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The ecosystem of working with Big Data allows manufacturing companies to optimize the production 

and sales function, minimizing the gaps between production and sale of products through the automatic 

generation of predictive models of demand, purchasing and production by product groups and units of 

output. The system allows you to develop internal models for analyzing existing data in a graphical 

interface, enrich them with external sources (OSM, Rosstat data, etc.) and implement the results obtained 

in planning and decision-making systems. 
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Introduction 

The big data ecosystem includes the following groups of tools [1]: 

 distributed file systems (Distributed File Systems - DFS); 

 deployment tools; 

 NoSQL and NewSQL databases; 

 data integration tools; 

 machine learning tools; 

 service programming tools; 

 planning tools; 

 benchmarking tools; security tools. 

To store large amounts of data, distributed file systems are used, which have the following differences: 

 the ability to store files larger than the size of a separate storage server disk; 

 stored files are automatically replicated on storage servers, which allows parallel processing and 

the creation of redundancy to ensure reliable operation of the cluster; 

 the system can be easily scaled using the principle of horizontal scaling. 

The most common distributed file system is the Hadoop File System. Examples of DFS are also: Red 

Hat ClusterFS, QuantCast File System, Ceph File System. Storing big data requires database systems 

and data access tools. Due to known limitations, the use of classic relational databases, such as Oracle 

SQL, DB2, is impossible. Storing big data requires database systems and data access tools. Due to known 
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limitations, the use of classic relational databases, such as Oracle SQL, DB2, is impossible. Systems for 

analyzing and storing big data use systems called NoSQL and their further development NewSQL. These 

database systems will discussed in more detail below. Here we note that 

 

 

In addition to the database systems themselves, systems for collecting and converting batch and 

streaming data needed. 

Data integration tools, as the name suggests, serve to merge data by moving data from one source to 

another. As noted above, there are two main classes of big data solutions for processing batch and 

streaming data. Examples of batch processing solutions are Apache Sqoop. Examples of solutions for 

use in processing streaming data are uniqueness of the problem led to the emergence of technologies 

such as Apache Flume, Apache Storm and Apache Kafka. After moving data to a distributed file system, 

you need to move on to extracting information from the data. For these purposes, in the process of 

analyzing big data, methods of applied mathematics, mathematical statistics, and machine learning are 

used. However, an important difference between the algorithms used in big data analysis is that the 

algorithms must distributed. Today, there are many libraries and frameworks that implement these 

algorithms. Examples of programming languages actively used in this task are Python, Java, R. For 

example, for Python there are libraries such as: NLTK – Natural Language Toolkit – natural language 

data processing library; 

Scikit-learn is one of the most famous machine learning libraries; TensorFlow is a deep machine learning 

library from Google. An example of a real-time machine learning system is Apache Spark. Distributed 

programming frameworks simplify the implementation of distributed algorithms because they implement 

“low-level distributed” tasks, hiding them from the programmer. Such tasks include: redistribution of 

tasks in case of their failure on computing node, communication between subprocesses. Examples of 

distributed programming frameworks are Apache Thrift, Zookeeper. Scheduling tools are used to 

automate repetitive tasks. For example, running MapReduce tasks when a new dataset becomes available. 

Representatives of this group are Hadoop YARN. 

Benchmarking tools help optimize big data infrastructures through use of standardized profiles. Each 

profile is built on the basis of a specific set of tools for storing and processing big data. Any information 

system for storing and analyzing big data must built on a specific hardware and software architecture. 

There a generalized architectural framework for big data applications that defines the big data tech stack. 

In general, the big data architecture can represented. [2]. Data Sources level. Several internal and external 

data sources are typically available to businesses. At the same time, there are requirements that before 

recording, the data must be cleaned, verified, and scaled. 

Data can be supplied in various formats: results of queries to relational databases and data warehouses, 

email messages, XML, JSON, HTML, instant messages, video and audio data, office application 

document formats (Word, Excel, pdf), as well as streaming data. As noted above, these sources are 

characterized by a high speed of data output, a wide variety of formats, and a large volume of data. Data 

loading layer (Ingestion Layer). The loading layer is a new layer for enterprise data processing. This 

layer is responsible for separating noise from relevant information. The algorithms in this layer must be 

able to inspect, clean, transform, reduce, and aggregate data into a big data technical stack for further 

processing. 
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Figure 1. Architecture of a big data storage and analysis system 

 

 

This is a new middleware that needs to be scalable, fault tolerant, flexible and governing in a big data 

architecture. According to the Data Science process, errors in this layer can invalidate all further work. The 

load layer loads the final relevant information without noise into the distributed Hadoop storage layer. 

Algorithms at this level must validate, clean, transform, reduce, and integrate data into a big data technology 

stack for further processing. Load layer architectural patterns describe solutions to common data source 

problems in terms of impact on the load layer. These solutions can be selected based on performance, scalability 

and availability requirements. We'll look at these patterns in subsequent sections. In this chapter, we will look 

at the following common batch and streaming data loading patterns [2]: 

 the Multisource Extractor Pattern is an approach for effectively using multiple types of data sources; 

 protocol Converter Pattern. This pattern uses a protocol broker to provide abstraction for incoming data 

from different protocol layers; 

 multidestination Pattern: This pattern is used in a scenario where the load layer needs to transport data 

to multiple storage components, such as Hadoop distributed file system, data marts, or real-time 

analytics engines; 

 just-in-Time Transformation Pattern. Large volumes of unstructured data can be loaded in batches 

using traditional ETL (extract, transfer, and load) tools and techniques. However, data is only 

transformed when necessary to save computation time; 

 real-Time Streaming patterns. Some business problems require instant analysis of data coming into the 

enterprise. In these conditions, real-time data loading and analysis is necessary. 

The Distributed (Hadoop) Storage Layer provides a reliable, scalable computing environment parallel 

algorithms for processing big data. The Hadoop distributed file system is the core element of this layer. Direct 

access control in distributed data is carried out by NoSQL databases, discussed below. Infrastructure layer 

(Hadoop Infrastructure Layer) – a layer that supports the storage layer, that is, the physical infrastructure. The 

infrastructure layer is fundamental to the operation and scalability of big data architecture. To support 
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unexpected or unpredictable data volume, velocity, or variety, the physical infrastructure for big data must be 

different from the infrastructure for traditional relational data. 

Hadoop physical infrastructure layer (HPIL) is based on a distributed computing model. This means that data 

is physically stored in many locations and linked together through networks and a distributed file system. It is 

a "shareless" architecture in which data and the functions needed to manage reside together on a single node. 

Unlike the traditional client-server model, data no longer transferred to a monolithic server where SQL 

functions are used to process it. This level of infrastructure has redundancy built into it. Security Layer. As big 

data analytics becomes a top concern for organizations, the security of that data also becomes a top concern. 

Stored data and the results of its processing must protected both to comply with relevant requirements and to 

protect individual privacy. Therefore, authorization and authentication means must planned from the very 

beginning. 

Monitoring Layer. Monitoring systems are used to monitor the status of distributed clusters and collect 

information about the operating systems, equipment, etc. used. To perform this task, machines must 

communicate with the monitoring tool through high-level protocols such as XML instead of machine-specific 

binary formats. Monitoring systems must also provide tools for storing and visualizing data. Open source tools 

such as Ganglia and Nagios are widely used to monitor big data stacks. 

Analytics Engine applications perform search queries on distributed data, perform analytical text processing, 

statistical analytics, and run intelligent algorithms on the data. Big data analysis algorithms will discussed in 

more detail in the next chapter. Visualization tools (Analytics Engine). Typically, raw analytical outputs cannot 

used to solve business problems. It is necessary to translate analytical data into tabular or graphical form, as 

well as the ability to look at the data under different corners. Therefore, visualization tools are an integral part 

of big data storage and analysis systems. Visualization tools run on top of consolidated and aggregated outputs. 

In cases where real-time analysis of analytics results is required, real-time mechanisms running on Complex 

Event Processing (CEP) and Event-driven Architectures (EDA) can used. 
 

 

Figure 2. Visualization of the data exploration process 

As the review of architectures and tools for big data storage and analysis systems shows, there is a huge range 

of possible design options. The number of possible solutions can be very large if we take into account the 

developed lists of tools (landscapes) for creating systems for storing and analyzing big data. An example is an 

online resource dedicated to the study of solutions in the field of big data. For example, Figure 3. shows the 

landscape of big data enterprise applications. The main goal of Big Data applications is to help companies 

make more informed business decisions by analyzing large volumes of data. This data may include web server 
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logs, internet clickstream data, social media content and activity reports, text from customer emails, cell phone 

call data, and technical data captured by IoT sensors. As noted above, these can be structured, semi-structured 

and unstructured. 
 

 

 

 

Figure 3. Enterprise Big Data Application Landscape 

As we can see, there are a large number of tools. Therefore, the urgent question arises about their integration 

and deployment on computing clusters. It is quite obvious that just deploying such a system can be a daunting 

task. To quickly create systems for storing and analyzing big data, special distributions can be used - software 

packages for deploying a cluster, monitoring and managing it. Today there are a number of such distributions: 

deployment platforms from Hortonworks [3]: 

 

 

 Hortonworks Data Platform (HDP) – a virtual machine with a full set of tools for batch data processing, 



348  

 Hortonworks DataFlow (HDF) – a virtual machine with a full set of tools for stream data processing; 

 Cloudera Distribution including Apache Hadoop (CDH) [4] – an open source software distribution 

containing Apache Hadoop and key components such as Apache Flume, Apache Hive, Apache Kafka, 

etc.; 

 MapR Converged Data Platform [5] is a single platform, implemented on a single code base, combining 

key technologies: distributed file system, multi-model NoSQL database, publish/subscribe streaming 

event engine, ANSI SQL and a wide range of open source data analysis technologies; 

 Microsoft HDInsight [6] is a service running in the Windows Azure cloud that allows you to quickly 

launch such popular open source platforms as Apache Hadoop, Spark and Kafka; 

 Arenadata Hadoop (ADH) [7] is also a Russian distribution, which includes current stable versions of 

all the most popular tools, such as Apache Hive, Apache Spark and Apache Atlas. 

Conclusion 

Deploying big data storage and analytics systems presents a complex technical and engineering challenge. To 

facilitate the process of deploying storage systems and big data analysis, special distributions can used in the 

form of virtual machines or cloud services. 
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ABSTRACT 
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The main goal of solutions in this area is the distribution of data storage and processing. Today, there are a 

huge number of architectural solutions and tools used for big data. The technology for storing and analyzing 

big data is promising based on forecast analysis. Big data characterized by various characteristics, referred to 

as “Vs”. Analysis of the literature shows that today the most important characteristic of big data is data 

heterogeneity. It is the analysis of heterogeneous data that can give tangible results when modeling data. Big 

data is a powerful tool that helps firms advance, improve bottom lines, and refine decision-making processes. 

This impact clearly demonstrated by the big data statistics and trends discussed in this article. 
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