tion, and automatic allocation of resources 
regarding the workload criteria. We use the Analytic Hierarchy 
Process (AHP) to analyze the architectures based on the 
mentioned criteria. We prepare pairwise comparison matrices 
for all major and minor criteria and use the feature sets of each 
architecture to fill these matrices. The results obtained from 
the AHP shows that the proposed architecture is of higher 
priority than others.

Keyword: Cloud computing, infrastructure as a Service 
(IaaS), Software-defined Networking(SDN), Software-defined 
Infrastructure(SDI), dynamic re-source allocation

1. Introduction
The businesses increasingly rely on the availability and efficiency of their IT infra-

structure. The business operations also link to the agility and performance of the de-

Azerbaijan Journal of High Performance Computing, Vol 3, Issue 1, 2020, pp. 15-31
https://doi.org/10.32010/26166127.2020.3.1.15.31



16

ployment and continuous operation of IT. The users access their required services 
without paying attention to where they are and how to access them (Fox, A., Griffith, 
R., et al., 2009). 

Infrastructure as a service (IaaS) can be considered as the most important part of 
cloud computing without which none of the other components are implemented and 
provided. This infrastructure includes servers, networks, storage devices, and operat-
ing system (Javan, M. S., & Akbari, M. K., 2011, November). IaaS offers physi-cal and 
virtual infrastructure services. It can be implemented in public, private, or hybrid mode.

In 2008, software-defined networking (SDN) was proposed by researchers from 
Berkley and Stanford universities proposed that software-defined networking (SDN) 
looked for adding software features to the network without any dependency and inter-
ference with hardware. SDN is the next generation of the network, decoupling the 
network’s data and control plane. In other words, SDN has reduced dependency on 
hardware and software features to increase network intelligence (Lara, A., Kolasani, A., 
& Ramamurthy, B., 2013). With SDN, companies and organizations can pro-gram their 
network based on their requirements and proprietary capabilities. It uses a software-
based controller to manage to forward the information of one or more switches. In the 
SDN networks, the hardware is only responsible for delivering the traffic according 
to the rule set by the controller. SDN controller can simplify the configuration and 
management of the network and can ease configuring security fea-tures. SDN also 
provides lots of capabilities such as software-based traffic analysis, centralized 
control over data traffic, controlling multiple switches from a single con-troller, 
dynamic updating of forwarding rules and flow abstraction, programmatic control of 
all forwarding operations, capabilities advertisement and statistics reporting (Bakshi, 
K., 2013).

The popularity of SDN encourages scientists to expand this concept for other as-
pects of a data center. The software-defined compute (SDC) can manage the compu-
ting functions through a central interface that sees all computing resources as one 
element. In SDC, the computational functions can happen in any number of hardware 
devices in the cloud, as needed, rather than be assigned to a specific hardware device 
(Quintero, D., Genovese, W. M. et al., 2015). Besides, the computing functions can be 
moved around to different pieces of virtual infrastructure, depending on the availability 
of the resources.

Software-defined storage (SDS) refers to data storage software to manage policy-
based provisioning and management of data storage independent of the underlying 
hardware. SDS concentrates on storage virtualization to separate the storage hardware 
from the software that controls the storage infrastructure (Lara, A., Kolasani, A., & 
Ramamurthy, B., 2013; Li, C. S., Brech, B. L., Crowder, et al., 2014). It provides policy 
management for feature options such as deduplication, replication, thin provisioning, 
snapshots, and backup.

Current virtualization and cloud solutions allow only the necessary abstraction of 
computing, storage, and network resources in terms of their capacity. For simplifying 

Muhammad Bayat, et al.



17

the abstraction of resources, these solutions only standardize their proprietary architec-
ture. The management of heterogeneous resources that include computing, network-
ing, and storage resources separately is not appropriate for applications and multime-
dia services that require guaranteed quality of services. In addition, current resource 
management is not capable of managing heterogeneous resources in combination with 
other resources such as programmable hardware, graphics processing units (GPUs), 
and network processors (Lin, T., Kang, J. M., Bannazadeh, H., & Leon-Garcia, A., 2014). 

Figure 1 shows that in today’s IaaS, computing, networking, and storage resources 
are managed and controlled separately with their own controllers. When a workload is 
defined, each controller based on its available resources does resource allocation. For 
instance, when a job is divided into multiple tasks, a compute controller allocates each 
task to a virtual machine (VM) with the most available resources. Compute con-troller 
is only aware of computing resources and does not have any knowledge about the 
network or storage resources. The network controller also controls and manages traffic 
flows regardless of other resources in the cloud.

There are two reasons why today’s IaaS platforms fail to address the needs of users 
who run complex workloads. Firstly, workloads deployed in the cloud involve com-plex 
interconnections of virtual resources, such as VMs, virtual networks, virtual storages, 
and software components, and their connectivity is often left to the user. To automate 
the deployment of a workload, a cloud user must implement complex scripts. Secondly, 
performance, availability, and the cost of execution of a workload depend on how the 
IaaS platform maps virtual resources to physical infrastructure.

Fig. 1. Current cloud computing architecture ([8])

Azerbaijan Journal of High Performance Computing, 3 (1), 2020



18

The paper is organized as follows. Section 2 describes related work to integrated 
resource management. The SDI resource management system (RMS) and software-
defined environment (SDE) architectures will be described in this section. Section 3 
presents SDI MCS as a new architecture for the infrastructure resource management 
system. In section 4, we evaluate and compare our architecture with the SDI RMS and 
SDE with the AHP. Finally, conclusions and future work are presented in section 5.

2. Related Work
2.1. SDI RMS
Thomas Lin et al. (2014) showed how they enabled SDN applications on software-

defined infrastructure. To overcome the weakness of the current resource manage-
ment, they recommend SDI as a software approach for integrated control and man-
agement of heterogeneous compute and network resources. They used the SAVI 
testbed to test their proposal. In SDI RMS, the SDI manager controls compute and 
network resources with the cloud and SDN controllers. Here, the pluggable resource 
management module is responsible for scheduling, network control, fault manage-
ment, and so on. SDI RMS is based on the idea that all the network and computing 
resources can be virtualized. The principles of cloud computing are used in its infra-
structure design to control and manage heterogeneous resources.

Figure 2 shows the high-level architecture of SDI RMS in which the SDI manager is 
responsible for controlling and managing networks and compute resources by using a 
cloud controller, an SDN controller, and a topology manager. External entities re-ceive 
virtual resources in the converged heterogeneous resources via SDI RMS. Con-verged 
heterogeneous resources refer to physical and virtual resources.

The SDI RMS prepares resource management functions to provide converged het-
erogeneous resources for the external entities. The external entities are applications, 
users, high-level management systems, and so on. The functions of resource man-
agement include virtualization, provisioning, migration, monitoring, security man-
agement, load balancing, and performance management.

Fig. 2. High-level architecture of SDI RMS([7])

Muhammad Bayat, et al.



19

 The SDI manager realizes network resource management functions such as fault 
tolerance, network-aware VM replacement, path optimization, quality of service (QoS), 
and real-time network monitoring based on the information it obtains via the topology 
manager. The cloud controller is responsible for computing resource man-agement, 
memory allocation, and VM placement. The SDN controller translates network speci-
fications into high-level configuration commands and installed them on SDN-enabled 
networking resources.

The topology manager has a list of the resources and their relationships, prepares 
the latest physical and virtual network topology, and resource monitoring and meas-
urement data to the SDI manager for topology-aware resource management. The SDI 
manager uses the topology manager for updating resource data. It uses the cloud con-
troller for preparing computing resources. Similarly, the SDI manager uses the SDN 
controller for providing virtual network resources and monitoring data.

2.2. IBM SDE
In this section, we compare these architectures based on their feature set. Both 

sys-tems add very high capabilities to the IaaS. These capabilities include increasing 
effi-ciency and performance in IaaS besides preparing isolated virtual resources for 
upper cloud layers and multiple tenants. It should be mentioned that both systems use 
OpenStack for developing virtual infrastructure.

SDI RMS focuses on the network side of IaaS. In this model, the SDI controller 
is modular and uses the cloud controller, SDN controller, and topology manager to 
handle end-to-end packets. SDI RMS increases QoS for delay-sensitive traffic. It is 
also scalable, and it can handle growing amounts of packet-in requests in a graceful 
manner. The network control module in SDI RMS can completely process any num-ber 
of requests from all running virtual machines and computing resources.

The main problem of the SDI RMS is the lack of consideration of the storage re-
sources. The single point of failure is the next drawback of this system. In SDI RMS, 
the SDI manager makes all of the decisions, and if the SDI manager fails, the whole 
system will be in trouble. The SDN controller, the cloud controller, and the topology 
manager send all the infrastructure events to the SDI manager to decide how to handle 
the traffic. However, if the SDI manager is in trouble, the quality of service require-
ments for critical traffic cannot be met. This system also lacks automatic resource 
allocation to the workloads. Workload orchestration and management is a significant 
part of the integrated resource management system, and without this, optimal resource 
allocation cannot be met. This system also does not provide an appropriate dashboard 
for monitoring allocated and unallocated virtual infrastructure resources. This dash-
board is important for an integrated resource management system administrator who 
should define workload and infrastructure patterns and policies.

SDE tries to integrate all the infrastructure resources and offers a comprehensive 
ar-chitecture. The SDE uses patterns and policies for workloads and infrastructure re-
sources to orchestrate and automate resource allocation to the workloads on demands. 

Azerbaijan Journal of High Performance Computing, 3 (1), 2020



20

SDI RMS lacks this capability and does not consider workloads patterns and policies 
in its resource allocation. Resource abstraction and workload pattern definition and 
orchestration are the most important requirements for cloud IaaS. It also lacks a to-
pology management module. The topology manager, in the integrated resource man-
agement system, should keep a list of network resources and their connection, net-
work devices, and their link-state, network device configurations, and their allocated 
and free resources. The integrated resource management system cannot respond to 
network failure if it does not know the network topology.

Both systems use OpenStack for their IaaS. They did not mention if they used other 
solutions to prepare IaaS. An integrated resource management system should be able 
to use every IaaS solution. Both systems did not mention any consideration to stable 
hypervisor, which is very important for resource abstraction. 

3. Managing IaaS with SDI Management and control system
As mentioned before, current approaches in cloud computing, which use three 

separate resource management (compute, network and storage) are not capable to 
respond to the QoS requirements of applications and multimedia services [7]. End-to-
end appli-cations and QoS depend on the performance of computing, network, and 
storage re-sources; hence, these resources should be managed in concert.

Integrated management of heterogeneous resources in the data center provides 
new management capabilities. Optimized use of cloud infrastructure resources is the 
most important feature of the integrated resource management system. This system 
allo-cates resources to the workloads automatically and based on workloads need. In 
this section, we propose our integrated heterogeneous resource management system 
accord-ing to our objectives and criteria.

Fig. 3. SDI MCS level 0 architecture

Muhammad Bayat, et al.



21

3.1. SDI MCS Architecture
SDI MCS tries to integrate the management of IaaS resources. Figure 3 shows the 

SDI MCS level 0 architecture. With the knowledge of all the resources in the infra-
structure, this system can control and manage resource allocation to workloads. The 
compute, network, and storage resources are integrated and managed through this 
system. The resources consist of both physical and virtual resources. SDI MCS re-
ceives all the events from compute, network and storage controllers and allocates 
resources to workloads based on predefined policies and patterns. The processes 
are distributed among multiple machines. In this system resource, allocation takes 
au-tomatically and on-demand. If a workload finishes its job, it will free the allocated 
resources. 

SDI MCS is capable of using the main functions of converged heterogeneous re-
source management. The main functions include: fault tolerance, green network, op-
timization of resource scheduling, VM migration with network-aware, QoS, workload 
orchestration and abstraction, flexible detection based on network topology infor-
mation, and input task management. The Cloud Controller is responsible for compu-
ting resources management, VM placement, memory allocation, etc. The network 
controller takes a network specification and translates it into high-level configuration 
commands that can be installed on SDN-enabled networking devices. The storage 
controller also separates the storage control plane from the storage data plane. The 
automatic re-sponse

of heterogeneous storage resources to on-demand workload requests is one of 
its ad-vantages. The SDI MCS uses a compute controller for providing computing re-
sources, VM migration, and load balancing. It uses a network controller for control-
ling, managing, and configuring network resources. It also uses a storage controller to 
manage storage space and storage allocation to workloads. The SDI MCS performs all 
the management based on the data it receives from computing, network, and storage 
controllers. 

Figure 4 shows some examples of computing, network, and storage controllers. Nova 
(OpenStack Nova Homepage, 2017) / VMware vCenter (Center Server Virtualization 
- Server Management Software: VMware, 2017) prepare to compute resources (the 
number of free processors and memories) to the SDI MCS, and accord-ingly, the 
system can reserve resources for incoming workloads. NSX (NSX Homepage, 2017) 
/ Neutron (OpenStack Neutron Homepage, 2017) provides network data for the SDI 
MCS. They use the OpenFlow protocol to communicate with the system. The network 
controller pulls all the events from the OpenFlow enabled de-vices and sends them to 
the SDI MCS. The system can use Swift (OpenStack Swift Homepage, 2017) / Ceph 
(Ceph Homepage, 2017) for storage controller. These con-trollers are responsible 
for managing, keeping, and distributing files and objects on heterogeneous storage 
resources. We developed the OpenDaylight controller and used it at the heart of the 
SDI MCS. 

OpenDaylight has many capabilities, such as OpenStack support, Northbound, 

Azerbaijan Journal of High Performance Computing, 3 (1), 2020



22

and Southbound API support, high availabilities, scalability, and modularity. We chose 
OpenDaylight as an appropriate controller at the heart of the SDI MCS because of these 
capabilities. The Northbound APIs, which are RESTful, can be used on OpenDaylight 
for IaaS resource management. The compute resource management APIs receive 
data from the Nova / vCenter and allocate resources to the incoming workloads based 
on predefined policies and patterns. The SDI MCS distributes the load on servers, 
network devices, and storage devices based on network topology and data it gains 
from the controllers. For example, if there is a VM with free computing resources, but 
physical server bandwidth is occupied, SDI MCS allocates resources to the incoming 
workload from a server with the lowest load, which has more compute, network and 
storage resources available.

Fig. 4. SDI MCS connection to the IaaS resource controllers

3.2. Design of the System
As mentioned before, we used OpenDaylight at the heart of SDI MCS. The 

OpenDaylight is modular and supports various protocols. Its language is Java and 
uses RPC for message communication. Figure 5 shows the SDI MCS reference archi-
tecture. At the bottom of this architecture, there are heterogeneous resources, which 
are combined according to their capabilities and provide a pool of resources for the 
system. SDI MCS is responsible for mapping the workloads to the resources auto-
matically and optimally based on the results of the workloads and operating condi-
tions of the cloud environment. Several workload schedulers like Control-M (Control-M 
Workload Automation – BMC, 2017), Jobschedule (JobScheduler | software- und 
Organisations-Service, 2017), or Rundeck (Rundeck Homepage, 2017) can be used 
for automation and scheduling the workloads. These tools, manage, au-tomate, and 

Muhammad Bayat, et al.



23

schedule workloads based on predefined policies and patterns. 
Physical compute resources include servers, GPUs, field-programmable gate 

arrays (FPGAs), and so on. Physical network resources include switches, routers, 
firewalls, load balancers, and so on. Physical storage resources are local disks on 
servers, stor-age area networks (SANs), and network-attached storages (NASs). The 
hypervisor layer abstracts these resources with virtualization and prepares a pool of 
resources for the system. This system uses virtualization as a first step to optimize 
the use of re-sources in the cloud infrastructure. In the hypervisor layer, Linux Kernel-
based Virtual Machine (KVM), VMware ESXi, Citrix XENServer, and Microsoft HyperV 
can be used. Upon the hypervisor layer, there are resource controllers. SDI MCS brings 
to-gether software-defined compute, network, and storage and unify the control and 
man-agement planes from each software-defined component.

The resource controllers communicate with the system through southbound inter-
faces. In OpenDaylight, these southbound interfaces can support various protocols 
such as OpenFlow, REST, SNMP, and RPC. There are multiple functions in this system, 
such as computing services functions, billing functions, network services functions, 
topology manager, and storage services functions. The SDI MCS uses these functions 
and northbound APIs to allocate resources to the workloads automati-cally and 
optimally.

Fig. 5. SDI MCS reference architecture

Azerbaijan Journal of High Performance Computing, 3 (1), 2020



24

The SDI MCS monitors the cloud network continuously and reacts appropriately 
to the network events based on the network topology information it obtains from the 
topology manager. The topology manager keeps a list of network resources, their 
relationship, monitoring, and measurement data of each resource and their state. The 
topology manager is aware of the creation and deletion of the networks, mapping, 
removing network ports, virtual interface migration from one virtual network to an-other, 
virtual network control delegation to a person, etc. The topology manager also provides 
up to date network resources information for SDI MCS, which can manage and control 
resources based on network topology. It should be mentioned that the received data 
from the resource controllers are kept in memory instead of the external database to 
reduce response time for workload resource requests. All data, in order to prevent 
losing them in the event of a problem, are sent to a SQL database.

The SDI MCS has a pool of heterogeneous resources and allocates them to the 
workloads through northbound APIs. The proper execution of a workload relates to the 
appropriate mapping between the workload and infrastructure resources according 
to the workload-specific objectives and policies. These policies include requirements 
of high availability, load balancing, automatic VM migration, and scalability to satis-
fy service-level objectives. The workloads specify the number of resources, and the 
system allocates the abstracted resources to the workloads automatically and on-
demand.

The Authentication, Authorization, and Accounting (AAA) layer authenticates us-ers 
and applications before they get access to the system based on predefined access 
and permissions. The system administrators and users use the command line interface 
(CLI) and graphical user interface (GUI) for management, configuration, and monitor-
ing. The SDI MCS provides a dashboard for users to monitor system status, the in-
coming workloads, the running tasks, the finished tasks, and the amount of allocated 
and unallocated resources.

3.3. SDI MCS capabilities
The SDI MCS is a step toward the integration of the IaaS heterogeneous resources. 

Its capabilities include high performance, scalability, heterogeneous resource integration, 
resource allocation to the workloads based on the programmable infrastructure, and 
optimally resource consumption.

The SDI MCS is a unified data center platform that provides automation, flexibil-ity, and 
efficiency. Compute, storage, networking, security, and availability services are pooled, 
aggregated, and delivered as software. These services are also managed by intelligent, 
policy-driven software.

The SDI MCS uses virtualization as a first step to optimize infrastructure re-sources. The 
traditional view of virtualization focused on the hardware and the bot-tom-up approach. In 
this approach, compute, network, and storage resource manage-ment is done manually 
and separately. The SDI MCS is a top-down approach that considers the workloads. 

The SDI MCS increases the value of a data center and cloud services. This value which 

Muhammad Bayat, et al.



25

is achieved by programmable and flexible infrastructures, can be divided into the following 
categories:

• Decrease response time using the elastic, flexible, and programmable infrastruc-ture.
• Increase stability, fault tolerance, and availability using automatic resource allo-cation 

to workloads and automatic VM placement.
• Reducing the cost of providing infrastructure and energy.
• Increasing security by isolating allocated resources on the shared infrastructure for 

multiple tenants.

Fig. 6. Integrated resource management system criteria and sub-criteria

Azerbaijan Journal of High Performance Computing, 3 (1), 2020



26

4. Evaluation
For evaluating the SDI MCS and comparing it with SDI RMS and SDE, we used the 

analytic hierarchy process (AHP) (Saaty, T. L., 1990). AHP is a structured tech-nique 
for organizing and analyzing complex decisions developed by Thomas L. Saaty in the 
1970s. 

For weighting and prioritizing architectures introduced in this study with AHP, we 
first need to draw a hierarchical tree that can be seen in Figure 6. At the root of this 
tree, we place the aim of the analysis, which is “the weighting of integrated resource 
management systems” here. At level one of this tree is the main criteria: cost, auto-
mation, security, management, efficiency, and interactivity. The second level contains 
the sub-criteria, and options are placed on the third level. In the next step, we made up 
the pairwise comparison matrices. We made these matrices for the main criteria first 
and then for all of the sub-criteria of one group over another. In the end, we made the 
options pairwise matrices for each sub-criteria. 

We used the architecture features set, which were mentioned in section II besides 
the SDI MCS capabilities for weighing the main criteria, sub-criteria, and options.
Table 1. Main criteria pairwise matrix 

SDI RMS vs. IBM 
SDE vs. SDI MCS Cost Dyna-

mism
Manage-

ment Security Interac-
tion Optimality

Cost 1 0.25 0.2 0.167 0.333 0.5
Dynamism 4 1 1 0.5 3 1

Management 5 1 1 0.5 4 2
Security 6 2 2 1 5 3

Interaction 3 0.333 0.25 0.2 1 0.333
Optimality 2 1 0.5 0.333 3 1

Table 2. Managing the sub-criteria pairwise matrix

Management
Integrating 
Resources 
Controller

Hetero-
geneous 
Resourc-

es

Workload 
Orches-
tration

Automatic 
Resource 
Manage-

ment

Pro-
viding 
Stable 

Abstrac-
tion 

Layer
Integrating Resources 

Controller 1 1 2 1 1

Heterogeneous Re-
sources 1 1 3 2 2

Workload Orchestra-
tion 0.5 0.333 1 0.333 0.25

Automatic Resource 
Management 1 0.5 3 1 0.5

Muhammad Bayat, et al.



27

For example, table 1 shows a pairwise matrix for the main criteria. As shown in this 
table, security has the highest weight among other criteria. Table 2 shows a pair-wise 
matrix for managing sub-criteria.

In this research, we used the Expert Choice ver. 11 to calculate the final weights of 
the main criteria, sub-criteria, and options. To weight main and sub-criteria, we insert 
the output of all matrices in Expert Choice. The inconsistency rate was 0.04, which 
shows that paired comparisons were desirable. Figure 7 shows the output of Expert 
Choice for prioritization of the main criteria based on the objectives.

Fig. 7. Main criteria prioritization
The results of eigenvector show that:
• The security criterion has the highest priority, with a normalized weight of 0.414.
• The management criterion has the second priority, with a normalized weight of 

0.227.
• Optimality criterion has the third priority with the normalized weight of 0.155.
• Dynamism criterion has the fourth priority with the normalized weight of 0.127.
• The interaction criterion has the fifth priority, with the normalized weight of 0.047.
• The cost criterion has the last priority, with a normalized weight of 0.03.
To prioritize the sub-criteria, we used the same method. Table 3 shows the weights 

of the main criteria and sub-criteria.

Table 3. The weights of the main criteria and sub-criteria

Main Criteria Main Criteria 
Weights Sub-criteria Sub-criteria 

Weights

Cost 0.03
CAPEX Reduction 0.092
OPEX Reduction 0.423
Rent Reduction 0.484

Providing Stable Ab-
straction Layer 1 0.5 4 2 1

Azerbaijan Journal of High Performance Computing, 3 (1), 2020



28

Dynamism 0.127
Flexibility 0.433
Scalability 0.467

Extensibility 0.1

Security 0.414

Reliability 0.433
Trust 0.284

SPOF Prevention 0.143
Access Rights 0.07

Access Guarantee 0.07

Management 0.227

Heterogeneous Resource 0.295
Dynamic Resource Manage-

ment 0.251

Integrating Heterogeneous 
Resource Controller 0.24

Providing Stable Abstraction 
Layer 0.091

Workload Orchestration 0.123

Optimality 0.155

Overhead Reduction 0.148
Response Time Reduction 0.237

Performance 0.406
Resource Provisioning 0.209

Interaction 0.066

Availability 0.556
Avoid complexity 0.236

CLI/GUI 0.139
Dashboard 0.069

To calculate the relative weight for each architecture related to sub-criteria in pair-
wise matrices, we first summarize column values, and then we normalize matrix ele-
ments. Afterward, we calculate the average of the elements in each row. The results 
are the weights of the options related to the sub-criteria. For example, table 4 shows 
the weights of options related to scalability sub-criteria.

We did this calculation for every option related to the sub-criteria. We also have 
the weights of sub-criteria from table 3. The final weights of every architecture can be 
achieved through the sum of multiplications of the sub-criteria weights to the weights 
of options. Figure 8 shows the final weights of the resource integrated management 
systems.

The results achieved from Expert Choice show that SDI MCS has a higher weight 
than SDI RMS and SDE. SDI RMS has lower weight because it does not consider 
storage resources and automatic resource allocation to the incoming workloads. SDI 

Muhammad Bayat, et al.



29

MCS has higher priority than SDE because of its complexity avoidance, the ability to 
use different controllers, topology management, and OpenStack’s independence for 
providing infrastructure as a service.

5. Conclusions
Integrated resource management could prepare dynamic resource allocation 

to the workloads based on their requirements. In this paper, we first discussed two 
archi-tectures, SDI RMS and SDE, and then compared them. In the following, we pro-
posed SDI MCS, which was able to integrate the control and management of all the 
heterogeneous infrastructure resources. This system receives all the events and infor-
mation from the compute, storage, and network controllers and allocates resources 
to the workloads based on the predefined policies and patterns. We developed 
OpenDaylight to be the central part of SDI MCS. The resource controllers communi-
cate with the system through southbound interfaces. There are various functions in this 
system, and SDI MCS uses these functions and northbound APIs to allocate resources 
to the workloads automatically and optimally. It also has a pool of hetero-geneous 
resources and allocates them to the workloads through northbound APIs. A unified 

Table 4. The weights of options related to the scalability sub-criteria

Scalability SDI RMS IBM SDE SDI MCS
The options 

weights 
related to the 

scalability
SDI RMS 0.285714286 0.333333333 0.272776869 0.297274829
IBM SDE 0.142857143 0.166666667 0.181669394 0.163731068
SDI MCS 0.571428571 0.5 0.545553737 0.538994103

Fig. 8. The final weights of the resource integrated management systems

Azerbaijan Journal of High Performance Computing, 3 (1), 2020



30

data center platform provides automation, flexibility, and efficiency. Its capa-bilities 
include high performance, scalability, heterogeneous resource integration, resource 
allocation to the workloads based on the programmable infrastructure, and optimally 
resource consumption. For Evaluating the SDI MCS and comparing it with SDI RMS 
and SDE, we used AHP. The results achieved from Expert Choice show that SDI MCS 
has a higher weight than SDI RMS and SDE. In future work, we try to optimize the 
architecture and add more functions to it. We also try to improve the performance and 
scalability of the system.

References 
Arnold, W. C., Arroyo, D. J., Segmuller, W., Spreitzer, M., Steinder, M., & Tantawi, A. 

N. (2014). Workload orchestration and optimization for software defined environments. 
IBM Journal of Research and Development, 58(2/3), 11:1–11:12.

Bakshi, K. (2013, March). Considerations for software defined networking (SDN): 
Approaches and use cases. In 2013 IEEE Aerospace Conference (pp. 1-9). IEEE.

Center Server Virtualization - Server Management Software: VMware, (2017) 
Retrieved from: http://www.vmware.com/products/vcenter-server.html. 

Ceph Homepage (2017) Retrieved from: http://ceph.com/. 
Control-M Workload Automation - BMC (2017) Retrieved from: http://www.bmc.

com/it-solutions/control-m.html.
Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., .. & Stoica, I. (2009). 

Above the clouds: A berkeley view of cloud computing. Dept. Electrical Eng. and 
Comput. Sciences, University of California, Berkeley, Rep. UCB/EECS, 28(13), 2009.

Javan, M. S., & Akbari, M. K. (2011, November). Cloud Computing Issues and 
Challenges for Ultimate Interoperability. In 1st CSUT Conference on Computer”, 
Communication and Information Technology, University of Tabriz.

JobScheduler | software- und Organisations-Service (2017) Retrieved from: http://
www.sos-berlin.com/jobscheduler.

Lara, A., Kolasani, A., & Ramamurthy, B. (2013). Network innovation using openflow: 
A survey. IEEE communications surveys & tutorials, 16(1), 493-512.

Li, C. S., Brech, B. L., Crowder, S., Dias, D. M., Franke, H., Hogstrom, M., et al. 
(2014). Software defined environments: An introduction. IBM Journal of Research and 
Development, 58(2/3), 1-1.

Lin, T., Kang, J. M., Bannazadeh, H., & Leon-Garcia, A. (2014, May). Enabling SDN 
applications on software-defined infrastructure. In 2014 IEEE Network Operations and 
Management Symposium (NOMS) (pp. 1-7). IEEE.

NSX Homepage (2017) Retrieved from: http://www.vmware.com/products/nsx. 
OpenStack Neutron Homepage, (2017) Retrieved from: https://wiki.openstack.org/

wiki/Neutron. 
OpenStack Nova Homepage, (2017) Retrieved from: http://docs.openstack.org/

developer/nova/. 

Muhammad Bayat, et al.



31

OpenStack Swift Homepage, (2017) Retrieved from: https://wiki.openstack.org/wiki/
Swift. 

Quintero, D., Genovese, W. M., Kim, K., Li, M. J. M., Martins, F., Nainwal, A., et al. 
(2015). IBM software defined environment. IBM Redbooks.

Rundeck Homepage, (2017) Retrieved from: http://rundeck.org/. 
Saaty, T. L. (1990). Decision making for leaders: the analytic hierarchy process for 

decisions in a complex world. RWS publications.
Singh, A., Korupolu, M., & Mohapatra, D. (2008, November). Server-storage 

virtualization: integration and load balancing in data centers. In SC’08: Proceedings of 
the 2008 ACM/IEEE conference on Supercomputing (pp. 1-12). IEEE.

ViPR Controller Software-defined Storage | EMC, (2017) http://www.emc.com/vipr. 

Submitted 15.03.2020
Accepted 17.05.2020

Azerbaijan Journal of High Performance Computing, 3 (1), 2020


