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Abstract
Shelf space allocation has always remained a crucial issue for any 
retail store, as space is a limited resource. This work proposes a 
model that uses a hyper-heuristic approach to allocate products on 
shelves to maximize the retailer's profit. This work has concentrated 
on providing a solution specifically for a consumer packaged goods 
store. There exist multiple conflicting objectives and constraints 
which influence the profit. The consequence is a non-linear 
programming model having a complex objective function, which is 
solved by using multiple neighborhood approaches using simulated 
annealing as simulated annealing is a useful tool for solving 
complex combinatorial optimization problems. Detailed analysis 
of the proposed technique of using annealing and reheating has 
revealed the effectiveness in profit maximization in the shelf space 
allocation problem. Various simulated annealing parameters have 
been studied in this article, which provides optimum values for 
maximizing profit.
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1. Introduction 
Shelf space is always a finite resource for a retailer of a multi-purpose utility store. 

The Shelf space allocation problem is defined as the distribution of the appropriate 
amount of shelf space among various products, along with their locations, in a store, 
such that the total profit and the purchaser fulfillment are maximized. A shelf is defined 
as a horizontal, stable, and quadrangular structure used to withstand, hold, and display 
objects. Again, the rack is a stack of shelves. The objective of Shelf Space Allocation 
Problem is to maximize category sales and profits, without any regard to any particular 
bound (Retailer's goal) or to improve the sales of any particular brand, thus wanting to 
allocate as much space as possible to one particular product (Manufacturer's goal). 
Such a nature whose decision variables have discrete and finite domains is termed a 
combinatorial problem. As a result, a combinatorial problem has a finite number of 
solutions, although typically exponential in the number of variables. 

In most cases of such problems, an instance may have more than one feasible 
solution. Although it is enough to find any solution that satisfies the constraints for 
search and decision problems, optimization problems discover a better solution than 
the others according to some measure. The customary way to evaluate the goodness 
of a solution with respect to the others is to define a fitness function to assess the utility 
of the solution that may influence the decision process.  

In many problem formulations, constraints are split into hard constraints and soft 
constraints. Hard constraints define the restrictions that cannot be violated for any 
reason. Their violation prevents a solution from being feasible at all, thereby defining 
the search space's boundaries. Soft constraints, on the other hand, maybe violated, 
as their violation does not hinder feasibility. However, it is done at the price of a higher 
solution cost. Thus, care should be taken to minimize their violations by the optimization 
process. Soft constraints are the most common way to define an objective function. 
The in-store factors positively influence the choice of consumers. Rather than just 
displaying the merchandising, a creative product arrangement on the shelves 
becomes quintessential to increasing the perceptibility, consumer responsiveness, 
and demand for the products, in turn resulting in better performance. 

A multi-objective optimization problem (MOOP) combines several objectives that 
decide the ultimate outcome. Generally, these objectives influence one another in a 
complex and conflicting manner (Ombuki et al., 2006). The main aim is to find a set of 
values for these objectives to optimize the overall problem. Goldberg states that multi-
objective optimization is the method of optimizing multiple conflicting objectives, 
subject to a set of constraints. In these problems, it is observed that there is no specific 
solution that minimizes, at the same time, each objective completely, but to a limit 
beyond which the other objective(s) will be compromised as a consequence 
(Goldberg, 1989). After procuring a specific solution, one of the chief aims of MOOPs 
is to compare it with other solutions and measure the improvement in this solution with 
respect to the current set of solutions (Haupt and Haupt, 2004). A multi-objective 
problem with several conflicting objectives may be framed into a one-objective scalar 
function. This well-known technique, known as the weighted-sum method or Single 
Objective Evolutionary Algorithm (SOEA), is an a priori technique based on the "linear 
aggregation of functions” principle (Arulmozhiyal and Jubril, 2012). The weighted-sum 
method cuts down to a positively weighted convex sum of the objectives, as follows:  
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Various scalarization procedures have been anticipated in the past. Zadeh 
promoted the weighted sum technique as a classical approach for explaining such 
problems (Zadeh, 1963). In this technique, the scalarization of a set of contradictory 
objective functions is done by pre-multiplying each objective function with already 
defined weights. However, despite the technique being straightforward and 
computationally proficient, it may fail to explore all solutions given that the true Pareto 
front is non-convex (Konak et al.,2006). 

Simulated annealing (SA) is a useful tool for solving complex combinatorial 
optimization problems. Simulated annealing is a type of local search heuristic which is 
enthused from the physical process of annealing of solids. An advantage of this 
method is that it never gets trapped in local maxima, which are useful in such complex 
problems. It also provides a better solution quality and enhances computational 
efficiency. However, evolutionary algorithms, such as the SA, were mostly used to solve 
a single objective function due to its 'search-from-a-point' nature. This can be extended 
to solve the multi-objective optimization problem where the general aim is to find a set 
of solutions called the pareto set, all of which are equally important in the search space 
and obtains global optimal solutions. SA can be applied for such multi-objective 
problems by using a weighted sum method. Simulated Annealing has the upper hand 
due to its probabilistic nature.  Shelf Space Optimization is an important topic being 
worked upon to capitalize on the goods' availability in their product line at the least 
cost to operations. This project focuses on the retailer's perspective and aims to 
allocate shelf space in a way to maximize profit (sales).  

 
2. Literature Survey 
Research in shelf space allocation started back in the 1960s when a pragmatic 

study was made for three products from eight chain stores. A significant relationship 
was found between shelf facings and sales (Kotzan and Evanson, 1969). Similar 
experiments were carried out to include products from two brands of two classes, salt 
and coffee cream. A relationship was established between the facings of shelf and 
sales (Cox, 1970). Space elasticity was defined as “the ratio of relative change in unit 
sales to relative change in unit sales in shelf space” (Curhan,1972). A study for the 
affinity effects between products where space was manipulated to improve 
complimentary shopping by inserting such products together was performed (Dreze 
et al.,1994). The outcomes depicted that co-related merchandising resulted in a 
positive boost of sales (over 5%) on tested products. Moreover, it was concluded that 
the location effect of a shelf has a more significant impact on the number of facings.  

A model was presented for Shelf Space Allocation in 1981 using geometric 
programming and heuristics constraints for optimization (Corstjens and Doyle, 1981). 
Their idea was based on the demands of the product along with their allowable 
capacities. A simplified version of the previous model was presented (Yang and Chen, 
1999), which was the first to consider the number of facings of a product using a 
greedy knapsack approach to optimize. An extension of this model, considering 
product affinity, was produced. They used multiple problem neighborhood moves to 
optimize the non-linear function. A different model from the Yang and Chen model was 
proposed and worked on(Hwang et al.,2005). The difference was because the new 
model was formulated by amalgamating location effects. A location effect factor was 
implemented in the objective function, with constraints similar to previous models. 
Russell and Urban were the first two authors who considered the products as part of 
the family that can be grounded on diversity in characteristics like brand, flavor, price, 
etc. (Russell and Urban, 2010). Products of the same family should be kept together. 
A model was developed based on a retailer's decisions for product prices, display 
facing areas, display orientations, and shelf-space locations in a product category 
using branch and bound (Murray et al.,2010). 

Simulated annealing (SA) was proposed by S. Kirkpatrick (Kirkpatrick et al., 1983). 
Various engineering planning and manufacturing problems can be modeled as a cost 
function that needs to be minimized or maximized over a set of distinct variables. 
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1999), which was the first to consider the number of facings of a product using a 
greedy knapsack approach to optimize. An extension of this model, considering 
product affinity, was produced. They used multiple problem neighborhood moves to 
optimize the non-linear function. A different model from the Yang and Chen model was 
proposed and worked on(Hwang et al.,2005). The difference was because the new 
model was formulated by amalgamating location effects. A location effect factor was 
implemented in the objective function, with constraints similar to previous models. 
Russell and Urban were the first two authors who considered the products as part of 
the family that can be grounded on diversity in characteristics like brand, flavor, price, 
etc. (Russell and Urban, 2010). Products of the same family should be kept together. 
A model was developed based on a retailer's decisions for product prices, display 
facing areas, display orientations, and shelf-space locations in a product category 
using branch and bound (Murray et al.,2010). 

Simulated annealing (SA) was proposed by S. Kirkpatrick (Kirkpatrick et al., 1983). 
Various engineering planning and manufacturing problems can be modeled as a cost 
function that needs to be minimized or maximized over a set of distinct variables. 
Simulated Annealing is used to deal with problems that cannot be solved in polynomial 
time: NP-hard problems. Simulated annealing is applied to different types of problems, 
including traveling salesman problems (Wang et al., 2009), Job Shop scheduling 
(Laarhoven et al., 1992), and Shelf space allocation problems (Erol et al.,2015). The 
results produced by SA are susceptible to the annealing schedule and how the 
neighborhood is searched; that is, values of initial temperature, final temperature, 
cooling coefficient, and the number of moves in each loop's neighborhood affect the 
results produced. The main essence of the SA algorithm lies in the cooling schedule. 
Better results are obtained if the cooling schedule is big. However, if the cooling 
schedule is too big, it wastes time in the loop. If the cooling schedule is too short, it 
may fail to find the optimal solution. The main disadvantage of the algorithm is the 
considerable running time. Nevertheless, it is recouped by the simplicity and ease of 
application to different problems. This paper suggests an innovative technique to 
optimize profit through better store layout in the light of modern-day customer 
demands. 

 
3. Problem Formulation 
'Shelf space' with respect to any retail store is an essential and limited resource. In 

this paper, allocating products on the shelves has been optimized by keeping in mind 
the various conflicting objectives and the constraints to which this problem is subjected 
to. This paper proposes a 3-dimensional shelf space allocation model where the third-
dimension stems from the height of the rack. The first two dimensions are the length of 
the shelf and the height of a shelf. The height of a rack can be considered to be the 
summation of each shelf's height within the rack. The following information has been 
collected from a retail store for evaluation: the selling price of each item present in the 
retail store, length and height of the shelves, number of shelves in a rack, length and 
height of each item, minimum and maximum units of facings that can be provided to 
each product, total number of shelves being considered, total number of products that 
are considered, affinity matrix of the products that will enable the identification of 
frequent item-sets from retailer’s transaction history, location effect of each shelf, scale 
parameter for demand function of an item, space elasticity factor of an item. 

Profit is calculated based on the selling price of an item and the value of an item's 
demand function over time. The demand model of a product depends on elasticity, 
and in this model, it is expressed as a product of direct space elasticity, cross elasticity, 
and location effect of a shelf. To fulfill the overall objective, it is required to consider 
certain underlying objectives that may be conflicting in nature. The number of items 
sold is directly related to the number of facings displayed of the product. Increasing 
the number of facings of a product has a considerable effect on the sales of an item. 
However, studies have suggested that the number of product facings has an upper 
and lower boundary, a constraint considered by the model. Items that are frequently 
purchased together are placed in close proximity to boost the sale of such items 
together (Han et al., 2012). However, reducing the distance between items that are 
frequently purchased together also reduces individual products' display, thus the 
conflict. Since this problem is subject to multiple conflicting constraints, so, in order to 
maximize the retailer's profit, multi-objective optimization becomes a necessity. A pilot 
survey was conducted among 60 consumers to understand the preferences one 
places while purchasing an item from the retail store.  The weights obtained from them 
were used to scalarizs the multiple objective problems into a single objective 
optimization problem. 

The problem is formulated for a given number of racks m in a shelf, with each rack 
j having a demand impact factor Ƴj, where Ƴj³1. Racks at the eye level or nearer impact 
customer sales than the shelves located in the upper or lower regions. Length facing 
has been defined as the number of facings allocated to each item along the rack's 
length. Stack coefficient is the number of facings that can be assigned height-wise. 
The product of length facing and stack coefficient gives the total number of facings of 
an item. 

Thus, formulating the main objective function, as follows: 
Max ∑ 		𝑤𝑤!𝑝𝑝" 	∗ 	 (1 − 𝑤𝑤!)𝐹𝐹"#

"$!     (1) 
Here, pi is the selling price of item i, and there are n items. Fi is the demand function 

of item i. 
Maximizing the demand for an item is done by maximizing the amount of visibility 

of that product. The total number of facings that can be allotted to an item i can be 
given as: 

Si=∑ 𝑥𝑥"% ∗ 𝜋𝜋"%&
%$!      (2) 

where xij is the length of the shelf j allocated to item i or length facings. 
𝜋𝜋ij is the height stack coefficient or the number of facings assigned to an item along 

with shelf height. 
𝜋𝜋"% = .'!

(!
/      (3) 

Where 𝐻𝐻" is the height of the shelf and ℎ" is the height of item i. 
The demand for an item is also affected by the location of the shelf it is assorted to. 

Thus, the average location effect can be calculated as: 

Ƴi= 
∑ *!"∗,!"∗Ƴ"
#
"$%

.!
     (4) 

The affinity factor for a pair of products is defined as a complex relationship 
between the number of facings of product k and the cross-elasticity factor of item i with 
item k. βik is the cross elasticity or affinity of an item k on item i. Cross-elasticity is 
defined as the influence of the number of facings allotted to one item on another item's 
sale. The affinity matrix is constructed with values in the range of 1 and -1. The closer 
the value of affinity to 1, the more affine are the products. If the affinity value is zero, 
then the affinity among the categories is indifferent. The affinity factor is represented 
using the equation: 

𝜌𝜌=∏ 𝑆𝑆/0!&#
/1"        (5) 

Now the demand function of item i is calculated as follows: 
Fi = αi * 		𝑤𝑤2𝑆𝑆"

0! * 		𝑤𝑤3𝜌𝜌*		𝑤𝑤4Ƴi    (6) 
Here, αi is the scale factor for the demand function of item i, βi is the space elasticity 

for item i, and Space elasticity for an item i is the measurement of the impact on a 
product sale performance by increasing or decreasing its allocation of space within a 
shelf.  

The problem described in this paper that is the objective function is subject to all 
the following constraints: 

∑ 𝑙𝑙"#
"$! 𝑥𝑥"%≤ Lj, ∀j    (7) 

yij≤∏"%, ∀i,                 (8) 
𝑠𝑠"&"# 	≤ 𝑠𝑠" ≤ 𝑠𝑠"&5*, ∀𝑖𝑖                                    (9) 

yij∈{0,1}, ∀i, j                                               (10) 
xij	∈ {0} ∪ Z+,∀ i                                              (11) 

yij≤ xij, ∀i, j                                                  (12) 
∑ 𝑦𝑦"%&
%$!  = 1, ∀ i                                               (13) 

y"% ∗ 6%
7"

≥ 𝑥𝑥"%, ∀j                                               (14) 
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Simulated Annealing is used to deal with problems that cannot be solved in polynomial 
time: NP-hard problems. Simulated annealing is applied to different types of problems, 
including traveling salesman problems (Wang et al., 2009), Job Shop scheduling 
(Laarhoven et al., 1992), and Shelf space allocation problems (Erol et al.,2015). The 
results produced by SA are susceptible to the annealing schedule and how the 
neighborhood is searched; that is, values of initial temperature, final temperature, 
cooling coefficient, and the number of moves in each loop's neighborhood affect the 
results produced. The main essence of the SA algorithm lies in the cooling schedule. 
Better results are obtained if the cooling schedule is big. However, if the cooling 
schedule is too big, it wastes time in the loop. If the cooling schedule is too short, it 
may fail to find the optimal solution. The main disadvantage of the algorithm is the 
considerable running time. Nevertheless, it is recouped by the simplicity and ease of 
application to different problems. This paper suggests an innovative technique to 
optimize profit through better store layout in the light of modern-day customer 
demands. 

 
3. Problem Formulation 
'Shelf space' with respect to any retail store is an essential and limited resource. In 

this paper, allocating products on the shelves has been optimized by keeping in mind 
the various conflicting objectives and the constraints to which this problem is subjected 
to. This paper proposes a 3-dimensional shelf space allocation model where the third-
dimension stems from the height of the rack. The first two dimensions are the length of 
the shelf and the height of a shelf. The height of a rack can be considered to be the 
summation of each shelf's height within the rack. The following information has been 
collected from a retail store for evaluation: the selling price of each item present in the 
retail store, length and height of the shelves, number of shelves in a rack, length and 
height of each item, minimum and maximum units of facings that can be provided to 
each product, total number of shelves being considered, total number of products that 
are considered, affinity matrix of the products that will enable the identification of 
frequent item-sets from retailer’s transaction history, location effect of each shelf, scale 
parameter for demand function of an item, space elasticity factor of an item. 

Profit is calculated based on the selling price of an item and the value of an item's 
demand function over time. The demand model of a product depends on elasticity, 
and in this model, it is expressed as a product of direct space elasticity, cross elasticity, 
and location effect of a shelf. To fulfill the overall objective, it is required to consider 
certain underlying objectives that may be conflicting in nature. The number of items 
sold is directly related to the number of facings displayed of the product. Increasing 
the number of facings of a product has a considerable effect on the sales of an item. 
However, studies have suggested that the number of product facings has an upper 
and lower boundary, a constraint considered by the model. Items that are frequently 
purchased together are placed in close proximity to boost the sale of such items 
together (Han et al., 2012). However, reducing the distance between items that are 
frequently purchased together also reduces individual products' display, thus the 
conflict. Since this problem is subject to multiple conflicting constraints, so, in order to 
maximize the retailer's profit, multi-objective optimization becomes a necessity. A pilot 
survey was conducted among 60 consumers to understand the preferences one 
places while purchasing an item from the retail store.  The weights obtained from them 
were used to scalarizs the multiple objective problems into a single objective 
optimization problem. 

The problem is formulated for a given number of racks m in a shelf, with each rack 
j having a demand impact factor Ƴj, where Ƴj³1. Racks at the eye level or nearer impact 
customer sales than the shelves located in the upper or lower regions. Length facing 
has been defined as the number of facings allocated to each item along the rack's 
length. Stack coefficient is the number of facings that can be assigned height-wise. 
The product of length facing and stack coefficient gives the total number of facings of 
an item. 

Thus, formulating the main objective function, as follows: 
Max ∑ 		𝑤𝑤!𝑝𝑝" 	∗ 	 (1 − 𝑤𝑤!)𝐹𝐹"#
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Here, pi is the selling price of item i, and there are n items. Fi is the demand function 

of item i. 
Maximizing the demand for an item is done by maximizing the amount of visibility 

of that product. The total number of facings that can be allotted to an item i can be 
given as: 
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where xij is the length of the shelf j allocated to item i or length facings. 
𝜋𝜋ij is the height stack coefficient or the number of facings assigned to an item along 

with shelf height. 
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Where 𝐻𝐻" is the height of the shelf and ℎ" is the height of item i. 
The demand for an item is also affected by the location of the shelf it is assorted to. 

Thus, the average location effect can be calculated as: 
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The affinity factor for a pair of products is defined as a complex relationship 
between the number of facings of product k and the cross-elasticity factor of item i with 
item k. βik is the cross elasticity or affinity of an item k on item i. Cross-elasticity is 
defined as the influence of the number of facings allotted to one item on another item's 
sale. The affinity matrix is constructed with values in the range of 1 and -1. The closer 
the value of affinity to 1, the more affine are the products. If the affinity value is zero, 
then the affinity among the categories is indifferent. The affinity factor is represented 
using the equation: 
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Now the demand function of item i is calculated as follows: 
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Here, αi is the scale factor for the demand function of item i, βi is the space elasticity 

for item i, and Space elasticity for an item i is the measurement of the impact on a 
product sale performance by increasing or decreasing its allocation of space within a 
shelf.  

The problem described in this paper that is the objective function is subject to all 
the following constraints: 
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Simulated Annealing is used to deal with problems that cannot be solved in polynomial 
time: NP-hard problems. Simulated annealing is applied to different types of problems, 
including traveling salesman problems (Wang et al., 2009), Job Shop scheduling 
(Laarhoven et al., 1992), and Shelf space allocation problems (Erol et al.,2015). The 
results produced by SA are susceptible to the annealing schedule and how the 
neighborhood is searched; that is, values of initial temperature, final temperature, 
cooling coefficient, and the number of moves in each loop's neighborhood affect the 
results produced. The main essence of the SA algorithm lies in the cooling schedule. 
Better results are obtained if the cooling schedule is big. However, if the cooling 
schedule is too big, it wastes time in the loop. If the cooling schedule is too short, it 
may fail to find the optimal solution. The main disadvantage of the algorithm is the 
considerable running time. Nevertheless, it is recouped by the simplicity and ease of 
application to different problems. This paper suggests an innovative technique to 
optimize profit through better store layout in the light of modern-day customer 
demands. 

 
3. Problem Formulation 
'Shelf space' with respect to any retail store is an essential and limited resource. In 

this paper, allocating products on the shelves has been optimized by keeping in mind 
the various conflicting objectives and the constraints to which this problem is subjected 
to. This paper proposes a 3-dimensional shelf space allocation model where the third-
dimension stems from the height of the rack. The first two dimensions are the length of 
the shelf and the height of a shelf. The height of a rack can be considered to be the 
summation of each shelf's height within the rack. The following information has been 
collected from a retail store for evaluation: the selling price of each item present in the 
retail store, length and height of the shelves, number of shelves in a rack, length and 
height of each item, minimum and maximum units of facings that can be provided to 
each product, total number of shelves being considered, total number of products that 
are considered, affinity matrix of the products that will enable the identification of 
frequent item-sets from retailer’s transaction history, location effect of each shelf, scale 
parameter for demand function of an item, space elasticity factor of an item. 

Profit is calculated based on the selling price of an item and the value of an item's 
demand function over time. The demand model of a product depends on elasticity, 
and in this model, it is expressed as a product of direct space elasticity, cross elasticity, 
and location effect of a shelf. To fulfill the overall objective, it is required to consider 
certain underlying objectives that may be conflicting in nature. The number of items 
sold is directly related to the number of facings displayed of the product. Increasing 
the number of facings of a product has a considerable effect on the sales of an item. 
However, studies have suggested that the number of product facings has an upper 
and lower boundary, a constraint considered by the model. Items that are frequently 
purchased together are placed in close proximity to boost the sale of such items 
together (Han et al., 2012). However, reducing the distance between items that are 
frequently purchased together also reduces individual products' display, thus the 
conflict. Since this problem is subject to multiple conflicting constraints, so, in order to 
maximize the retailer's profit, multi-objective optimization becomes a necessity. A pilot 
survey was conducted among 60 consumers to understand the preferences one 
places while purchasing an item from the retail store.  The weights obtained from them 
were used to scalarizs the multiple objective problems into a single objective 
optimization problem. 

The problem is formulated for a given number of racks m in a shelf, with each rack 
j having a demand impact factor Ƴj, where Ƴj³1. Racks at the eye level or nearer impact 
customer sales than the shelves located in the upper or lower regions. Length facing 
has been defined as the number of facings allocated to each item along the rack's 
length. Stack coefficient is the number of facings that can be assigned height-wise. 
The product of length facing and stack coefficient gives the total number of facings of 
an item. 

Thus, formulating the main objective function, as follows: 
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Here, pi is the selling price of item i, and there are n items. Fi is the demand function 

of item i. 
Maximizing the demand for an item is done by maximizing the amount of visibility 

of that product. The total number of facings that can be allotted to an item i can be 
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Where 𝐻𝐻" is the height of the shelf and ℎ" is the height of item i. 
The demand for an item is also affected by the location of the shelf it is assorted to. 

Thus, the average location effect can be calculated as: 
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The affinity factor for a pair of products is defined as a complex relationship 
between the number of facings of product k and the cross-elasticity factor of item i with 
item k. βik is the cross elasticity or affinity of an item k on item i. Cross-elasticity is 
defined as the influence of the number of facings allotted to one item on another item's 
sale. The affinity matrix is constructed with values in the range of 1 and -1. The closer 
the value of affinity to 1, the more affine are the products. If the affinity value is zero, 
then the affinity among the categories is indifferent. The affinity factor is represented 
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Here, αi is the scale factor for the demand function of item i, βi is the space elasticity 

for item i, and Space elasticity for an item i is the measurement of the impact on a 
product sale performance by increasing or decreasing its allocation of space within a 
shelf.  

The problem described in this paper that is the objective function is subject to all 
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Table 1 : Survey of factors that can affect the sale of an item based on customer priorities 

Factor Affecting Choice Of Cus-
tomer

Weights as-
signed

Votes 
In Fa-
vour

Ratio Of 
Weights

Selling Price of an item (pi) w1 22 0.367

Demand 
of an item 

(Fi)

Number Of Units 
Displayed (Si)

w2 8 0.133

Affinity factor (ρ) w3 13 0.217
Shelf Location of the 

Item (Yj)
w4 17 0.283
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Simulated Annealing is used to deal with problems that cannot be solved in polynomial 
time: NP-hard problems. Simulated annealing is applied to different types of problems, 
including traveling salesman problems (Wang et al., 2009), Job Shop scheduling 
(Laarhoven et al., 1992), and Shelf space allocation problems (Erol et al.,2015). The 
results produced by SA are susceptible to the annealing schedule and how the 
neighborhood is searched; that is, values of initial temperature, final temperature, 
cooling coefficient, and the number of moves in each loop's neighborhood affect the 
results produced. The main essence of the SA algorithm lies in the cooling schedule. 
Better results are obtained if the cooling schedule is big. However, if the cooling 
schedule is too big, it wastes time in the loop. If the cooling schedule is too short, it 
may fail to find the optimal solution. The main disadvantage of the algorithm is the 
considerable running time. Nevertheless, it is recouped by the simplicity and ease of 
application to different problems. This paper suggests an innovative technique to 
optimize profit through better store layout in the light of modern-day customer 
demands. 

 
3. Problem Formulation 
'Shelf space' with respect to any retail store is an essential and limited resource. In 

this paper, allocating products on the shelves has been optimized by keeping in mind 
the various conflicting objectives and the constraints to which this problem is subjected 
to. This paper proposes a 3-dimensional shelf space allocation model where the third-
dimension stems from the height of the rack. The first two dimensions are the length of 
the shelf and the height of a shelf. The height of a rack can be considered to be the 
summation of each shelf's height within the rack. The following information has been 
collected from a retail store for evaluation: the selling price of each item present in the 
retail store, length and height of the shelves, number of shelves in a rack, length and 
height of each item, minimum and maximum units of facings that can be provided to 
each product, total number of shelves being considered, total number of products that 
are considered, affinity matrix of the products that will enable the identification of 
frequent item-sets from retailer’s transaction history, location effect of each shelf, scale 
parameter for demand function of an item, space elasticity factor of an item. 

Profit is calculated based on the selling price of an item and the value of an item's 
demand function over time. The demand model of a product depends on elasticity, 
and in this model, it is expressed as a product of direct space elasticity, cross elasticity, 
and location effect of a shelf. To fulfill the overall objective, it is required to consider 
certain underlying objectives that may be conflicting in nature. The number of items 
sold is directly related to the number of facings displayed of the product. Increasing 
the number of facings of a product has a considerable effect on the sales of an item. 
However, studies have suggested that the number of product facings has an upper 
and lower boundary, a constraint considered by the model. Items that are frequently 
purchased together are placed in close proximity to boost the sale of such items 
together (Han et al., 2012). However, reducing the distance between items that are 
frequently purchased together also reduces individual products' display, thus the 
conflict. Since this problem is subject to multiple conflicting constraints, so, in order to 
maximize the retailer's profit, multi-objective optimization becomes a necessity. A pilot 
survey was conducted among 60 consumers to understand the preferences one 
places while purchasing an item from the retail store.  The weights obtained from them 
were used to scalarizs the multiple objective problems into a single objective 
optimization problem. 

The problem is formulated for a given number of racks m in a shelf, with each rack 
j having a demand impact factor Ƴj, where Ƴj³1. Racks at the eye level or nearer impact 
customer sales than the shelves located in the upper or lower regions. Length facing 
has been defined as the number of facings allocated to each item along the rack's 
length. Stack coefficient is the number of facings that can be assigned height-wise. 
The product of length facing and stack coefficient gives the total number of facings of 
an item. 

Thus, formulating the main objective function, as follows: 
Max ∑ 		𝑤𝑤!𝑝𝑝" 	∗ 	 (1 − 𝑤𝑤!)𝐹𝐹"#
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Here, pi is the selling price of item i, and there are n items. Fi is the demand function 

of item i. 
Maximizing the demand for an item is done by maximizing the amount of visibility 

of that product. The total number of facings that can be allotted to an item i can be 
given as: 
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where xij is the length of the shelf j allocated to item i or length facings. 
𝜋𝜋ij is the height stack coefficient or the number of facings assigned to an item along 

with shelf height. 
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Where 𝐻𝐻" is the height of the shelf and ℎ" is the height of item i. 
The demand for an item is also affected by the location of the shelf it is assorted to. 

Thus, the average location effect can be calculated as: 
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The affinity factor for a pair of products is defined as a complex relationship 
between the number of facings of product k and the cross-elasticity factor of item i with 
item k. βik is the cross elasticity or affinity of an item k on item i. Cross-elasticity is 
defined as the influence of the number of facings allotted to one item on another item's 
sale. The affinity matrix is constructed with values in the range of 1 and -1. The closer 
the value of affinity to 1, the more affine are the products. If the affinity value is zero, 
then the affinity among the categories is indifferent. The affinity factor is represented 
using the equation: 
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Now the demand function of item i is calculated as follows: 
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Here, αi is the scale factor for the demand function of item i, βi is the space elasticity 

for item i, and Space elasticity for an item i is the measurement of the impact on a 
product sale performance by increasing or decreasing its allocation of space within a 
shelf.  

The problem described in this paper that is the objective function is subject to all 
the following constraints: 

∑ 𝑙𝑙"#
"$! 𝑥𝑥"%≤ Lj, ∀j    (7) 

yij≤∏"%, ∀i,                 (8) 
𝑠𝑠"&"# 	≤ 𝑠𝑠" ≤ 𝑠𝑠"&5*, ∀𝑖𝑖                                    (9) 

yij∈{0,1}, ∀i, j                                               (10) 
xij	∈ {0} ∪ Z+,∀ i                                              (11) 

yij≤ xij, ∀i, j                                                  (12) 
∑ 𝑦𝑦"%&
%$!  = 1, ∀ i                                               (13) 

y"% ∗ 6%
7"

≥ 𝑥𝑥"%, ∀j                                               (14) 
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In constraint (7), signifies the length of item i, 𝑥𝑥!" is the length facing allotted to an 
item i, n is the total number of items that are considered, j refers to the current shelf, Lj 
is the shelf length. In constraint (8), yij denotes an item's height facings, which should 
be less than the calculated height coefficient for a given shelf. Constraints (7) and (8) 
ensure that the items assigned to each shelf do not exceed the shelf's capacity, both 
in terms of length and height. Constraint (9) determines the minimum and the maximum 
number of facings that can be designated for each item. 𝑠𝑠! denotes the total facing 
allotted to item i, which should be within a given minimum (𝑠𝑠!#!$) and maximum (𝑠𝑠!#%&) 
boundary value. Constraints (10), (11), (12), (14) define the relationships of the 
variables xij and yij. Constraint (13) is a cluster constraint that ensures that the same 
type of items have to be displayed together on the shelf, where m denotes the total 
number of shelves that the problem considers. Usually, retailers wish to preserve the 
related items together in order to exhibit a large attractive block.  

The allocation process is optimized using the hyper-heuristic learning mechanism 
and simulated annealing to get the optimized placement of products, and finally, the 
shelf space layout maximizes the retailer's profit. This paper considers one medium 
instance (m=5, n=29) of data items. The details regarding the first ten items are 
displayed in table 2. During implementation, all the values given in the table have been 
normalized. The multiple neighborhood approach suggested in this paper uses a 
collection of neighborhoods in hybridization with the simulated annealing algorithm 
and a hyper-heuristic learning mechanism. Based on an initial solution and a set of 
neighborhoods, this algorithm changes the neighborhood inclination during the 
search, and the procedure of simulated annealing is used to govern whether a given 
neighborhood move is acknowledged or vetoed. The neighborhood approach 
basically uses a set of heuristics. Each neighborhood is associated with weight wi that 
represents its preference in comparison with other neighborhoods. At each iteration, a 
neighborhood is ranked by the probability.  

pi= wi/∑ 𝑤𝑤!$
!'(      (15) 

Initially, the weights are set to w= wmin, all the neighborhoods are assigned equal 
weights (1/n). However, the weights are updated at the end of each Learning Period. 
Learning Period refers to the period that the algorithm takes to understand the problem 
space to obtain a better selection of neighborhood moves, which can then be 
accepted or rejected by the simulated annealing acceptance criteria. During this time, 
the algorithm iterates to analyze the different neighborhood moves and reassigns their 
weights depending upon each move's performance. Each neighborhood structure is 
associated with a set of counters depending on the number of generated solutions and 
passed the simulated annealing acceptance criteria, the new solutions generated 
using a neighborhood, and the total solutions generated by heuristic moves. The 
performance of each neighborhood can be determined by observing associated 
counters. At each iteration, a neighborhood is stochastically ranked with a probability, 
as mentioned in equation (15). 

Temperature plays an important role in the annealing and reheating process used 
in this algorithm. The starting and the stopping temperatures are initially estimated as 
ts and te, respectively. During the annealing process, the temperature is gradually 
reduced. This happens when the acceptance ratio is improving with respect to 
temperature, i.e., better solutions are generated. When the algorithm fails to generate 
better solutions, the reheating phase is triggered to explore other neighboring solutions 
in an expanded problem space. The acceptance ratio is defined as the ratio of the 
number of accepted solutions (Ca) to the length of a single learning period (LP). The 
learning period plays a pivotal role in deciding whether the algorithm performs 
annealing or reheating functions. The acceptance ratio for a given Learning Period is 
compared with the stopping non-improving acceptance ratio (re), which decides 
whether reheating is required.  If the annealing phase continues, the temperature 
reduction takes place in accordance to the function. 

t= t/ (1 + η t)     (16) 
where, η = (ts- te) . nrep / (K. ts. te)      (17) 

nrep represents the number of iterations at each temperature and K is the number of 
total iterations. 

Within a learning period, if the acceptance ratio drops below a minimum threshold 
(re), then the algorithm switches to the reheating phase, and it continues until it finds a 
new, better solution. During the reheating phase, the temperature is incremented using 
the temperature deduction rate η. The equation used for updating the temperature is 
current temperature 

t= t/(1- η.t)       (18) 
Also, at the end of each learning period, for the reheating phase, the weights of the 

neighborhoods are updated based on the number of total solutions and new solutions 
that are generated,   

wi =  cnewi / ctotali + wi            (19) 
However, if the algorithm encounters acceptable solutions without the need for 

reheating, the annealing phase continues. The weights are updated after each 
Learning Period for the annealing phase based on the total solutions and the number 
of accepted solutions, i.e.  

wi  = caccepti / ctotali + wi.                 (20) 
A candidate solution S' is generated randomly from the current solution S in 

neighborhood Ni. The two solutions are compared based on the objective function. 
The new solution generated is accepted or rejected based on the Simulated Annealing 
property. However, suppose the new solution is not better than the one already 
existing, in that case, the counter for the newly generated solution is incremented, and 

it is accepted with a probability of 𝑒𝑒(*
!
")  (Aarts et al.,2005)  where δ is the difference 

between the current solution and the newly generated solution and t is the current 
temperature of the loop.  

The authors have proposed the following neighborhood moves to reach an optimal 
solution: (i) Exchange_facing – This move includes all the conceivable solutions 
produced by exchanging one shelf length facing an item with another item are sharing 
the same shelf. (ii) Alter_shelf – This move includes all the conceivable solutions that 
may be produced by moving all the facings of a selected item from one shelf to another. 
(iii) Switch – This move includes the concept of both the neighborhood mentioned 
above. The move includes all the potential solutions produced by swapping the total 
number of facings of one item i, which is placed on a shelf with another item k placed 
on a different shelf. (iv) Remove_facing - This move includes all the conceivable 
solutions produced by deleting one shelf length facing an item placed on a shelf. (v) 
Increment_facing - This move includes all the conceivable solutions that may be 
produced by adding one shelf length of an item placed on a shelf. (vi) Duplet_swap - 
This move includes all the conceivable solutions that may be produced by moving two 
different items (i, k) placed on two different shelves (m0,m1) with a high positive value 
of cross elasticity factor to another shelf (m2) wherein they are to be placed together 
in turn, replacing the total facings of two other items (x, y) already placed on that shelf 
(m2). The items (x ,y) which are being replaced should have poor affinity between 
them. 

 
4. Results and Analysis 
The proposed algorithm was executed for several iterations, and the results were 

summarized in Figure 2. It has been observed that the profit increases almost linearly 
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In constraint (7), signifies the length of item i, 𝑥𝑥!" is the length facing allotted to an 
item i, n is the total number of items that are considered, j refers to the current shelf, Lj 
is the shelf length. In constraint (8), yij denotes an item's height facings, which should 
be less than the calculated height coefficient for a given shelf. Constraints (7) and (8) 
ensure that the items assigned to each shelf do not exceed the shelf's capacity, both 
in terms of length and height. Constraint (9) determines the minimum and the maximum 
number of facings that can be designated for each item. 𝑠𝑠! denotes the total facing 
allotted to item i, which should be within a given minimum (𝑠𝑠!#!$) and maximum (𝑠𝑠!#%&) 
boundary value. Constraints (10), (11), (12), (14) define the relationships of the 
variables xij and yij. Constraint (13) is a cluster constraint that ensures that the same 
type of items have to be displayed together on the shelf, where m denotes the total 
number of shelves that the problem considers. Usually, retailers wish to preserve the 
related items together in order to exhibit a large attractive block.  

The allocation process is optimized using the hyper-heuristic learning mechanism 
and simulated annealing to get the optimized placement of products, and finally, the 
shelf space layout maximizes the retailer's profit. This paper considers one medium 
instance (m=5, n=29) of data items. The details regarding the first ten items are 
displayed in table 2. During implementation, all the values given in the table have been 
normalized. The multiple neighborhood approach suggested in this paper uses a 
collection of neighborhoods in hybridization with the simulated annealing algorithm 
and a hyper-heuristic learning mechanism. Based on an initial solution and a set of 
neighborhoods, this algorithm changes the neighborhood inclination during the 
search, and the procedure of simulated annealing is used to govern whether a given 
neighborhood move is acknowledged or vetoed. The neighborhood approach 
basically uses a set of heuristics. Each neighborhood is associated with weight wi that 
represents its preference in comparison with other neighborhoods. At each iteration, a 
neighborhood is ranked by the probability.  

pi= wi/∑ 𝑤𝑤!$
!'(      (15) 

Initially, the weights are set to w= wmin, all the neighborhoods are assigned equal 
weights (1/n). However, the weights are updated at the end of each Learning Period. 
Learning Period refers to the period that the algorithm takes to understand the problem 
space to obtain a better selection of neighborhood moves, which can then be 
accepted or rejected by the simulated annealing acceptance criteria. During this time, 
the algorithm iterates to analyze the different neighborhood moves and reassigns their 
weights depending upon each move's performance. Each neighborhood structure is 
associated with a set of counters depending on the number of generated solutions and 
passed the simulated annealing acceptance criteria, the new solutions generated 
using a neighborhood, and the total solutions generated by heuristic moves. The 
performance of each neighborhood can be determined by observing associated 
counters. At each iteration, a neighborhood is stochastically ranked with a probability, 
as mentioned in equation (15). 

Temperature plays an important role in the annealing and reheating process used 
in this algorithm. The starting and the stopping temperatures are initially estimated as 
ts and te, respectively. During the annealing process, the temperature is gradually 
reduced. This happens when the acceptance ratio is improving with respect to 
temperature, i.e., better solutions are generated. When the algorithm fails to generate 
better solutions, the reheating phase is triggered to explore other neighboring solutions 
in an expanded problem space. The acceptance ratio is defined as the ratio of the 
number of accepted solutions (Ca) to the length of a single learning period (LP). The 
learning period plays a pivotal role in deciding whether the algorithm performs 
annealing or reheating functions. The acceptance ratio for a given Learning Period is 
compared with the stopping non-improving acceptance ratio (re), which decides 
whether reheating is required.  If the annealing phase continues, the temperature 
reduction takes place in accordance to the function. 

t= t/ (1 + η t)     (16) 
where, η = (ts- te) . nrep / (K. ts. te)      (17) 

nrep represents the number of iterations at each temperature and K is the number of 
total iterations. 

Within a learning period, if the acceptance ratio drops below a minimum threshold 
(re), then the algorithm switches to the reheating phase, and it continues until it finds a 
new, better solution. During the reheating phase, the temperature is incremented using 
the temperature deduction rate η. The equation used for updating the temperature is 
current temperature 

t= t/(1- η.t)       (18) 
Also, at the end of each learning period, for the reheating phase, the weights of the 

neighborhoods are updated based on the number of total solutions and new solutions 
that are generated,   

wi =  cnewi / ctotali + wi            (19) 
However, if the algorithm encounters acceptable solutions without the need for 

reheating, the annealing phase continues. The weights are updated after each 
Learning Period for the annealing phase based on the total solutions and the number 
of accepted solutions, i.e.  

wi  = caccepti / ctotali + wi.                 (20) 
A candidate solution S' is generated randomly from the current solution S in 

neighborhood Ni. The two solutions are compared based on the objective function. 
The new solution generated is accepted or rejected based on the Simulated Annealing 
property. However, suppose the new solution is not better than the one already 
existing, in that case, the counter for the newly generated solution is incremented, and 

it is accepted with a probability of 𝑒𝑒(*
!
")  (Aarts et al.,2005)  where δ is the difference 

between the current solution and the newly generated solution and t is the current 
temperature of the loop.  

The authors have proposed the following neighborhood moves to reach an optimal 
solution: (i) Exchange_facing – This move includes all the conceivable solutions 
produced by exchanging one shelf length facing an item with another item are sharing 
the same shelf. (ii) Alter_shelf – This move includes all the conceivable solutions that 
may be produced by moving all the facings of a selected item from one shelf to another. 
(iii) Switch – This move includes the concept of both the neighborhood mentioned 
above. The move includes all the potential solutions produced by swapping the total 
number of facings of one item i, which is placed on a shelf with another item k placed 
on a different shelf. (iv) Remove_facing - This move includes all the conceivable 
solutions produced by deleting one shelf length facing an item placed on a shelf. (v) 
Increment_facing - This move includes all the conceivable solutions that may be 
produced by adding one shelf length of an item placed on a shelf. (vi) Duplet_swap - 
This move includes all the conceivable solutions that may be produced by moving two 
different items (i, k) placed on two different shelves (m0,m1) with a high positive value 
of cross elasticity factor to another shelf (m2) wherein they are to be placed together 
in turn, replacing the total facings of two other items (x, y) already placed on that shelf 
(m2). The items (x ,y) which are being replaced should have poor affinity between 
them. 

 
4. Results and Analysis 
The proposed algorithm was executed for several iterations, and the results were 

summarized in Figure 2. It has been observed that the profit increases almost linearly 

Table 2: Item specifications of 10 sample items.
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In constraint (7), signifies the length of item i, 𝑥𝑥!" is the length facing allotted to an 
item i, n is the total number of items that are considered, j refers to the current shelf, Lj 
is the shelf length. In constraint (8), yij denotes an item's height facings, which should 
be less than the calculated height coefficient for a given shelf. Constraints (7) and (8) 
ensure that the items assigned to each shelf do not exceed the shelf's capacity, both 
in terms of length and height. Constraint (9) determines the minimum and the maximum 
number of facings that can be designated for each item. 𝑠𝑠! denotes the total facing 
allotted to item i, which should be within a given minimum (𝑠𝑠!#!$) and maximum (𝑠𝑠!#%&) 
boundary value. Constraints (10), (11), (12), (14) define the relationships of the 
variables xij and yij. Constraint (13) is a cluster constraint that ensures that the same 
type of items have to be displayed together on the shelf, where m denotes the total 
number of shelves that the problem considers. Usually, retailers wish to preserve the 
related items together in order to exhibit a large attractive block.  

The allocation process is optimized using the hyper-heuristic learning mechanism 
and simulated annealing to get the optimized placement of products, and finally, the 
shelf space layout maximizes the retailer's profit. This paper considers one medium 
instance (m=5, n=29) of data items. The details regarding the first ten items are 
displayed in table 2. During implementation, all the values given in the table have been 
normalized. The multiple neighborhood approach suggested in this paper uses a 
collection of neighborhoods in hybridization with the simulated annealing algorithm 
and a hyper-heuristic learning mechanism. Based on an initial solution and a set of 
neighborhoods, this algorithm changes the neighborhood inclination during the 
search, and the procedure of simulated annealing is used to govern whether a given 
neighborhood move is acknowledged or vetoed. The neighborhood approach 
basically uses a set of heuristics. Each neighborhood is associated with weight wi that 
represents its preference in comparison with other neighborhoods. At each iteration, a 
neighborhood is ranked by the probability.  

pi= wi/∑ 𝑤𝑤!$
!'(      (15) 

Initially, the weights are set to w= wmin, all the neighborhoods are assigned equal 
weights (1/n). However, the weights are updated at the end of each Learning Period. 
Learning Period refers to the period that the algorithm takes to understand the problem 
space to obtain a better selection of neighborhood moves, which can then be 
accepted or rejected by the simulated annealing acceptance criteria. During this time, 
the algorithm iterates to analyze the different neighborhood moves and reassigns their 
weights depending upon each move's performance. Each neighborhood structure is 
associated with a set of counters depending on the number of generated solutions and 
passed the simulated annealing acceptance criteria, the new solutions generated 
using a neighborhood, and the total solutions generated by heuristic moves. The 
performance of each neighborhood can be determined by observing associated 
counters. At each iteration, a neighborhood is stochastically ranked with a probability, 
as mentioned in equation (15). 

Temperature plays an important role in the annealing and reheating process used 
in this algorithm. The starting and the stopping temperatures are initially estimated as 
ts and te, respectively. During the annealing process, the temperature is gradually 
reduced. This happens when the acceptance ratio is improving with respect to 
temperature, i.e., better solutions are generated. When the algorithm fails to generate 
better solutions, the reheating phase is triggered to explore other neighboring solutions 
in an expanded problem space. The acceptance ratio is defined as the ratio of the 
number of accepted solutions (Ca) to the length of a single learning period (LP). The 
learning period plays a pivotal role in deciding whether the algorithm performs 
annealing or reheating functions. The acceptance ratio for a given Learning Period is 
compared with the stopping non-improving acceptance ratio (re), which decides 
whether reheating is required.  If the annealing phase continues, the temperature 
reduction takes place in accordance to the function. 

t= t/ (1 + η t)     (16) 
where, η = (ts- te) . nrep / (K. ts. te)      (17) 

nrep represents the number of iterations at each temperature and K is the number of 
total iterations. 

Within a learning period, if the acceptance ratio drops below a minimum threshold 
(re), then the algorithm switches to the reheating phase, and it continues until it finds a 
new, better solution. During the reheating phase, the temperature is incremented using 
the temperature deduction rate η. The equation used for updating the temperature is 
current temperature 

t= t/(1- η.t)       (18) 
Also, at the end of each learning period, for the reheating phase, the weights of the 

neighborhoods are updated based on the number of total solutions and new solutions 
that are generated,   

wi =  cnewi / ctotali + wi            (19) 
However, if the algorithm encounters acceptable solutions without the need for 

reheating, the annealing phase continues. The weights are updated after each 
Learning Period for the annealing phase based on the total solutions and the number 
of accepted solutions, i.e.  

wi  = caccepti / ctotali + wi.                 (20) 
A candidate solution S' is generated randomly from the current solution S in 

neighborhood Ni. The two solutions are compared based on the objective function. 
The new solution generated is accepted or rejected based on the Simulated Annealing 
property. However, suppose the new solution is not better than the one already 
existing, in that case, the counter for the newly generated solution is incremented, and 

it is accepted with a probability of 𝑒𝑒(*
!
")  (Aarts et al.,2005)  where δ is the difference 

between the current solution and the newly generated solution and t is the current 
temperature of the loop.  

The authors have proposed the following neighborhood moves to reach an optimal 
solution: (i) Exchange_facing – This move includes all the conceivable solutions 
produced by exchanging one shelf length facing an item with another item are sharing 
the same shelf. (ii) Alter_shelf – This move includes all the conceivable solutions that 
may be produced by moving all the facings of a selected item from one shelf to another. 
(iii) Switch – This move includes the concept of both the neighborhood mentioned 
above. The move includes all the potential solutions produced by swapping the total 
number of facings of one item i, which is placed on a shelf with another item k placed 
on a different shelf. (iv) Remove_facing - This move includes all the conceivable 
solutions produced by deleting one shelf length facing an item placed on a shelf. (v) 
Increment_facing - This move includes all the conceivable solutions that may be 
produced by adding one shelf length of an item placed on a shelf. (vi) Duplet_swap - 
This move includes all the conceivable solutions that may be produced by moving two 
different items (i, k) placed on two different shelves (m0,m1) with a high positive value 
of cross elasticity factor to another shelf (m2) wherein they are to be placed together 
in turn, replacing the total facings of two other items (x, y) already placed on that shelf 
(m2). The items (x ,y) which are being replaced should have poor affinity between 
them. 

 
4. Results and Analysis 
The proposed algorithm was executed for several iterations, and the results were 

summarized in Figure 2. It has been observed that the profit increases almost linearly 
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In constraint (7), signifies the length of item i, 𝑥𝑥!" is the length facing allotted to an 
item i, n is the total number of items that are considered, j refers to the current shelf, Lj 
is the shelf length. In constraint (8), yij denotes an item's height facings, which should 
be less than the calculated height coefficient for a given shelf. Constraints (7) and (8) 
ensure that the items assigned to each shelf do not exceed the shelf's capacity, both 
in terms of length and height. Constraint (9) determines the minimum and the maximum 
number of facings that can be designated for each item. 𝑠𝑠! denotes the total facing 
allotted to item i, which should be within a given minimum (𝑠𝑠!#!$) and maximum (𝑠𝑠!#%&) 
boundary value. Constraints (10), (11), (12), (14) define the relationships of the 
variables xij and yij. Constraint (13) is a cluster constraint that ensures that the same 
type of items have to be displayed together on the shelf, where m denotes the total 
number of shelves that the problem considers. Usually, retailers wish to preserve the 
related items together in order to exhibit a large attractive block.  

The allocation process is optimized using the hyper-heuristic learning mechanism 
and simulated annealing to get the optimized placement of products, and finally, the 
shelf space layout maximizes the retailer's profit. This paper considers one medium 
instance (m=5, n=29) of data items. The details regarding the first ten items are 
displayed in table 2. During implementation, all the values given in the table have been 
normalized. The multiple neighborhood approach suggested in this paper uses a 
collection of neighborhoods in hybridization with the simulated annealing algorithm 
and a hyper-heuristic learning mechanism. Based on an initial solution and a set of 
neighborhoods, this algorithm changes the neighborhood inclination during the 
search, and the procedure of simulated annealing is used to govern whether a given 
neighborhood move is acknowledged or vetoed. The neighborhood approach 
basically uses a set of heuristics. Each neighborhood is associated with weight wi that 
represents its preference in comparison with other neighborhoods. At each iteration, a 
neighborhood is ranked by the probability.  

pi= wi/∑ 𝑤𝑤!$
!'(      (15) 

Initially, the weights are set to w= wmin, all the neighborhoods are assigned equal 
weights (1/n). However, the weights are updated at the end of each Learning Period. 
Learning Period refers to the period that the algorithm takes to understand the problem 
space to obtain a better selection of neighborhood moves, which can then be 
accepted or rejected by the simulated annealing acceptance criteria. During this time, 
the algorithm iterates to analyze the different neighborhood moves and reassigns their 
weights depending upon each move's performance. Each neighborhood structure is 
associated with a set of counters depending on the number of generated solutions and 
passed the simulated annealing acceptance criteria, the new solutions generated 
using a neighborhood, and the total solutions generated by heuristic moves. The 
performance of each neighborhood can be determined by observing associated 
counters. At each iteration, a neighborhood is stochastically ranked with a probability, 
as mentioned in equation (15). 

Temperature plays an important role in the annealing and reheating process used 
in this algorithm. The starting and the stopping temperatures are initially estimated as 
ts and te, respectively. During the annealing process, the temperature is gradually 
reduced. This happens when the acceptance ratio is improving with respect to 
temperature, i.e., better solutions are generated. When the algorithm fails to generate 
better solutions, the reheating phase is triggered to explore other neighboring solutions 
in an expanded problem space. The acceptance ratio is defined as the ratio of the 
number of accepted solutions (Ca) to the length of a single learning period (LP). The 
learning period plays a pivotal role in deciding whether the algorithm performs 
annealing or reheating functions. The acceptance ratio for a given Learning Period is 
compared with the stopping non-improving acceptance ratio (re), which decides 
whether reheating is required.  If the annealing phase continues, the temperature 
reduction takes place in accordance to the function. 

t= t/ (1 + η t)     (16) 
where, η = (ts- te) . nrep / (K. ts. te)      (17) 

nrep represents the number of iterations at each temperature and K is the number of 
total iterations. 

Within a learning period, if the acceptance ratio drops below a minimum threshold 
(re), then the algorithm switches to the reheating phase, and it continues until it finds a 
new, better solution. During the reheating phase, the temperature is incremented using 
the temperature deduction rate η. The equation used for updating the temperature is 
current temperature 

t= t/(1- η.t)       (18) 
Also, at the end of each learning period, for the reheating phase, the weights of the 

neighborhoods are updated based on the number of total solutions and new solutions 
that are generated,   

wi =  cnewi / ctotali + wi            (19) 
However, if the algorithm encounters acceptable solutions without the need for 

reheating, the annealing phase continues. The weights are updated after each 
Learning Period for the annealing phase based on the total solutions and the number 
of accepted solutions, i.e.  

wi  = caccepti / ctotali + wi.                 (20) 
A candidate solution S' is generated randomly from the current solution S in 

neighborhood Ni. The two solutions are compared based on the objective function. 
The new solution generated is accepted or rejected based on the Simulated Annealing 
property. However, suppose the new solution is not better than the one already 
existing, in that case, the counter for the newly generated solution is incremented, and 

it is accepted with a probability of 𝑒𝑒(*
!
")  (Aarts et al.,2005)  where δ is the difference 

between the current solution and the newly generated solution and t is the current 
temperature of the loop.  

The authors have proposed the following neighborhood moves to reach an optimal 
solution: (i) Exchange_facing – This move includes all the conceivable solutions 
produced by exchanging one shelf length facing an item with another item are sharing 
the same shelf. (ii) Alter_shelf – This move includes all the conceivable solutions that 
may be produced by moving all the facings of a selected item from one shelf to another. 
(iii) Switch – This move includes the concept of both the neighborhood mentioned 
above. The move includes all the potential solutions produced by swapping the total 
number of facings of one item i, which is placed on a shelf with another item k placed 
on a different shelf. (iv) Remove_facing - This move includes all the conceivable 
solutions produced by deleting one shelf length facing an item placed on a shelf. (v) 
Increment_facing - This move includes all the conceivable solutions that may be 
produced by adding one shelf length of an item placed on a shelf. (vi) Duplet_swap - 
This move includes all the conceivable solutions that may be produced by moving two 
different items (i, k) placed on two different shelves (m0,m1) with a high positive value 
of cross elasticity factor to another shelf (m2) wherein they are to be placed together 
in turn, replacing the total facings of two other items (x, y) already placed on that shelf 
(m2). The items (x ,y) which are being replaced should have poor affinity between 
them. 

 
4. Results and Analysis 
The proposed algorithm was executed for several iterations, and the results were 

summarized in Figure 2. It has been observed that the profit increases almost linearly 
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Fig. 1. Flowchart for the proposed multi-neighbourhood approach

In constraint (7), signifies the length of item i, 𝑥𝑥!" is the length facing allotted to an 
item i, n is the total number of items that are considered, j refers to the current shelf, Lj 
is the shelf length. In constraint (8), yij denotes an item's height facings, which should 
be less than the calculated height coefficient for a given shelf. Constraints (7) and (8) 
ensure that the items assigned to each shelf do not exceed the shelf's capacity, both 
in terms of length and height. Constraint (9) determines the minimum and the maximum 
number of facings that can be designated for each item. 𝑠𝑠! denotes the total facing 
allotted to item i, which should be within a given minimum (𝑠𝑠!#!$) and maximum (𝑠𝑠!#%&) 
boundary value. Constraints (10), (11), (12), (14) define the relationships of the 
variables xij and yij. Constraint (13) is a cluster constraint that ensures that the same 
type of items have to be displayed together on the shelf, where m denotes the total 
number of shelves that the problem considers. Usually, retailers wish to preserve the 
related items together in order to exhibit a large attractive block.  

The allocation process is optimized using the hyper-heuristic learning mechanism 
and simulated annealing to get the optimized placement of products, and finally, the 
shelf space layout maximizes the retailer's profit. This paper considers one medium 
instance (m=5, n=29) of data items. The details regarding the first ten items are 
displayed in table 2. During implementation, all the values given in the table have been 
normalized. The multiple neighborhood approach suggested in this paper uses a 
collection of neighborhoods in hybridization with the simulated annealing algorithm 
and a hyper-heuristic learning mechanism. Based on an initial solution and a set of 
neighborhoods, this algorithm changes the neighborhood inclination during the 
search, and the procedure of simulated annealing is used to govern whether a given 
neighborhood move is acknowledged or vetoed. The neighborhood approach 
basically uses a set of heuristics. Each neighborhood is associated with weight wi that 
represents its preference in comparison with other neighborhoods. At each iteration, a 
neighborhood is ranked by the probability.  

pi= wi/∑ 𝑤𝑤!$
!'(      (15) 

Initially, the weights are set to w= wmin, all the neighborhoods are assigned equal 
weights (1/n). However, the weights are updated at the end of each Learning Period. 
Learning Period refers to the period that the algorithm takes to understand the problem 
space to obtain a better selection of neighborhood moves, which can then be 
accepted or rejected by the simulated annealing acceptance criteria. During this time, 
the algorithm iterates to analyze the different neighborhood moves and reassigns their 
weights depending upon each move's performance. Each neighborhood structure is 
associated with a set of counters depending on the number of generated solutions and 
passed the simulated annealing acceptance criteria, the new solutions generated 
using a neighborhood, and the total solutions generated by heuristic moves. The 
performance of each neighborhood can be determined by observing associated 
counters. At each iteration, a neighborhood is stochastically ranked with a probability, 
as mentioned in equation (15). 

Temperature plays an important role in the annealing and reheating process used 
in this algorithm. The starting and the stopping temperatures are initially estimated as 
ts and te, respectively. During the annealing process, the temperature is gradually 
reduced. This happens when the acceptance ratio is improving with respect to 
temperature, i.e., better solutions are generated. When the algorithm fails to generate 
better solutions, the reheating phase is triggered to explore other neighboring solutions 
in an expanded problem space. The acceptance ratio is defined as the ratio of the 
number of accepted solutions (Ca) to the length of a single learning period (LP). The 
learning period plays a pivotal role in deciding whether the algorithm performs 
annealing or reheating functions. The acceptance ratio for a given Learning Period is 
compared with the stopping non-improving acceptance ratio (re), which decides 
whether reheating is required.  If the annealing phase continues, the temperature 
reduction takes place in accordance to the function. 

t= t/ (1 + η t)     (16) 
where, η = (ts- te) . nrep / (K. ts. te)      (17) 

nrep represents the number of iterations at each temperature and K is the number of 
total iterations. 

Within a learning period, if the acceptance ratio drops below a minimum threshold 
(re), then the algorithm switches to the reheating phase, and it continues until it finds a 
new, better solution. During the reheating phase, the temperature is incremented using 
the temperature deduction rate η. The equation used for updating the temperature is 
current temperature 

t= t/(1- η.t)       (18) 
Also, at the end of each learning period, for the reheating phase, the weights of the 

neighborhoods are updated based on the number of total solutions and new solutions 
that are generated,   

wi =  cnewi / ctotali + wi            (19) 
However, if the algorithm encounters acceptable solutions without the need for 

reheating, the annealing phase continues. The weights are updated after each 
Learning Period for the annealing phase based on the total solutions and the number 
of accepted solutions, i.e.  

wi  = caccepti / ctotali + wi.                 (20) 
A candidate solution S' is generated randomly from the current solution S in 

neighborhood Ni. The two solutions are compared based on the objective function. 
The new solution generated is accepted or rejected based on the Simulated Annealing 
property. However, suppose the new solution is not better than the one already 
existing, in that case, the counter for the newly generated solution is incremented, and 

it is accepted with a probability of 𝑒𝑒(*
!
")  (Aarts et al.,2005)  where δ is the difference 

between the current solution and the newly generated solution and t is the current 
temperature of the loop.  

The authors have proposed the following neighborhood moves to reach an optimal 
solution: (i) Exchange_facing – This move includes all the conceivable solutions 
produced by exchanging one shelf length facing an item with another item are sharing 
the same shelf. (ii) Alter_shelf – This move includes all the conceivable solutions that 
may be produced by moving all the facings of a selected item from one shelf to another. 
(iii) Switch – This move includes the concept of both the neighborhood mentioned 
above. The move includes all the potential solutions produced by swapping the total 
number of facings of one item i, which is placed on a shelf with another item k placed 
on a different shelf. (iv) Remove_facing - This move includes all the conceivable 
solutions produced by deleting one shelf length facing an item placed on a shelf. (v) 
Increment_facing - This move includes all the conceivable solutions that may be 
produced by adding one shelf length of an item placed on a shelf. (vi) Duplet_swap - 
This move includes all the conceivable solutions that may be produced by moving two 
different items (i, k) placed on two different shelves (m0,m1) with a high positive value 
of cross elasticity factor to another shelf (m2) wherein they are to be placed together 
in turn, replacing the total facings of two other items (x, y) already placed on that shelf 
(m2). The items (x ,y) which are being replaced should have poor affinity between 
them. 
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In constraint (7), signifies the length of item i, 𝑥𝑥!" is the length facing allotted to an 
item i, n is the total number of items that are considered, j refers to the current shelf, Lj 
is the shelf length. In constraint (8), yij denotes an item's height facings, which should 
be less than the calculated height coefficient for a given shelf. Constraints (7) and (8) 
ensure that the items assigned to each shelf do not exceed the shelf's capacity, both 
in terms of length and height. Constraint (9) determines the minimum and the maximum 
number of facings that can be designated for each item. 𝑠𝑠! denotes the total facing 
allotted to item i, which should be within a given minimum (𝑠𝑠!#!$) and maximum (𝑠𝑠!#%&) 
boundary value. Constraints (10), (11), (12), (14) define the relationships of the 
variables xij and yij. Constraint (13) is a cluster constraint that ensures that the same 
type of items have to be displayed together on the shelf, where m denotes the total 
number of shelves that the problem considers. Usually, retailers wish to preserve the 
related items together in order to exhibit a large attractive block.  

The allocation process is optimized using the hyper-heuristic learning mechanism 
and simulated annealing to get the optimized placement of products, and finally, the 
shelf space layout maximizes the retailer's profit. This paper considers one medium 
instance (m=5, n=29) of data items. The details regarding the first ten items are 
displayed in table 2. During implementation, all the values given in the table have been 
normalized. The multiple neighborhood approach suggested in this paper uses a 
collection of neighborhoods in hybridization with the simulated annealing algorithm 
and a hyper-heuristic learning mechanism. Based on an initial solution and a set of 
neighborhoods, this algorithm changes the neighborhood inclination during the 
search, and the procedure of simulated annealing is used to govern whether a given 
neighborhood move is acknowledged or vetoed. The neighborhood approach 
basically uses a set of heuristics. Each neighborhood is associated with weight wi that 
represents its preference in comparison with other neighborhoods. At each iteration, a 
neighborhood is ranked by the probability.  

pi= wi/∑ 𝑤𝑤!$
!'(      (15) 

Initially, the weights are set to w= wmin, all the neighborhoods are assigned equal 
weights (1/n). However, the weights are updated at the end of each Learning Period. 
Learning Period refers to the period that the algorithm takes to understand the problem 
space to obtain a better selection of neighborhood moves, which can then be 
accepted or rejected by the simulated annealing acceptance criteria. During this time, 
the algorithm iterates to analyze the different neighborhood moves and reassigns their 
weights depending upon each move's performance. Each neighborhood structure is 
associated with a set of counters depending on the number of generated solutions and 
passed the simulated annealing acceptance criteria, the new solutions generated 
using a neighborhood, and the total solutions generated by heuristic moves. The 
performance of each neighborhood can be determined by observing associated 
counters. At each iteration, a neighborhood is stochastically ranked with a probability, 
as mentioned in equation (15). 

Temperature plays an important role in the annealing and reheating process used 
in this algorithm. The starting and the stopping temperatures are initially estimated as 
ts and te, respectively. During the annealing process, the temperature is gradually 
reduced. This happens when the acceptance ratio is improving with respect to 
temperature, i.e., better solutions are generated. When the algorithm fails to generate 
better solutions, the reheating phase is triggered to explore other neighboring solutions 
in an expanded problem space. The acceptance ratio is defined as the ratio of the 
number of accepted solutions (Ca) to the length of a single learning period (LP). The 
learning period plays a pivotal role in deciding whether the algorithm performs 
annealing or reheating functions. The acceptance ratio for a given Learning Period is 
compared with the stopping non-improving acceptance ratio (re), which decides 
whether reheating is required.  If the annealing phase continues, the temperature 
reduction takes place in accordance to the function. 

t= t/ (1 + η t)     (16) 
where, η = (ts- te) . nrep / (K. ts. te)      (17) 

nrep represents the number of iterations at each temperature and K is the number of 
total iterations. 

Within a learning period, if the acceptance ratio drops below a minimum threshold 
(re), then the algorithm switches to the reheating phase, and it continues until it finds a 
new, better solution. During the reheating phase, the temperature is incremented using 
the temperature deduction rate η. The equation used for updating the temperature is 
current temperature 

t= t/(1- η.t)       (18) 
Also, at the end of each learning period, for the reheating phase, the weights of the 

neighborhoods are updated based on the number of total solutions and new solutions 
that are generated,   

wi =  cnewi / ctotali + wi            (19) 
However, if the algorithm encounters acceptable solutions without the need for 

reheating, the annealing phase continues. The weights are updated after each 
Learning Period for the annealing phase based on the total solutions and the number 
of accepted solutions, i.e.  

wi  = caccepti / ctotali + wi.                 (20) 
A candidate solution S' is generated randomly from the current solution S in 

neighborhood Ni. The two solutions are compared based on the objective function. 
The new solution generated is accepted or rejected based on the Simulated Annealing 
property. However, suppose the new solution is not better than the one already 
existing, in that case, the counter for the newly generated solution is incremented, and 

it is accepted with a probability of 𝑒𝑒(*
!
")  (Aarts et al.,2005)  where δ is the difference 

between the current solution and the newly generated solution and t is the current 
temperature of the loop.  

The authors have proposed the following neighborhood moves to reach an optimal 
solution: (i) Exchange_facing – This move includes all the conceivable solutions 
produced by exchanging one shelf length facing an item with another item are sharing 
the same shelf. (ii) Alter_shelf – This move includes all the conceivable solutions that 
may be produced by moving all the facings of a selected item from one shelf to another. 
(iii) Switch – This move includes the concept of both the neighborhood mentioned 
above. The move includes all the potential solutions produced by swapping the total 
number of facings of one item i, which is placed on a shelf with another item k placed 
on a different shelf. (iv) Remove_facing - This move includes all the conceivable 
solutions produced by deleting one shelf length facing an item placed on a shelf. (v) 
Increment_facing - This move includes all the conceivable solutions that may be 
produced by adding one shelf length of an item placed on a shelf. (vi) Duplet_swap - 
This move includes all the conceivable solutions that may be produced by moving two 
different items (i, k) placed on two different shelves (m0,m1) with a high positive value 
of cross elasticity factor to another shelf (m2) wherein they are to be placed together 
in turn, replacing the total facings of two other items (x, y) already placed on that shelf 
(m2). The items (x ,y) which are being replaced should have poor affinity between 
them. 

 
4. Results and Analysis 
The proposed algorithm was executed for several iterations, and the results were 

summarized in Figure 2. It has been observed that the profit increases almost linearly 

with an increase in the total number of iterations.  However, it is also not feasible for 
the process to iterate indefinitely as it takes more time to execute. The total number of 
iterations highly influences the improvement in profit. After a certain number of 
iterations, the profit stabilizes. 

From figure 2, it can be inferred that when the number of iterations is very small 
(K=4500 to 20,000), the improvement in profit is minimal. However, the graph in this 
section linearly increases with increased iteration values. Between 80,000 to 2,50,000 
the graph shows variability in profit improvement. The maximum profit is obtained 
between iterations 3,00,000 to 4,00,000, after which the graph stabilizes at a slightly 
lower profit value.  

The algorithm analyses the problem space, trying to find better solutions controlled 
by the number of iterations. In this paper, to estimate the most desirable learning 
period, a range of different learning periods between 500 and 3,00,000 have been 
considered. Within a learning period, the algorithm explores the different suggested 
neighborhoods using either annealing or reheating process. Based on the 
performance of each neighborhood, the weights associated with each heuristic move 
are updated at the end of each learning period, and again, the learning period works 
with those neighborhoods that are, in turn, selected based on their updated weights 
(using a probability function). Thus, the learning period for a given iteration must not 
be so small that there is no ample time for the process to learn about the problem. Also, 
it should not, on the other hand, be so large as to prohibit the opportunities for the 
algorithm to utilize the information gathered during the learning period. 

Shows the graph for the learning period 20000, which has been used in the 
implementation. For instance, observing the case of a minimum learning period, LP 
=5000, as shown in figure 4, the number of variations in the graph for the same number 
of total iterations is much less than that LP=20000. This proves that if the learning 
period is too small, the algorithm fails to gather sufficient knowledge about the heuristic 
moves whose performance is pivotal to determining the improvement in profit, which 
again serves the whole work's primary objective.  

Again, analyzing the algorithm by keeping the learning period as large as 1,50,000 
shows that the graph in figure 5 is almost stable, with no considerable change. This 
proves that although the algorithm gets a substantial amount of time to learn the search 
space, the given iteration of 6,00,000, falls short of applying the knowledge gathered. 
In other words, the neighborhoods' weights cannot get adequately updated at the end 
of a learning period and then implemented in the next as most of the iterations are lost 
while executing a single learning period. Analysis has been done by executing the 
algorithm several times, and every time, it has shown similar results. The gradient 
coloring schemes in the graphs in figure 3, 4, 5 shows the different executions wherein 
the darkest shade stands for the first execution. 

At each temperature, the algorithm iterates five times (nrep=5). On increasing the 
temperature by reheating, it is intuitive that the program's execution time will increase. 
Moreover, as the value of re affects the reheating and annealing process within the 
algorithm, it indirectly affects the fitness value(profit). From the graphs in Figures 6 and 
7, it is observed that with increasing non improving acceptance ratio values(re), the 
average number of times annealing takes place steadily decreases after re =0.23, and 
simultaneously the reheating process starts increasing from the same point. For re 
value greater than 0.28, both the graphs show unpredictability. So, it may be 
concluded from the two graphs that the value of re within range 0.23-0.28 results in 
optimized solutions.  

It can be inferred from Figure 8 that for the chosen range of re values (0.23 – 0.28), 
the profit obtained is quite stable and obtained as a result of both annealing and 
reheating. An abrupt increase in profit can be observed on increasing the re value, 
which is marked by an abrupt increase in the reheating process. However, such abrupt 
increase is unrealistic and may be considered as outliers in comparison with other 
values. Similarly, for smaller values of re, the outcome is unpredictable and does not 
provide stable or reliable solutions for every execution. The graph in Figure 9 shows 
that the execution time does not increase much for the aforesaid chosen range of re 
values (0.23-0.28). For re values more than 0.28, the reheating process increases 
abruptly, leading to abrupt increase in the execution time, which is unwanted. Also, for 
smaller re values, it is observed that the execution time is relatively high even though 
no reheating takes place. This may be accounted for because the program tries to find 
a better solution within the same search space as it is unable to satisfy the reheating 
condition and increase the search domain.  

The algorithm has been executed multiple times, changing the various parameters 
and summarized in Table 3. It can be observed that the algorithm obtains the most 
optimal solution for K=6,00,000, LP=20,000, and re=0.25. The profit, in this case, has 
maximum improvement while the execution time is also rational. Both annealing and 
reheating processes take place, enabling the algorithm to yield better results by 
thoroughly exploring the problem's search space. 

 
5. Conclusion 
A shelf space allocation problem usually involves a large number of parameters. 

Obtaining a reliable estimation of such parameters is generally challenging and time-
consuming; therefore, it is challenging to obtain fruitful solutions in real life. This paper's 
proposed model is distinguishable by hyper-heuristics and the ability to solve more 
extensive, more realistic sized instances. This model considers the second dimension 
as height or stack coefficient instead of only considering the length facings of the items 
and the third dimension, which is the shelves' height in a rack. Thus, this model can be 
used to design layouts for the store to enable the retailer to maximize his profit. 
Moreover, it applies a hyper-heuristics method to calculate the solution using the 
process of simulated annealing. The algorithm used in this work is confined to shelf 
space allocation problems and can be used to optimize any other allocation problem. 
The paper tried to solve the problem of allocating shelf space by proposing a novel 
approach. 

This paper solves the optimization problem by converting a multi-objective 
optimization into a single objective using the popular weighted sum technique. The 
proposed model increases the retailer's profit subject to various objectives and 
constraints. Analysis has been carried out thoroughly to determine the appropriate 
values of the different parameters that are quintessential to determining the retailer's 
profit with the aim of maximum utilization of shelf space. The weights of individual 
parameters result from a systematic survey done using the transaction history of 
various retailers. Moreover, the proposed model works on a hyper-heuristic algorithm 
that can provide better results than traditional heuristics, which are generally applied 
for optimization problems. 

This work can be extended to include Pareto optimality to wholly implement multi-
objective optimization considering conflicting objectives such as retailers' investments, 
human resources, etc. The model does not consider the effect of replenishment and 
backroom on retail shelf space planning. Also, improvements may be made in the 
probability selection of the neighborhood moves (hyper-heuristics). The selection of 
the neighborhoods can be based on an online learning mechanism as that selection 
process might provide a slightly better result for the instances. When implemented in 
reality, this model will help in optimizing profit but may help in planning marketing 
strategies and designing new store layouts. 

 

Fig. 2. Iteration stabilization graph
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Fig. 3. Graph for learning period 20,000

Fig. 4. Graph for learning period 5,000

Fig. 5. Graph for learning period 1,50,000

with an increase in the total number of iterations.  However, it is also not feasible for 
the process to iterate indefinitely as it takes more time to execute. The total number of 
iterations highly influences the improvement in profit. After a certain number of 
iterations, the profit stabilizes. 

From figure 2, it can be inferred that when the number of iterations is very small 
(K=4500 to 20,000), the improvement in profit is minimal. However, the graph in this 
section linearly increases with increased iteration values. Between 80,000 to 2,50,000 
the graph shows variability in profit improvement. The maximum profit is obtained 
between iterations 3,00,000 to 4,00,000, after which the graph stabilizes at a slightly 
lower profit value.  

The algorithm analyses the problem space, trying to find better solutions controlled 
by the number of iterations. In this paper, to estimate the most desirable learning 
period, a range of different learning periods between 500 and 3,00,000 have been 
considered. Within a learning period, the algorithm explores the different suggested 
neighborhoods using either annealing or reheating process. Based on the 
performance of each neighborhood, the weights associated with each heuristic move 
are updated at the end of each learning period, and again, the learning period works 
with those neighborhoods that are, in turn, selected based on their updated weights 
(using a probability function). Thus, the learning period for a given iteration must not 
be so small that there is no ample time for the process to learn about the problem. Also, 
it should not, on the other hand, be so large as to prohibit the opportunities for the 
algorithm to utilize the information gathered during the learning period. 

Shows the graph for the learning period 20000, which has been used in the 
implementation. For instance, observing the case of a minimum learning period, LP 
=5000, as shown in figure 4, the number of variations in the graph for the same number 
of total iterations is much less than that LP=20000. This proves that if the learning 
period is too small, the algorithm fails to gather sufficient knowledge about the heuristic 
moves whose performance is pivotal to determining the improvement in profit, which 
again serves the whole work's primary objective.  

Again, analyzing the algorithm by keeping the learning period as large as 1,50,000 
shows that the graph in figure 5 is almost stable, with no considerable change. This 
proves that although the algorithm gets a substantial amount of time to learn the search 
space, the given iteration of 6,00,000, falls short of applying the knowledge gathered. 
In other words, the neighborhoods' weights cannot get adequately updated at the end 
of a learning period and then implemented in the next as most of the iterations are lost 
while executing a single learning period. Analysis has been done by executing the 
algorithm several times, and every time, it has shown similar results. The gradient 
coloring schemes in the graphs in figure 3, 4, 5 shows the different executions wherein 
the darkest shade stands for the first execution. 

At each temperature, the algorithm iterates five times (nrep=5). On increasing the 
temperature by reheating, it is intuitive that the program's execution time will increase. 
Moreover, as the value of re affects the reheating and annealing process within the 
algorithm, it indirectly affects the fitness value(profit). From the graphs in Figures 6 and 
7, it is observed that with increasing non improving acceptance ratio values(re), the 
average number of times annealing takes place steadily decreases after re =0.23, and 
simultaneously the reheating process starts increasing from the same point. For re 
value greater than 0.28, both the graphs show unpredictability. So, it may be 
concluded from the two graphs that the value of re within range 0.23-0.28 results in 
optimized solutions.  

It can be inferred from Figure 8 that for the chosen range of re values (0.23 – 0.28), 
the profit obtained is quite stable and obtained as a result of both annealing and 
reheating. An abrupt increase in profit can be observed on increasing the re value, 
which is marked by an abrupt increase in the reheating process. However, such abrupt 
increase is unrealistic and may be considered as outliers in comparison with other 
values. Similarly, for smaller values of re, the outcome is unpredictable and does not 
provide stable or reliable solutions for every execution. The graph in Figure 9 shows 
that the execution time does not increase much for the aforesaid chosen range of re 
values (0.23-0.28). For re values more than 0.28, the reheating process increases 
abruptly, leading to abrupt increase in the execution time, which is unwanted. Also, for 
smaller re values, it is observed that the execution time is relatively high even though 
no reheating takes place. This may be accounted for because the program tries to find 
a better solution within the same search space as it is unable to satisfy the reheating 
condition and increase the search domain.  

The algorithm has been executed multiple times, changing the various parameters 
and summarized in Table 3. It can be observed that the algorithm obtains the most 
optimal solution for K=6,00,000, LP=20,000, and re=0.25. The profit, in this case, has 
maximum improvement while the execution time is also rational. Both annealing and 
reheating processes take place, enabling the algorithm to yield better results by 
thoroughly exploring the problem's search space. 

 
5. Conclusion 
A shelf space allocation problem usually involves a large number of parameters. 

Obtaining a reliable estimation of such parameters is generally challenging and time-
consuming; therefore, it is challenging to obtain fruitful solutions in real life. This paper's 
proposed model is distinguishable by hyper-heuristics and the ability to solve more 
extensive, more realistic sized instances. This model considers the second dimension 
as height or stack coefficient instead of only considering the length facings of the items 
and the third dimension, which is the shelves' height in a rack. Thus, this model can be 
used to design layouts for the store to enable the retailer to maximize his profit. 
Moreover, it applies a hyper-heuristics method to calculate the solution using the 
process of simulated annealing. The algorithm used in this work is confined to shelf 
space allocation problems and can be used to optimize any other allocation problem. 
The paper tried to solve the problem of allocating shelf space by proposing a novel 
approach. 

This paper solves the optimization problem by converting a multi-objective 
optimization into a single objective using the popular weighted sum technique. The 
proposed model increases the retailer's profit subject to various objectives and 
constraints. Analysis has been carried out thoroughly to determine the appropriate 
values of the different parameters that are quintessential to determining the retailer's 
profit with the aim of maximum utilization of shelf space. The weights of individual 
parameters result from a systematic survey done using the transaction history of 
various retailers. Moreover, the proposed model works on a hyper-heuristic algorithm 
that can provide better results than traditional heuristics, which are generally applied 
for optimization problems. 

This work can be extended to include Pareto optimality to wholly implement multi-
objective optimization considering conflicting objectives such as retailers' investments, 
human resources, etc. The model does not consider the effect of replenishment and 
backroom on retail shelf space planning. Also, improvements may be made in the 
probability selection of the neighborhood moves (hyper-heuristics). The selection of 
the neighborhoods can be based on an online learning mechanism as that selection 
process might provide a slightly better result for the instances. When implemented in 
reality, this model will help in optimizing profit but may help in planning marketing 
strategies and designing new store layouts. 
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Fig. 6. Graph representing the average number of times annealing process takes 
place by varying re values

Fig. 7. Graph representing the average number of times reheating process takes 
place by varying re values

with an increase in the total number of iterations.  However, it is also not feasible for 
the process to iterate indefinitely as it takes more time to execute. The total number of 
iterations highly influences the improvement in profit. After a certain number of 
iterations, the profit stabilizes. 

From figure 2, it can be inferred that when the number of iterations is very small 
(K=4500 to 20,000), the improvement in profit is minimal. However, the graph in this 
section linearly increases with increased iteration values. Between 80,000 to 2,50,000 
the graph shows variability in profit improvement. The maximum profit is obtained 
between iterations 3,00,000 to 4,00,000, after which the graph stabilizes at a slightly 
lower profit value.  

The algorithm analyses the problem space, trying to find better solutions controlled 
by the number of iterations. In this paper, to estimate the most desirable learning 
period, a range of different learning periods between 500 and 3,00,000 have been 
considered. Within a learning period, the algorithm explores the different suggested 
neighborhoods using either annealing or reheating process. Based on the 
performance of each neighborhood, the weights associated with each heuristic move 
are updated at the end of each learning period, and again, the learning period works 
with those neighborhoods that are, in turn, selected based on their updated weights 
(using a probability function). Thus, the learning period for a given iteration must not 
be so small that there is no ample time for the process to learn about the problem. Also, 
it should not, on the other hand, be so large as to prohibit the opportunities for the 
algorithm to utilize the information gathered during the learning period. 

Shows the graph for the learning period 20000, which has been used in the 
implementation. For instance, observing the case of a minimum learning period, LP 
=5000, as shown in figure 4, the number of variations in the graph for the same number 
of total iterations is much less than that LP=20000. This proves that if the learning 
period is too small, the algorithm fails to gather sufficient knowledge about the heuristic 
moves whose performance is pivotal to determining the improvement in profit, which 
again serves the whole work's primary objective.  

Again, analyzing the algorithm by keeping the learning period as large as 1,50,000 
shows that the graph in figure 5 is almost stable, with no considerable change. This 
proves that although the algorithm gets a substantial amount of time to learn the search 
space, the given iteration of 6,00,000, falls short of applying the knowledge gathered. 
In other words, the neighborhoods' weights cannot get adequately updated at the end 
of a learning period and then implemented in the next as most of the iterations are lost 
while executing a single learning period. Analysis has been done by executing the 
algorithm several times, and every time, it has shown similar results. The gradient 
coloring schemes in the graphs in figure 3, 4, 5 shows the different executions wherein 
the darkest shade stands for the first execution. 

At each temperature, the algorithm iterates five times (nrep=5). On increasing the 
temperature by reheating, it is intuitive that the program's execution time will increase. 
Moreover, as the value of re affects the reheating and annealing process within the 
algorithm, it indirectly affects the fitness value(profit). From the graphs in Figures 6 and 
7, it is observed that with increasing non improving acceptance ratio values(re), the 
average number of times annealing takes place steadily decreases after re =0.23, and 
simultaneously the reheating process starts increasing from the same point. For re 
value greater than 0.28, both the graphs show unpredictability. So, it may be 
concluded from the two graphs that the value of re within range 0.23-0.28 results in 
optimized solutions.  

It can be inferred from Figure 8 that for the chosen range of re values (0.23 – 0.28), 
the profit obtained is quite stable and obtained as a result of both annealing and 
reheating. An abrupt increase in profit can be observed on increasing the re value, 
which is marked by an abrupt increase in the reheating process. However, such abrupt 
increase is unrealistic and may be considered as outliers in comparison with other 
values. Similarly, for smaller values of re, the outcome is unpredictable and does not 
provide stable or reliable solutions for every execution. The graph in Figure 9 shows 
that the execution time does not increase much for the aforesaid chosen range of re 
values (0.23-0.28). For re values more than 0.28, the reheating process increases 
abruptly, leading to abrupt increase in the execution time, which is unwanted. Also, for 
smaller re values, it is observed that the execution time is relatively high even though 
no reheating takes place. This may be accounted for because the program tries to find 
a better solution within the same search space as it is unable to satisfy the reheating 
condition and increase the search domain.  

The algorithm has been executed multiple times, changing the various parameters 
and summarized in Table 3. It can be observed that the algorithm obtains the most 
optimal solution for K=6,00,000, LP=20,000, and re=0.25. The profit, in this case, has 
maximum improvement while the execution time is also rational. Both annealing and 
reheating processes take place, enabling the algorithm to yield better results by 
thoroughly exploring the problem's search space. 

 
5. Conclusion 
A shelf space allocation problem usually involves a large number of parameters. 

Obtaining a reliable estimation of such parameters is generally challenging and time-
consuming; therefore, it is challenging to obtain fruitful solutions in real life. This paper's 
proposed model is distinguishable by hyper-heuristics and the ability to solve more 
extensive, more realistic sized instances. This model considers the second dimension 
as height or stack coefficient instead of only considering the length facings of the items 
and the third dimension, which is the shelves' height in a rack. Thus, this model can be 
used to design layouts for the store to enable the retailer to maximize his profit. 
Moreover, it applies a hyper-heuristics method to calculate the solution using the 
process of simulated annealing. The algorithm used in this work is confined to shelf 
space allocation problems and can be used to optimize any other allocation problem. 
The paper tried to solve the problem of allocating shelf space by proposing a novel 
approach. 

This paper solves the optimization problem by converting a multi-objective 
optimization into a single objective using the popular weighted sum technique. The 
proposed model increases the retailer's profit subject to various objectives and 
constraints. Analysis has been carried out thoroughly to determine the appropriate 
values of the different parameters that are quintessential to determining the retailer's 
profit with the aim of maximum utilization of shelf space. The weights of individual 
parameters result from a systematic survey done using the transaction history of 
various retailers. Moreover, the proposed model works on a hyper-heuristic algorithm 
that can provide better results than traditional heuristics, which are generally applied 
for optimization problems. 

This work can be extended to include Pareto optimality to wholly implement multi-
objective optimization considering conflicting objectives such as retailers' investments, 
human resources, etc. The model does not consider the effect of replenishment and 
backroom on retail shelf space planning. Also, improvements may be made in the 
probability selection of the neighborhood moves (hyper-heuristics). The selection of 
the neighborhoods can be based on an online learning mechanism as that selection 
process might provide a slightly better result for the instances. When implemented in 
reality, this model will help in optimizing profit but may help in planning marketing 
strategies and designing new store layouts. 
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no reheating takes place. This may be accounted for because the program tries to find 
a better solution within the same search space as it is unable to satisfy the reheating 
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The algorithm has been executed multiple times, changing the various parameters 
and summarized in Table 3. It can be observed that the algorithm obtains the most 
optimal solution for K=6,00,000, LP=20,000, and re=0.25. The profit, in this case, has 
maximum improvement while the execution time is also rational. Both annealing and 
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approach. 
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optimization into a single objective using the popular weighted sum technique. The 
proposed model increases the retailer's profit subject to various objectives and 
constraints. Analysis has been carried out thoroughly to determine the appropriate 
values of the different parameters that are quintessential to determining the retailer's 
profit with the aim of maximum utilization of shelf space. The weights of individual 
parameters result from a systematic survey done using the transaction history of 
various retailers. Moreover, the proposed model works on a hyper-heuristic algorithm 
that can provide better results than traditional heuristics, which are generally applied 
for optimization problems. 

This work can be extended to include Pareto optimality to wholly implement multi-
objective optimization considering conflicting objectives such as retailers' investments, 
human resources, etc. The model does not consider the effect of replenishment and 
backroom on retail shelf space planning. Also, improvements may be made in the 
probability selection of the neighborhood moves (hyper-heuristics). The selection of 
the neighborhoods can be based on an online learning mechanism as that selection 
process might provide a slightly better result for the instances. When implemented in 
reality, this model will help in optimizing profit but may help in planning marketing 
strategies and designing new store layouts. 
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with an increase in the total number of iterations.  However, it is also not feasible for 
the process to iterate indefinitely as it takes more time to execute. The total number of 
iterations highly influences the improvement in profit. After a certain number of 
iterations, the profit stabilizes. 

From figure 2, it can be inferred that when the number of iterations is very small 
(K=4500 to 20,000), the improvement in profit is minimal. However, the graph in this 
section linearly increases with increased iteration values. Between 80,000 to 2,50,000 
the graph shows variability in profit improvement. The maximum profit is obtained 
between iterations 3,00,000 to 4,00,000, after which the graph stabilizes at a slightly 
lower profit value.  

The algorithm analyses the problem space, trying to find better solutions controlled 
by the number of iterations. In this paper, to estimate the most desirable learning 
period, a range of different learning periods between 500 and 3,00,000 have been 
considered. Within a learning period, the algorithm explores the different suggested 
neighborhoods using either annealing or reheating process. Based on the 
performance of each neighborhood, the weights associated with each heuristic move 
are updated at the end of each learning period, and again, the learning period works 
with those neighborhoods that are, in turn, selected based on their updated weights 
(using a probability function). Thus, the learning period for a given iteration must not 
be so small that there is no ample time for the process to learn about the problem. Also, 
it should not, on the other hand, be so large as to prohibit the opportunities for the 
algorithm to utilize the information gathered during the learning period. 

Shows the graph for the learning period 20000, which has been used in the 
implementation. For instance, observing the case of a minimum learning period, LP 
=5000, as shown in figure 4, the number of variations in the graph for the same number 
of total iterations is much less than that LP=20000. This proves that if the learning 
period is too small, the algorithm fails to gather sufficient knowledge about the heuristic 
moves whose performance is pivotal to determining the improvement in profit, which 
again serves the whole work's primary objective.  

Again, analyzing the algorithm by keeping the learning period as large as 1,50,000 
shows that the graph in figure 5 is almost stable, with no considerable change. This 
proves that although the algorithm gets a substantial amount of time to learn the search 
space, the given iteration of 6,00,000, falls short of applying the knowledge gathered. 
In other words, the neighborhoods' weights cannot get adequately updated at the end 
of a learning period and then implemented in the next as most of the iterations are lost 
while executing a single learning period. Analysis has been done by executing the 
algorithm several times, and every time, it has shown similar results. The gradient 
coloring schemes in the graphs in figure 3, 4, 5 shows the different executions wherein 
the darkest shade stands for the first execution. 

At each temperature, the algorithm iterates five times (nrep=5). On increasing the 
temperature by reheating, it is intuitive that the program's execution time will increase. 
Moreover, as the value of re affects the reheating and annealing process within the 
algorithm, it indirectly affects the fitness value(profit). From the graphs in Figures 6 and 
7, it is observed that with increasing non improving acceptance ratio values(re), the 
average number of times annealing takes place steadily decreases after re =0.23, and 
simultaneously the reheating process starts increasing from the same point. For re 
value greater than 0.28, both the graphs show unpredictability. So, it may be 
concluded from the two graphs that the value of re within range 0.23-0.28 results in 
optimized solutions.  

It can be inferred from Figure 8 that for the chosen range of re values (0.23 – 0.28), 
the profit obtained is quite stable and obtained as a result of both annealing and 
reheating. An abrupt increase in profit can be observed on increasing the re value, 
which is marked by an abrupt increase in the reheating process. However, such abrupt 
increase is unrealistic and may be considered as outliers in comparison with other 
values. Similarly, for smaller values of re, the outcome is unpredictable and does not 
provide stable or reliable solutions for every execution. The graph in Figure 9 shows 
that the execution time does not increase much for the aforesaid chosen range of re 
values (0.23-0.28). For re values more than 0.28, the reheating process increases 
abruptly, leading to abrupt increase in the execution time, which is unwanted. Also, for 
smaller re values, it is observed that the execution time is relatively high even though 
no reheating takes place. This may be accounted for because the program tries to find 
a better solution within the same search space as it is unable to satisfy the reheating 
condition and increase the search domain.  

The algorithm has been executed multiple times, changing the various parameters 
and summarized in Table 3. It can be observed that the algorithm obtains the most 
optimal solution for K=6,00,000, LP=20,000, and re=0.25. The profit, in this case, has 
maximum improvement while the execution time is also rational. Both annealing and 
reheating processes take place, enabling the algorithm to yield better results by 
thoroughly exploring the problem's search space. 

 
5. Conclusion 
A shelf space allocation problem usually involves a large number of parameters. 

Obtaining a reliable estimation of such parameters is generally challenging and time-
consuming; therefore, it is challenging to obtain fruitful solutions in real life. This paper's 
proposed model is distinguishable by hyper-heuristics and the ability to solve more 
extensive, more realistic sized instances. This model considers the second dimension 
as height or stack coefficient instead of only considering the length facings of the items 
and the third dimension, which is the shelves' height in a rack. Thus, this model can be 
used to design layouts for the store to enable the retailer to maximize his profit. 
Moreover, it applies a hyper-heuristics method to calculate the solution using the 
process of simulated annealing. The algorithm used in this work is confined to shelf 
space allocation problems and can be used to optimize any other allocation problem. 
The paper tried to solve the problem of allocating shelf space by proposing a novel 
approach. 

This paper solves the optimization problem by converting a multi-objective 
optimization into a single objective using the popular weighted sum technique. The 
proposed model increases the retailer's profit subject to various objectives and 
constraints. Analysis has been carried out thoroughly to determine the appropriate 
values of the different parameters that are quintessential to determining the retailer's 
profit with the aim of maximum utilization of shelf space. The weights of individual 
parameters result from a systematic survey done using the transaction history of 
various retailers. Moreover, the proposed model works on a hyper-heuristic algorithm 
that can provide better results than traditional heuristics, which are generally applied 
for optimization problems. 

This work can be extended to include Pareto optimality to wholly implement multi-
objective optimization considering conflicting objectives such as retailers' investments, 
human resources, etc. The model does not consider the effect of replenishment and 
backroom on retail shelf space planning. Also, improvements may be made in the 
probability selection of the neighborhood moves (hyper-heuristics). The selection of 
the neighborhoods can be based on an online learning mechanism as that selection 
process might provide a slightly better result for the instances. When implemented in 
reality, this model will help in optimizing profit but may help in planning marketing 
strategies and designing new store layouts. 

 

Fig. 8. Graph representing the change in average profit ratio with increasing re values.

Fig. 9. Graph representing the average execution time taken with increasing re values.
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with an increase in the total number of iterations.  However, it is also not feasible for 
the process to iterate indefinitely as it takes more time to execute. The total number of 
iterations highly influences the improvement in profit. After a certain number of 
iterations, the profit stabilizes. 

From figure 2, it can be inferred that when the number of iterations is very small 
(K=4500 to 20,000), the improvement in profit is minimal. However, the graph in this 
section linearly increases with increased iteration values. Between 80,000 to 2,50,000 
the graph shows variability in profit improvement. The maximum profit is obtained 
between iterations 3,00,000 to 4,00,000, after which the graph stabilizes at a slightly 
lower profit value.  

The algorithm analyses the problem space, trying to find better solutions controlled 
by the number of iterations. In this paper, to estimate the most desirable learning 
period, a range of different learning periods between 500 and 3,00,000 have been 
considered. Within a learning period, the algorithm explores the different suggested 
neighborhoods using either annealing or reheating process. Based on the 
performance of each neighborhood, the weights associated with each heuristic move 
are updated at the end of each learning period, and again, the learning period works 
with those neighborhoods that are, in turn, selected based on their updated weights 
(using a probability function). Thus, the learning period for a given iteration must not 
be so small that there is no ample time for the process to learn about the problem. Also, 
it should not, on the other hand, be so large as to prohibit the opportunities for the 
algorithm to utilize the information gathered during the learning period. 

Shows the graph for the learning period 20000, which has been used in the 
implementation. For instance, observing the case of a minimum learning period, LP 
=5000, as shown in figure 4, the number of variations in the graph for the same number 
of total iterations is much less than that LP=20000. This proves that if the learning 
period is too small, the algorithm fails to gather sufficient knowledge about the heuristic 
moves whose performance is pivotal to determining the improvement in profit, which 
again serves the whole work's primary objective.  

Again, analyzing the algorithm by keeping the learning period as large as 1,50,000 
shows that the graph in figure 5 is almost stable, with no considerable change. This 
proves that although the algorithm gets a substantial amount of time to learn the search 
space, the given iteration of 6,00,000, falls short of applying the knowledge gathered. 
In other words, the neighborhoods' weights cannot get adequately updated at the end 
of a learning period and then implemented in the next as most of the iterations are lost 
while executing a single learning period. Analysis has been done by executing the 
algorithm several times, and every time, it has shown similar results. The gradient 
coloring schemes in the graphs in figure 3, 4, 5 shows the different executions wherein 
the darkest shade stands for the first execution. 

At each temperature, the algorithm iterates five times (nrep=5). On increasing the 
temperature by reheating, it is intuitive that the program's execution time will increase. 
Moreover, as the value of re affects the reheating and annealing process within the 
algorithm, it indirectly affects the fitness value(profit). From the graphs in Figures 6 and 
7, it is observed that with increasing non improving acceptance ratio values(re), the 
average number of times annealing takes place steadily decreases after re =0.23, and 
simultaneously the reheating process starts increasing from the same point. For re 
value greater than 0.28, both the graphs show unpredictability. So, it may be 
concluded from the two graphs that the value of re within range 0.23-0.28 results in 
optimized solutions.  

It can be inferred from Figure 8 that for the chosen range of re values (0.23 – 0.28), 
the profit obtained is quite stable and obtained as a result of both annealing and 
reheating. An abrupt increase in profit can be observed on increasing the re value, 
which is marked by an abrupt increase in the reheating process. However, such abrupt 
increase is unrealistic and may be considered as outliers in comparison with other 
values. Similarly, for smaller values of re, the outcome is unpredictable and does not 
provide stable or reliable solutions for every execution. The graph in Figure 9 shows 
that the execution time does not increase much for the aforesaid chosen range of re 
values (0.23-0.28). For re values more than 0.28, the reheating process increases 
abruptly, leading to abrupt increase in the execution time, which is unwanted. Also, for 
smaller re values, it is observed that the execution time is relatively high even though 
no reheating takes place. This may be accounted for because the program tries to find 
a better solution within the same search space as it is unable to satisfy the reheating 
condition and increase the search domain.  

The algorithm has been executed multiple times, changing the various parameters 
and summarized in Table 3. It can be observed that the algorithm obtains the most 
optimal solution for K=6,00,000, LP=20,000, and re=0.25. The profit, in this case, has 
maximum improvement while the execution time is also rational. Both annealing and 
reheating processes take place, enabling the algorithm to yield better results by 
thoroughly exploring the problem's search space. 

 
5. Conclusion 
A shelf space allocation problem usually involves a large number of parameters. 

Obtaining a reliable estimation of such parameters is generally challenging and time-
consuming; therefore, it is challenging to obtain fruitful solutions in real life. This paper's 
proposed model is distinguishable by hyper-heuristics and the ability to solve more 
extensive, more realistic sized instances. This model considers the second dimension 
as height or stack coefficient instead of only considering the length facings of the items 
and the third dimension, which is the shelves' height in a rack. Thus, this model can be 
used to design layouts for the store to enable the retailer to maximize his profit. 
Moreover, it applies a hyper-heuristics method to calculate the solution using the 
process of simulated annealing. The algorithm used in this work is confined to shelf 
space allocation problems and can be used to optimize any other allocation problem. 
The paper tried to solve the problem of allocating shelf space by proposing a novel 
approach. 

This paper solves the optimization problem by converting a multi-objective 
optimization into a single objective using the popular weighted sum technique. The 
proposed model increases the retailer's profit subject to various objectives and 
constraints. Analysis has been carried out thoroughly to determine the appropriate 
values of the different parameters that are quintessential to determining the retailer's 
profit with the aim of maximum utilization of shelf space. The weights of individual 
parameters result from a systematic survey done using the transaction history of 
various retailers. Moreover, the proposed model works on a hyper-heuristic algorithm 
that can provide better results than traditional heuristics, which are generally applied 
for optimization problems. 

This work can be extended to include Pareto optimality to wholly implement multi-
objective optimization considering conflicting objectives such as retailers' investments, 
human resources, etc. The model does not consider the effect of replenishment and 
backroom on retail shelf space planning. Also, improvements may be made in the 
probability selection of the neighborhood moves (hyper-heuristics). The selection of 
the neighborhoods can be based on an online learning mechanism as that selection 
process might provide a slightly better result for the instances. When implemented in 
reality, this model will help in optimizing profit but may help in planning marketing 
strategies and designing new store layouts. 
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4,500 1,125 0.08 32,107.14 35,481.01 3,373.87 900 - 5,525
20,000 5,000 0.08 33,068.91 41,611.76 8,542.85 4,000 - 23,147
100,000 25,000 0.08 29,844.89 40,165.82 10,320.93 20,000 - 118,180
300,000 75,000 0.08 34,131.41 47,322.70 13,191.28 60,000 - 318,640
450,000 112,500 0.08 33,211.78 47,755.21 14,543.43 90,000 - 502,185
525,000 131,250 0.08 32,572.58 45,609.31 13,036.74 105,000 - 58,228
580,000 145,000 0.08 33,463.30 44,829.86 11,366.56 16,000 - 540,236
600,000 150,000 0.08 32,946.95 47,768.38 14,821.43 20,000 - 671,459
600,000 5,000 0.08 31,486.47 46,491.25 15,004.78 20,000 - 561,561
600,000 20,000 0.08 36,221.32 46,048.99 9,827.67 20,000 - 528,742
600,000 75,000 0.08 29,967.24 45,274.86 15,307.62 120,000 - 671,804
600,000 150,000 0.08 32,552.15 46,377.38 13,825.23 120,000 - 573,000
600,000 20,000 0.10 31,875.67 46,643.73 14,768.06 120,000 - 554,845
600,000 20,000 0.20 33,564.30 45,042.11 11,477.81 120,000 - 607,424
600,000 20,000 0.25 31,710.37 48,279.44 16,569.07 119,999 9 529,692
600,000 20,000 0.27 32,042.85 48,000.70 15,957.85 119,938 340 527,931
600,000 20,000 0.30 28,266.87 46,651.72 18,384.85 119,944 327 659,856
600,000 20,000 0.40 34,076.49 44,884.43 10,807.93 119,920 453 723,050
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with an increase in the total number of iterations.  However, it is also not feasible for 
the process to iterate indefinitely as it takes more time to execute. The total number of 
iterations highly influences the improvement in profit. After a certain number of 
iterations, the profit stabilizes. 

From figure 2, it can be inferred that when the number of iterations is very small 
(K=4500 to 20,000), the improvement in profit is minimal. However, the graph in this 
section linearly increases with increased iteration values. Between 80,000 to 2,50,000 
the graph shows variability in profit improvement. The maximum profit is obtained 
between iterations 3,00,000 to 4,00,000, after which the graph stabilizes at a slightly 
lower profit value.  

The algorithm analyses the problem space, trying to find better solutions controlled 
by the number of iterations. In this paper, to estimate the most desirable learning 
period, a range of different learning periods between 500 and 3,00,000 have been 
considered. Within a learning period, the algorithm explores the different suggested 
neighborhoods using either annealing or reheating process. Based on the 
performance of each neighborhood, the weights associated with each heuristic move 
are updated at the end of each learning period, and again, the learning period works 
with those neighborhoods that are, in turn, selected based on their updated weights 
(using a probability function). Thus, the learning period for a given iteration must not 
be so small that there is no ample time for the process to learn about the problem. Also, 
it should not, on the other hand, be so large as to prohibit the opportunities for the 
algorithm to utilize the information gathered during the learning period. 

Shows the graph for the learning period 20000, which has been used in the 
implementation. For instance, observing the case of a minimum learning period, LP 
=5000, as shown in figure 4, the number of variations in the graph for the same number 
of total iterations is much less than that LP=20000. This proves that if the learning 
period is too small, the algorithm fails to gather sufficient knowledge about the heuristic 
moves whose performance is pivotal to determining the improvement in profit, which 
again serves the whole work's primary objective.  

Again, analyzing the algorithm by keeping the learning period as large as 1,50,000 
shows that the graph in figure 5 is almost stable, with no considerable change. This 
proves that although the algorithm gets a substantial amount of time to learn the search 
space, the given iteration of 6,00,000, falls short of applying the knowledge gathered. 
In other words, the neighborhoods' weights cannot get adequately updated at the end 
of a learning period and then implemented in the next as most of the iterations are lost 
while executing a single learning period. Analysis has been done by executing the 
algorithm several times, and every time, it has shown similar results. The gradient 
coloring schemes in the graphs in figure 3, 4, 5 shows the different executions wherein 
the darkest shade stands for the first execution. 

At each temperature, the algorithm iterates five times (nrep=5). On increasing the 
temperature by reheating, it is intuitive that the program's execution time will increase. 
Moreover, as the value of re affects the reheating and annealing process within the 
algorithm, it indirectly affects the fitness value(profit). From the graphs in Figures 6 and 
7, it is observed that with increasing non improving acceptance ratio values(re), the 
average number of times annealing takes place steadily decreases after re =0.23, and 
simultaneously the reheating process starts increasing from the same point. For re 
value greater than 0.28, both the graphs show unpredictability. So, it may be 
concluded from the two graphs that the value of re within range 0.23-0.28 results in 
optimized solutions.  

It can be inferred from Figure 8 that for the chosen range of re values (0.23 – 0.28), 
the profit obtained is quite stable and obtained as a result of both annealing and 
reheating. An abrupt increase in profit can be observed on increasing the re value, 
which is marked by an abrupt increase in the reheating process. However, such abrupt 
increase is unrealistic and may be considered as outliers in comparison with other 
values. Similarly, for smaller values of re, the outcome is unpredictable and does not 
provide stable or reliable solutions for every execution. The graph in Figure 9 shows 
that the execution time does not increase much for the aforesaid chosen range of re 
values (0.23-0.28). For re values more than 0.28, the reheating process increases 
abruptly, leading to abrupt increase in the execution time, which is unwanted. Also, for 
smaller re values, it is observed that the execution time is relatively high even though 
no reheating takes place. This may be accounted for because the program tries to find 
a better solution within the same search space as it is unable to satisfy the reheating 
condition and increase the search domain.  

The algorithm has been executed multiple times, changing the various parameters 
and summarized in Table 3. It can be observed that the algorithm obtains the most 
optimal solution for K=6,00,000, LP=20,000, and re=0.25. The profit, in this case, has 
maximum improvement while the execution time is also rational. Both annealing and 
reheating processes take place, enabling the algorithm to yield better results by 
thoroughly exploring the problem's search space. 

 
5. Conclusion 
A shelf space allocation problem usually involves a large number of parameters. 

Obtaining a reliable estimation of such parameters is generally challenging and time-
consuming; therefore, it is challenging to obtain fruitful solutions in real life. This paper's 
proposed model is distinguishable by hyper-heuristics and the ability to solve more 
extensive, more realistic sized instances. This model considers the second dimension 
as height or stack coefficient instead of only considering the length facings of the items 
and the third dimension, which is the shelves' height in a rack. Thus, this model can be 
used to design layouts for the store to enable the retailer to maximize his profit. 
Moreover, it applies a hyper-heuristics method to calculate the solution using the 
process of simulated annealing. The algorithm used in this work is confined to shelf 
space allocation problems and can be used to optimize any other allocation problem. 
The paper tried to solve the problem of allocating shelf space by proposing a novel 
approach. 

This paper solves the optimization problem by converting a multi-objective 
optimization into a single objective using the popular weighted sum technique. The 
proposed model increases the retailer's profit subject to various objectives and 
constraints. Analysis has been carried out thoroughly to determine the appropriate 
values of the different parameters that are quintessential to determining the retailer's 
profit with the aim of maximum utilization of shelf space. The weights of individual 
parameters result from a systematic survey done using the transaction history of 
various retailers. Moreover, the proposed model works on a hyper-heuristic algorithm 
that can provide better results than traditional heuristics, which are generally applied 
for optimization problems. 

This work can be extended to include Pareto optimality to wholly implement multi-
objective optimization considering conflicting objectives such as retailers' investments, 
human resources, etc. The model does not consider the effect of replenishment and 
backroom on retail shelf space planning. Also, improvements may be made in the 
probability selection of the neighborhood moves (hyper-heuristics). The selection of 
the neighborhoods can be based on an online learning mechanism as that selection 
process might provide a slightly better result for the instances. When implemented in 
reality, this model will help in optimizing profit but may help in planning marketing 
strategies and designing new store layouts. 
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