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Abstract
The paper studies the problem of synthesis of control of lumped 
sources for an object with distributed parameters based on discrete 
observation of the phase state at specific object points. We propose 
an approach in which the whole phase space at the observed points 
is preliminarily divided in some way into given subsets (zones). The 
synthesized controls are selected from the class of piecewise-constant 
functions, and their current values are determined by a subset of the 
phase space containing the population of current states of the object 
at the observed points, at which controls take constant values. Such 
synthesized controls are called zonal. We give a numerical technique 
for obtaining optimal values of zonal controls using efficient first-order 
optimization methods. To this purpose, we derive formulas for the 
gradient of the objective function in the space of zonal controls.
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1. Introduction 
It is known that one of the important areas in the modern theory of automatic control 

is the theory of control of systems with distributed parameters. The problems of 
synthesis of distributed control systems are, in most cases, more complex than lumped 
systems due to the characteristics of distributed objects. Distributed control objects 
include many chemical-technological, radiation, aerodynamic and hydrodynamic 
processes, heat conduction and diffusion processes, processes associated with the 
movement of elastic structures, etc. The absence of a formalized methodological 
approach for solving problems of controlling objects with distributed parameters poses 
certain problems for researchers that require the use of non-standard research 
methods and decision-making in each specific case. The main contribution to the 
development of the theory of distributed-parameter control systems has been provided 
by a number of fundamental results obtained in the works of A.G. Butkovsky (1975), 
A.I. Egorov (2004), T.K. Sirazetdinov (1977), J.L. Lyons (1971), N.N. Moiseev (1971), 
K.A. Lurie (1993), E.Ya. Rapoport (1999), (see also Fursikov A.V., 1999; Arthur E. 
Bryson, Yu-Chi Ho., 1975), etc. Modern technical means of measuring and computing 
technology, which make it possible to carry out a large volume of measuring and 
computational work in real-time, have played a key role in the development of feedback 
control systems and their widespread practical implementation. 

The paper considers the problem of synthesizing control of an object with 
distributed parameters on special classes of control actions. For the synthesized 
controls, the concept of zoning is introduced, which means the constancy of the values 
of the synthesized control parameters in each of the subsets (zones), into which the 
entire set of possible states of the object or the time interval of the functioning of the 
process (object) is pre-divided. The control actions' values are also determined by the 
type of feedback and the class of the functional dependence of the control on the 
currently observed value of the state or the current time of observation. Particularly, the 
case of discrete feedback is analyzed using discrete observation of the phase state of 
the object at its certain points. 

The constancy of the parameters of the zonal control actions (the zonal controls 
themselves or the zonal amplification coefficients under a linear dependence of the 
control on the state of the process) determines the robustness of the control system, 
as well as ensures the feasibility of synthesized control actions with sufficiently high 
accuracy and improves the technical performance of the equipment involved in the 
control loop. 

We have used the principle of zoning of control parameters as the basis of 
numerical methods for solving such specific optimization and inverse problems like the 
problem of optimal placement of production and injection wells and optimal control of 
their flow rates during the operation of an oil reservoir under the regime of water-driven 
piston displacement (Guliyev S.Z., Aida-zade K.R., 2005), and the problem of 
identifying the hydraulic resistance coefficient under the unsteady flow of viscous fluids 
through pipelines (Guliyev S.Z. and Aida-zade K.R., 2016), as well as problems of 
synthesis of control and identification of objects with lumped parameters (Kuliev, S. Z., 
2011; Aida-Zade, K. R., & Kuliev, S. Z., 2012; Aida-Zade, K. R., & Kuliev, S. Z., 2011; 
Guliyev, S. Z. (2013). 

 
2. Problem Statement 
To illustrate the proposed approach, we consider the problem of controlling a rod 

heating process through lumped point sources. This process can be described by the 
following parabolic type partial differential equation: 

𝑢𝑢! = 𝑎𝑎"	𝑢𝑢## +&𝜗𝜗$(𝑡𝑡)	δ(𝑥𝑥 − 𝑥̅𝑥$)
%

$&'

, (𝑥𝑥, 𝑡𝑡) ∈ Ω = (0,1) × (0, 𝑇𝑇] (1) 

Here [0,1] is the segment occupied by the rod; 𝑥̅𝑥$ (𝑗𝑗 = 1,2, … ,𝑀𝑀) the points at which 
heat sources with optimizable powers 𝜗𝜗$(𝑡𝑡) (𝑗𝑗 = 1,2, … ,𝑀𝑀) are placed; 𝑀𝑀 the given 
number of heat sources; δ(. ) the one-dimensional generalized Dirac’s function; 𝑎𝑎" the 
thermal diffusivity. Initial and boundary conditions are given in the following form: 

𝑢𝑢(𝑥𝑥, 0) = 𝑔𝑔((𝑥𝑥) ∈ 𝐺𝐺((𝑥𝑥), 𝑥𝑥 ∈ [0,1], (2) 
𝑢𝑢(0, 𝑡𝑡) = 𝑔𝑔'(𝑡𝑡) ∈ 𝐺𝐺'(𝑡𝑡), 𝑡𝑡 ∈ [0, 𝑇𝑇], (3) 
𝑢𝑢(1, 𝑡𝑡) = 𝑔𝑔"(𝑡𝑡) ∈ 𝐺𝐺"(𝑡𝑡), 𝑡𝑡 ∈ [0, 𝑇𝑇], (4) 

Here 𝐺𝐺((. ), 𝐺𝐺'(. ), and 𝐺𝐺"(. ) are point-set mappings, for which each value of the 
argument is associated with a closed bounded set. In this case, the corresponding 
distribution functions Φ((𝑔𝑔(), Φ'(𝑔𝑔'), and Φ"(𝑔𝑔") are given, which characterize the 
distributions of possible values that the initial and boundary conditions can take. 

Assume that thermal sensors are installed at 𝑁𝑁 points of the rod with coordinates 
𝑥𝑥A)	(𝑠𝑠 = 1,2, … ,𝑁𝑁). These sensors realize operative observation and input to the control 
system of information on the state of the heating process at these points, which is 
determined by the vector: 

𝑢𝑢A(𝑡𝑡) = C𝑢𝑢A'(𝑡𝑡), 𝑢𝑢A"(𝑡𝑡), … , 𝑢𝑢A*(𝑡𝑡)D∗ = C𝑢𝑢(𝑥𝑥A', 𝑡𝑡), 𝑢𝑢(𝑥𝑥A", 𝑡𝑡), … , 𝑢𝑢(𝑥𝑥A*, 𝑡𝑡)D∗, 𝑡𝑡 ∈ (0, 𝑇𝑇], 
where * denotes the transposition sign. Besides, the discrete points of observation 

time 𝜏𝜏, ∈ [0, 𝑇𝑇] (𝑖𝑖 = 0,1, … , 𝑞𝑞) are given, at which it is possible to measure the value of 
the object's state at the points of the rod where the thermal sensors are installed, i.e. 
𝑢𝑢A(𝑡𝑡). 

To control the heat conduction process in the rod, it is required to synthesize a 
regulator that, based on the results of temperature measurements at the points 𝑥𝑥A) (𝑠𝑠 =
1,2, … ,𝑁𝑁) of the rod, would ensure the maintenance of the temperature 𝑢𝑢(𝑥𝑥, 𝑇𝑇) at a 
given level by maintaining the required temperature 𝜗𝜗(𝑡𝑡) in the heat sources. Based 
on technological conditions, we have to impose certain constraints on the values that 
the controls can take: 

𝑉𝑉$ = I𝜗𝜗(𝑡𝑡):	𝜗𝜗-./
$ ≤ 𝜗𝜗$(𝑡𝑡) ≤ 𝜗𝜗-01L, 𝑗𝑗 = 1,2, … ,𝑀𝑀, 

where 𝜗𝜗-./
$  and 𝜗𝜗-01 are given values. Here 𝑉𝑉$ is the set of permissible values of 

the control 𝜗𝜗$(𝑡𝑡) and 𝑉𝑉 = (𝑉𝑉', 𝑉𝑉", … , 𝑉𝑉%)∗. 
The considered feedback control problem for the rod heating process consists in 

choosing permissible values of the sources’ powers as a function of the object’s state 
values 

𝜗𝜗$(𝑡𝑡) = 𝜗𝜗$C𝑢𝑢A(𝑡𝑡)D, 𝜗𝜗$(𝑡𝑡) ∈ 𝑉𝑉$, 𝑗𝑗 = 1,2, … ,𝑀𝑀, 𝑡𝑡 ∈ (0, 𝑇𝑇], (5) 
at the observed points of the rod in order to minimize the given function. In the case 

of non-fixed initial and boundary conditions (2)-(4), the functional can take on the form: 

𝐽𝐽(𝜗𝜗) = N N N𝐼𝐼(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔")	dΦ"(𝑔𝑔")
	

3!

dΦ'(𝑔𝑔')
	

3"

dΦ((𝑔𝑔()
	

3#

 (6) 

𝐼𝐼(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") = N[𝑢𝑢(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") − 𝑢𝑢R(𝑥𝑥)]"	d𝑥𝑥
'

(

 (7) 

where 𝑢𝑢(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") is the solution of the problem (1)-(4), corresponding to 
specifically chosen initial and boundary functions 𝑔𝑔((𝑥𝑥) ∈ 𝐺𝐺((𝑥𝑥), 𝑔𝑔'(𝑡𝑡) ∈ 𝐺𝐺'(𝑡𝑡), and 
𝑔𝑔"(𝑡𝑡) ∈ 𝐺𝐺"(𝑡𝑡), and to permissible values of the controls 𝜗𝜗(𝑡𝑡) ∈ 𝑉𝑉; 𝑢𝑢R(𝑥𝑥) the given 
function characterizing the desired temperature distribution at the final moment of the 
heating process. Functional (6) characterizes the quality of process control on average 
over the sets of all possible initial states 𝐺𝐺((. ) and boundary conditions 𝐺𝐺'(. ), 𝐺𝐺"(. ). 
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𝑢𝑢! = 𝑎𝑎"	𝑢𝑢## +&𝜗𝜗$(𝑡𝑡)	δ(𝑥𝑥 − 𝑥̅𝑥$)
%

$&'

, (𝑥𝑥, 𝑡𝑡) ∈ Ω = (0,1) × (0, 𝑇𝑇] (1) 

Here [0,1] is the segment occupied by the rod; 𝑥̅𝑥$ (𝑗𝑗 = 1,2, … ,𝑀𝑀) the points at which 
heat sources with optimizable powers 𝜗𝜗$(𝑡𝑡) (𝑗𝑗 = 1,2, … ,𝑀𝑀) are placed; 𝑀𝑀 the given 
number of heat sources; δ(. ) the one-dimensional generalized Dirac’s function; 𝑎𝑎" the 
thermal diffusivity. Initial and boundary conditions are given in the following form: 

𝑢𝑢(𝑥𝑥, 0) = 𝑔𝑔((𝑥𝑥) ∈ 𝐺𝐺((𝑥𝑥), 𝑥𝑥 ∈ [0,1], (2) 
𝑢𝑢(0, 𝑡𝑡) = 𝑔𝑔'(𝑡𝑡) ∈ 𝐺𝐺'(𝑡𝑡), 𝑡𝑡 ∈ [0, 𝑇𝑇], (3) 
𝑢𝑢(1, 𝑡𝑡) = 𝑔𝑔"(𝑡𝑡) ∈ 𝐺𝐺"(𝑡𝑡), 𝑡𝑡 ∈ [0, 𝑇𝑇], (4) 

Here 𝐺𝐺((. ), 𝐺𝐺'(. ), and 𝐺𝐺"(. ) are point-set mappings, for which each value of the 
argument is associated with a closed bounded set. In this case, the corresponding 
distribution functions Φ((𝑔𝑔(), Φ'(𝑔𝑔'), and Φ"(𝑔𝑔") are given, which characterize the 
distributions of possible values that the initial and boundary conditions can take. 

Assume that thermal sensors are installed at 𝑁𝑁 points of the rod with coordinates 
𝑥𝑥A)	(𝑠𝑠 = 1,2, … ,𝑁𝑁). These sensors realize operative observation and input to the control 
system of information on the state of the heating process at these points, which is 
determined by the vector: 

𝑢𝑢A(𝑡𝑡) = C𝑢𝑢A'(𝑡𝑡), 𝑢𝑢A"(𝑡𝑡), … , 𝑢𝑢A*(𝑡𝑡)D∗ = C𝑢𝑢(𝑥𝑥A', 𝑡𝑡), 𝑢𝑢(𝑥𝑥A", 𝑡𝑡), … , 𝑢𝑢(𝑥𝑥A*, 𝑡𝑡)D∗, 𝑡𝑡 ∈ (0, 𝑇𝑇], 
where * denotes the transposition sign. Besides, the discrete points of observation 

time 𝜏𝜏, ∈ [0, 𝑇𝑇] (𝑖𝑖 = 0,1, … , 𝑞𝑞) are given, at which it is possible to measure the value of 
the object's state at the points of the rod where the thermal sensors are installed, i.e. 
𝑢𝑢A(𝑡𝑡). 

To control the heat conduction process in the rod, it is required to synthesize a 
regulator that, based on the results of temperature measurements at the points 𝑥𝑥A) (𝑠𝑠 =
1,2, … ,𝑁𝑁) of the rod, would ensure the maintenance of the temperature 𝑢𝑢(𝑥𝑥, 𝑇𝑇) at a 
given level by maintaining the required temperature 𝜗𝜗(𝑡𝑡) in the heat sources. Based 
on technological conditions, we have to impose certain constraints on the values that 
the controls can take: 

𝑉𝑉$ = I𝜗𝜗(𝑡𝑡):	𝜗𝜗-./
$ ≤ 𝜗𝜗$(𝑡𝑡) ≤ 𝜗𝜗-01L, 𝑗𝑗 = 1,2, … ,𝑀𝑀, 

where 𝜗𝜗-./
$  and 𝜗𝜗-01 are given values. Here 𝑉𝑉$ is the set of permissible values of 

the control 𝜗𝜗$(𝑡𝑡) and 𝑉𝑉 = (𝑉𝑉', 𝑉𝑉", … , 𝑉𝑉%)∗. 
The considered feedback control problem for the rod heating process consists in 

choosing permissible values of the sources’ powers as a function of the object’s state 
values 

𝜗𝜗$(𝑡𝑡) = 𝜗𝜗$C𝑢𝑢A(𝑡𝑡)D, 𝜗𝜗$(𝑡𝑡) ∈ 𝑉𝑉$, 𝑗𝑗 = 1,2, … ,𝑀𝑀, 𝑡𝑡 ∈ (0, 𝑇𝑇], (5) 
at the observed points of the rod in order to minimize the given function. In the case 

of non-fixed initial and boundary conditions (2)-(4), the functional can take on the form: 

𝐽𝐽(𝜗𝜗) = N N N𝐼𝐼(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔")	dΦ"(𝑔𝑔")
	

3!

dΦ'(𝑔𝑔')
	

3"

dΦ((𝑔𝑔()
	

3#

 (6) 

𝐼𝐼(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") = N[𝑢𝑢(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") − 𝑢𝑢R(𝑥𝑥)]"	d𝑥𝑥
'

(

 (7) 

where 𝑢𝑢(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") is the solution of the problem (1)-(4), corresponding to 
specifically chosen initial and boundary functions 𝑔𝑔((𝑥𝑥) ∈ 𝐺𝐺((𝑥𝑥), 𝑔𝑔'(𝑡𝑡) ∈ 𝐺𝐺'(𝑡𝑡), and 
𝑔𝑔"(𝑡𝑡) ∈ 𝐺𝐺"(𝑡𝑡), and to permissible values of the controls 𝜗𝜗(𝑡𝑡) ∈ 𝑉𝑉; 𝑢𝑢R(𝑥𝑥) the given 
function characterizing the desired temperature distribution at the final moment of the 
heating process. Functional (6) characterizes the quality of process control on average 
over the sets of all possible initial states 𝐺𝐺((. ) and boundary conditions 𝐺𝐺'(. ), 𝐺𝐺"(. ). 
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1. Introduction 
It is known that one of the important areas in the modern theory of automatic control 

is the theory of control of systems with distributed parameters. The problems of 
synthesis of distributed control systems are, in most cases, more complex than lumped 
systems due to the characteristics of distributed objects. Distributed control objects 
include many chemical-technological, radiation, aerodynamic and hydrodynamic 
processes, heat conduction and diffusion processes, processes associated with the 
movement of elastic structures, etc. The absence of a formalized methodological 
approach for solving problems of controlling objects with distributed parameters poses 
certain problems for researchers that require the use of non-standard research 
methods and decision-making in each specific case. The main contribution to the 
development of the theory of distributed-parameter control systems has been provided 
by a number of fundamental results obtained in the works of A.G. Butkovsky (1975), 
A.I. Egorov (2004), T.K. Sirazetdinov (1977), J.L. Lyons (1971), N.N. Moiseev (1971), 
K.A. Lurie (1993), E.Ya. Rapoport (1999), (see also Fursikov A.V., 1999; Arthur E. 
Bryson, Yu-Chi Ho., 1975), etc. Modern technical means of measuring and computing 
technology, which make it possible to carry out a large volume of measuring and 
computational work in real-time, have played a key role in the development of feedback 
control systems and their widespread practical implementation. 

The paper considers the problem of synthesizing control of an object with 
distributed parameters on special classes of control actions. For the synthesized 
controls, the concept of zoning is introduced, which means the constancy of the values 
of the synthesized control parameters in each of the subsets (zones), into which the 
entire set of possible states of the object or the time interval of the functioning of the 
process (object) is pre-divided. The control actions' values are also determined by the 
type of feedback and the class of the functional dependence of the control on the 
currently observed value of the state or the current time of observation. Particularly, the 
case of discrete feedback is analyzed using discrete observation of the phase state of 
the object at its certain points. 

The constancy of the parameters of the zonal control actions (the zonal controls 
themselves or the zonal amplification coefficients under a linear dependence of the 
control on the state of the process) determines the robustness of the control system, 
as well as ensures the feasibility of synthesized control actions with sufficiently high 
accuracy and improves the technical performance of the equipment involved in the 
control loop. 

We have used the principle of zoning of control parameters as the basis of 
numerical methods for solving such specific optimization and inverse problems like the 
problem of optimal placement of production and injection wells and optimal control of 
their flow rates during the operation of an oil reservoir under the regime of water-driven 
piston displacement (Guliyev S.Z., Aida-zade K.R., 2005), and the problem of 
identifying the hydraulic resistance coefficient under the unsteady flow of viscous fluids 
through pipelines (Guliyev S.Z. and Aida-zade K.R., 2016), as well as problems of 
synthesis of control and identification of objects with lumped parameters (Kuliev, S. Z., 
2011; Aida-Zade, K. R., & Kuliev, S. Z., 2012; Aida-Zade, K. R., & Kuliev, S. Z., 2011; 
Guliyev, S. Z. (2013). 

 
2. Problem Statement 
To illustrate the proposed approach, we consider the problem of controlling a rod 

heating process through lumped point sources. This process can be described by the 
following parabolic type partial differential equation: 

𝑢𝑢! = 𝑎𝑎"	𝑢𝑢## +&𝜗𝜗$(𝑡𝑡)	δ(𝑥𝑥 − 𝑥̅𝑥$)
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, (𝑥𝑥, 𝑡𝑡) ∈ Ω = (0,1) × (0, 𝑇𝑇] (1) 

Here [0,1] is the segment occupied by the rod; 𝑥̅𝑥$ (𝑗𝑗 = 1,2, … ,𝑀𝑀) the points at which 
heat sources with optimizable powers 𝜗𝜗$(𝑡𝑡) (𝑗𝑗 = 1,2, … ,𝑀𝑀) are placed; 𝑀𝑀 the given 
number of heat sources; δ(. ) the one-dimensional generalized Dirac’s function; 𝑎𝑎" the 
thermal diffusivity. Initial and boundary conditions are given in the following form: 

𝑢𝑢(𝑥𝑥, 0) = 𝑔𝑔((𝑥𝑥) ∈ 𝐺𝐺((𝑥𝑥), 𝑥𝑥 ∈ [0,1], (2) 
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Here 𝐺𝐺((. ), 𝐺𝐺'(. ), and 𝐺𝐺"(. ) are point-set mappings, for which each value of the 
argument is associated with a closed bounded set. In this case, the corresponding 
distribution functions Φ((𝑔𝑔(), Φ'(𝑔𝑔'), and Φ"(𝑔𝑔") are given, which characterize the 
distributions of possible values that the initial and boundary conditions can take. 

Assume that thermal sensors are installed at 𝑁𝑁 points of the rod with coordinates 
𝑥𝑥A)	(𝑠𝑠 = 1,2, … ,𝑁𝑁). These sensors realize operative observation and input to the control 
system of information on the state of the heating process at these points, which is 
determined by the vector: 
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where * denotes the transposition sign. Besides, the discrete points of observation 

time 𝜏𝜏, ∈ [0, 𝑇𝑇] (𝑖𝑖 = 0,1, … , 𝑞𝑞) are given, at which it is possible to measure the value of 
the object's state at the points of the rod where the thermal sensors are installed, i.e. 
𝑢𝑢A(𝑡𝑡). 

To control the heat conduction process in the rod, it is required to synthesize a 
regulator that, based on the results of temperature measurements at the points 𝑥𝑥A) (𝑠𝑠 =
1,2, … ,𝑁𝑁) of the rod, would ensure the maintenance of the temperature 𝑢𝑢(𝑥𝑥, 𝑇𝑇) at a 
given level by maintaining the required temperature 𝜗𝜗(𝑡𝑡) in the heat sources. Based 
on technological conditions, we have to impose certain constraints on the values that 
the controls can take: 

𝑉𝑉$ = I𝜗𝜗(𝑡𝑡):	𝜗𝜗-./
$ ≤ 𝜗𝜗$(𝑡𝑡) ≤ 𝜗𝜗-01L, 𝑗𝑗 = 1,2, … ,𝑀𝑀, 

where 𝜗𝜗-./
$  and 𝜗𝜗-01 are given values. Here 𝑉𝑉$ is the set of permissible values of 

the control 𝜗𝜗$(𝑡𝑡) and 𝑉𝑉 = (𝑉𝑉', 𝑉𝑉", … , 𝑉𝑉%)∗. 
The considered feedback control problem for the rod heating process consists in 

choosing permissible values of the sources’ powers as a function of the object’s state 
values 

𝜗𝜗$(𝑡𝑡) = 𝜗𝜗$C𝑢𝑢A(𝑡𝑡)D, 𝜗𝜗$(𝑡𝑡) ∈ 𝑉𝑉$, 𝑗𝑗 = 1,2, … ,𝑀𝑀, 𝑡𝑡 ∈ (0, 𝑇𝑇], (5) 
at the observed points of the rod in order to minimize the given function. In the case 

of non-fixed initial and boundary conditions (2)-(4), the functional can take on the form: 

𝐽𝐽(𝜗𝜗) = N N N𝐼𝐼(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔")	dΦ"(𝑔𝑔")
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 (6) 

𝐼𝐼(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") = N[𝑢𝑢(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") − 𝑢𝑢R(𝑥𝑥)]"	d𝑥𝑥
'

(

 (7) 

where 𝑢𝑢(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") is the solution of the problem (1)-(4), corresponding to 
specifically chosen initial and boundary functions 𝑔𝑔((𝑥𝑥) ∈ 𝐺𝐺((𝑥𝑥), 𝑔𝑔'(𝑡𝑡) ∈ 𝐺𝐺'(𝑡𝑡), and 
𝑔𝑔"(𝑡𝑡) ∈ 𝐺𝐺"(𝑡𝑡), and to permissible values of the controls 𝜗𝜗(𝑡𝑡) ∈ 𝑉𝑉; 𝑢𝑢R(𝑥𝑥) the given 
function characterizing the desired temperature distribution at the final moment of the 
heating process. Functional (6) characterizes the quality of process control on average 
over the sets of all possible initial states 𝐺𝐺((. ) and boundary conditions 𝐺𝐺'(. ), 𝐺𝐺"(. ). 

Let the phase state values of the rod satisfy the inequalities 
𝑢𝑢-./ ≤ 𝑢𝑢(𝑥𝑥, 𝑡𝑡; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") ≤ 𝑢𝑢-01, (𝑥𝑥, 𝑡𝑡) ∈ Ω, 

under all possible permissible values of the controls, as well as initial and boundary 
conditions. Given the points 𝑢𝑢4 (𝑘𝑘 = 0,1,2, … ,𝑚𝑚), we divide the range of all possible 
temperature values [𝑢𝑢-./, 𝑢𝑢-01] into 𝑚𝑚 temperature intervals: 

[𝑢𝑢-./, 𝑢𝑢-01] =U[𝑢𝑢45', 𝑢𝑢4)
6

4&'

, 𝑢𝑢( = 𝑢𝑢-./, 𝑢𝑢6 = 𝑢𝑢-01. 

In the 𝑁𝑁-dimensional phase space 𝑢𝑢A(𝑡𝑡) ∈ 𝑅𝑅* of the current measured temperature 
values at the points of the rod, we introduce the following 𝑁𝑁-dimensional 
parallelepipeds (zones): 

𝑃𝑃,",,!,…,,$ = I(𝑢𝑢', 𝑢𝑢", … , 𝑢𝑢*): 𝑢𝑢,%5' ≤ 𝑢𝑢(𝑥𝑥A), 𝑡𝑡; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") ≤ 𝑢𝑢,%L, 
𝑖𝑖) ∈ {1,2, … ,𝑚𝑚}, 𝑠𝑠 = 1,2, … ,𝑁𝑁, 

(8) 

the total number of which is 𝑚𝑚*. Let Ι denote the 𝑁𝑁-dimensional multi-index Ι =
(𝑖𝑖', 𝑖𝑖", … , 𝑖𝑖*), which determines the number of the corresponding parallelepiped. The 
values of the controls 𝜗𝜗(𝑡𝑡) constant for 𝑡𝑡 ∈ [𝜏𝜏,, 𝜏𝜏,9') are determined depending on the 
last measured value of the observation vector over the current object’s state 𝑢𝑢A(𝑡𝑡), 
namely, depending on the number (multi-index) of the parallelepiped (8), to which the 
last measured (observed) object’s state 𝑢𝑢A(𝑡𝑡) belongs. To each phase parallelepiped 
there corresponds its constant control value: 
𝜗𝜗$(𝑡𝑡) = 𝜗𝜗,",,!,…,,$

$ = 𝜗𝜗:
$ = const			if			𝑢𝑢A(𝑡𝑡) ∈ 𝑃𝑃,",,!,…,,$ = 𝑃𝑃:			while		𝑡𝑡 ∈ [𝜏𝜏,, 𝜏𝜏,9') 

𝑗𝑗 = 1,2, … ,𝑀𝑀. 
(9) 

If the observed object’s state belongs to the border of any zones, we use the value 
of the zone control of that adjacent zone into which the trajectory has passed. The 
number of different values that each source's power can take is equal to the number 
of phase parallelepipeds, i.e., 𝑚𝑚*. 

The possible configuration of phase parallelepipeds when there are only two 
thermal sensors is illustrated in figure 1. The phase parallelepipeds in case of three 
thermal sensors installed may represent cubes, etc. 

It is clear that the controls (9), like (5), assume feedback. In the case of (9), the 
values of the controlled sources' powers during the rod heating process change only 
at the moments when the population of states at the observed points proceeds from 
one phase parallelepiped (8) to another. The total number of optimizable parameters 

𝜗𝜗 = C𝜗𝜗,",,!,…,,$
$ D, 𝑖𝑖) ∈ {1,2, … ,𝑚𝑚}, 𝑠𝑠 = 1,2, … ,𝑁𝑁, 𝑗𝑗 = 1,2, … ,𝑀𝑀, 

is thus equal to 𝑝𝑝 = 𝑀𝑀 ×𝑚𝑚*. 

 
Figure 1. Two-dimensional phase parallelepipeds in the form of rectangles 

They determine the sources' behavior under all possible states of the rod at the 
observed points that can occur under various admissible initial and boundary 
conditions and control actions, on which depends the belonging of the current state 
𝑢𝑢A(𝑡𝑡) to one or another phase parallelepiped (8). Thus, the considered problem of 
controlling the rod heating process on the class of piecewise-constant functions with 
the use of feedback consists of optimizing the 𝑀𝑀 ×𝑚𝑚*-dimensional vector 𝜗𝜗. The 
considered feedback control problem (1)-(9) is a parametric optimal control problem 
for a system with distributed parameters. Its specific features are, firstly, the absence 
of specifically prescribed initial and boundary conditions, secondly, the finite-
dimensionality of the sought-for control vector, and thirdly, the control is formed 
depending on the values of the current state of the process at the measurement points, 
and more precisely, depends on the multi-index defining the parallelepiped (zone) of 
the phase space to which the current measurement values belong. The solution of the 
control problem in the considered formulation (1)-(9) are synthesized zonal controls 
provided that the feedback with the object (process) and the choice of the values of 
control actions is carried out only at specified discrete moments. As examples of 
practical applications of such problems, one can cite the control of many technological 
processes and technical objects. The organization of continuous monitoring of the 
state is impossible, and each observation (feedback) requires specific measures and, 
therefore, costs time and material. 

The formulated problem of synthesizing zonal controls (1)-(9) leads to a finite-
dimensional optimization problem. For the numerical solution of this problem, we 
propose to use the approach described in (Guliyev, S. Z., 2018). To solve the problem 
in the case of a simple design of a set of admissible controls 𝑉𝑉 (for example, a 
parallelepiped, a hyper-sphere, a polyhedron, etc.), it is effective use first-order 
numerical optimization methods such as gradient projection or conjugate gradient 
projection methods. For example, for the conjugate gradient projection method, we 
construct a minimizing sequence I𝜗𝜗;L in this fashion (Vasiliev F.P., 2002; Nocedal, J., 
& Wright, S., 2006): 

𝜗𝜗;9' = 𝜗𝜗; + Ρ(=)C𝜗𝜗; + 𝛼𝛼;	S;D, 𝛼𝛼; > 0, k = 0,1,2, … , S( = −∇𝐽𝐽(𝜗𝜗(), 

S;9' = −∇𝐽𝐽C𝜗𝜗;9'D + 𝛽𝛽	S;, 𝛽𝛽 = n∇𝐽𝐽C𝜗𝜗;9'Dn" n∇𝐽𝐽C𝜗𝜗;Dn"o , 
(10) 

where the index k denotes the iteration number; 𝜗𝜗( ∈ 𝑅𝑅%∙6$ is some admissible 
initial approximation of the optimized vector; ∇𝐽𝐽(𝜗𝜗4) the gradient of the objective 
function of the problem; 𝛼𝛼; the step size taken to the minimum of the objective function 
in the direction of the vector S;; Ρ(=)(. )	 the projection operator onto the admissible set 
𝑉𝑉. If the domain of admissible controls 𝑉𝑉 has a complex boundary and the projection 
operator onto it has no constructive character, then to solve the posed problem, one 
can use methods of sequential unconstrained optimization (for example, methods of 
internal and external penalty functions) with the use of effective methods of 
unconstrained optimization of the first order such as quasi-Newtonian methods 
(Bazaraa, M. S., Sherali, H. D., & Shetty, C. M., 2013). To construct iterative methods 
based on the above optimization methods, it is essential to have exact formulas for the 
components of the objective functional gradients in the space of the optimized 
parameters of the zonal controls. To this purpose, we derive formulas for the gradient 
of the objective function in the space of optimizable parameters. The derivation of these 
formulas is based on the technique for calculating the increment of the objective 
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Fig. 1. Two-dimensional phase parallelepipeds in the form of rectangles
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the total number of which is 𝑚𝑚*. Let Ι denote the 𝑁𝑁-dimensional multi-index Ι =
(𝑖𝑖', 𝑖𝑖", … , 𝑖𝑖*), which determines the number of the corresponding parallelepiped. The 
values of the controls 𝜗𝜗(𝑡𝑡) constant for 𝑡𝑡 ∈ [𝜏𝜏,, 𝜏𝜏,9') are determined depending on the 
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last measured (observed) object’s state 𝑢𝑢A(𝑡𝑡) belongs. To each phase parallelepiped 
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of the zone control of that adjacent zone into which the trajectory has passed. The 
number of different values that each source's power can take is equal to the number 
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The possible configuration of phase parallelepipeds when there are only two 
thermal sensors is illustrated in figure 1. The phase parallelepipeds in case of three 
thermal sensors installed may represent cubes, etc. 

It is clear that the controls (9), like (5), assume feedback. In the case of (9), the 
values of the controlled sources' powers during the rod heating process change only 
at the moments when the population of states at the observed points proceeds from 
one phase parallelepiped (8) to another. The total number of optimizable parameters 
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They determine the sources' behavior under all possible states of the rod at the 
observed points that can occur under various admissible initial and boundary 
conditions and control actions, on which depends the belonging of the current state 
𝑢𝑢A(𝑡𝑡) to one or another phase parallelepiped (8). Thus, the considered problem of 
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the use of feedback consists of optimizing the 𝑀𝑀 ×𝑚𝑚*-dimensional vector 𝜗𝜗. The 
considered feedback control problem (1)-(9) is a parametric optimal control problem 
for a system with distributed parameters. Its specific features are, firstly, the absence 
of specifically prescribed initial and boundary conditions, secondly, the finite-
dimensionality of the sought-for control vector, and thirdly, the control is formed 
depending on the values of the current state of the process at the measurement points, 
and more precisely, depends on the multi-index defining the parallelepiped (zone) of 
the phase space to which the current measurement values belong. The solution of the 
control problem in the considered formulation (1)-(9) are synthesized zonal controls 
provided that the feedback with the object (process) and the choice of the values of 
control actions is carried out only at specified discrete moments. As examples of 
practical applications of such problems, one can cite the control of many technological 
processes and technical objects. The organization of continuous monitoring of the 
state is impossible, and each observation (feedback) requires specific measures and, 
therefore, costs time and material. 

The formulated problem of synthesizing zonal controls (1)-(9) leads to a finite-
dimensional optimization problem. For the numerical solution of this problem, we 
propose to use the approach described in (Guliyev, S. Z., 2018). To solve the problem 
in the case of a simple design of a set of admissible controls 𝑉𝑉 (for example, a 
parallelepiped, a hyper-sphere, a polyhedron, etc.), it is effective use first-order 
numerical optimization methods such as gradient projection or conjugate gradient 
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can use methods of sequential unconstrained optimization (for example, methods of 
internal and external penalty functions) with the use of effective methods of 
unconstrained optimization of the first order such as quasi-Newtonian methods 
(Bazaraa, M. S., Sherali, H. D., & Shetty, C. M., 2013). To construct iterative methods 
based on the above optimization methods, it is essential to have exact formulas for the 
components of the objective functional gradients in the space of the optimized 
parameters of the zonal controls. To this purpose, we derive formulas for the gradient 
of the objective function in the space of optimizable parameters. The derivation of these 
formulas is based on the technique for calculating the increment of the objective 
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They determine the sources' behavior under all possible states of the rod at the 
observed points that can occur under various admissible initial and boundary 
conditions and control actions, on which depends the belonging of the current state 
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for a system with distributed parameters. Its specific features are, firstly, the absence 
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depending on the values of the current state of the process at the measurement points, 
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control actions is carried out only at specified discrete moments. As examples of 
practical applications of such problems, one can cite the control of many technological 
processes and technical objects. The organization of continuous monitoring of the 
state is impossible, and each observation (feedback) requires specific measures and, 
therefore, costs time and material. 

The formulated problem of synthesizing zonal controls (1)-(9) leads to a finite-
dimensional optimization problem. For the numerical solution of this problem, we 
propose to use the approach described in (Guliyev, S. Z., 2018). To solve the problem 
in the case of a simple design of a set of admissible controls 𝑉𝑉 (for example, a 
parallelepiped, a hyper-sphere, a polyhedron, etc.), it is effective use first-order 
numerical optimization methods such as gradient projection or conjugate gradient 
projection methods. For example, for the conjugate gradient projection method, we 
construct a minimizing sequence I𝜗𝜗;L in this fashion (Vasiliev F.P., 2002; Nocedal, J., 
& Wright, S., 2006): 
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where the index k denotes the iteration number; 𝜗𝜗( ∈ 𝑅𝑅%∙6$ is some admissible 
initial approximation of the optimized vector; ∇𝐽𝐽(𝜗𝜗4) the gradient of the objective 
function of the problem; 𝛼𝛼; the step size taken to the minimum of the objective function 
in the direction of the vector S;; Ρ(=)(. )	 the projection operator onto the admissible set 
𝑉𝑉. If the domain of admissible controls 𝑉𝑉 has a complex boundary and the projection 
operator onto it has no constructive character, then to solve the posed problem, one 
can use methods of sequential unconstrained optimization (for example, methods of 
internal and external penalty functions) with the use of effective methods of 
unconstrained optimization of the first order such as quasi-Newtonian methods 
(Bazaraa, M. S., Sherali, H. D., & Shetty, C. M., 2013). To construct iterative methods 
based on the above optimization methods, it is essential to have exact formulas for the 
components of the objective functional gradients in the space of the optimized 
parameters of the zonal controls. To this purpose, we derive formulas for the gradient 
of the objective function in the space of optimizable parameters. The derivation of these 
formulas is based on the technique for calculating the increment of the objective 
functional obtained by incrementing the optimized parameters (Panteleev A.V. and 
Letova T.A., 2015; Itkis, U., 1976; Aida-Zade, K. R., & Kuliev, S. Z., 2008; Stewart, D. 
E., & Anitescu, M., 2010). The complete derivation of these formulas is provided in the 
Appendix. 

Let us denote by ∏ (𝜗𝜗),",,!,…,,$ ⊆ [0, 𝑇𝑇] the time interval during which the vector 𝑢𝑢A(𝑡𝑡) 
belongs to the (𝑖𝑖', 𝑖𝑖", … , 𝑖𝑖*)th phase parallelepiped under the chosen values of controls 
𝜗𝜗(𝑡𝑡) and functions 𝑔𝑔((𝑥𝑥), 𝑔𝑔'(𝑡𝑡), and 𝑔𝑔"(𝑡𝑡). Consider the following boundary-value 
problem adjoint to (1)-(4): 

𝜓𝜓! = −𝑎𝑎"	𝜓𝜓##, (𝑥𝑥, 𝑡𝑡) ∈ (0,1) × [0, 𝑇𝑇), (11) 
𝜓𝜓(𝑥𝑥, 𝑇𝑇) = −2[𝑢𝑢(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") − 𝑢𝑢(𝑥𝑥)], 𝑥𝑥 ∈ [0,1], (12) 
𝜓𝜓(0, 𝑡𝑡) = 𝜓𝜓(1, 𝑡𝑡) = 0,  𝑡𝑡 ∈ [0, 𝑇𝑇). (13) 

Here 𝜓𝜓(𝑥𝑥, 𝑡𝑡) = 𝜓𝜓(𝑥𝑥, 𝑡𝑡; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") is the adjoint variable – the solution of the problem 
(11)-(13) under some specific values of the controls 𝜗𝜗 and initial-boundary functions 
𝑔𝑔((𝑥𝑥), 𝑔𝑔'(𝑡𝑡), and 𝑔𝑔"(𝑡𝑡), to which corresponds the solution 𝑢𝑢(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") of the 
initial- and boundary-value problem (1)-(4). The following theorem holds. 

Theorem. The components of the gradient of the functional in the problem (1)-(4), 
in the space of piecewise constant controls (8) and (9), for an arbitrary control 𝜗𝜗 ∈ 𝑉𝑉 
are determined by the formula: 
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𝑖𝑖) ∈ {1,2, … ,𝑚𝑚}, 𝑠𝑠 = 1,2, … ,𝑁𝑁,  𝑗𝑗 = 1,2, … ,𝑀𝑀, 

(14) 

where  𝜓𝜓(𝑥𝑥, 𝑡𝑡; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") is the solution of the adjoint problem (11)-(13), 
corresponding to the current zonal control. 

Using the formulas for the objective functional gradient (14), we can propose the 
following iterative algorithm for determining piecewise constant synthesizing controls 
based on first-order optimization methods. 

Step 1. For the current admissible value of the vector 𝜗𝜗(𝑡𝑡) and all initial and 
boundary conditions 𝑔𝑔( ∈ 𝐺𝐺(, 𝑔𝑔' ∈ 𝐺𝐺', and 𝑔𝑔" ∈ 𝐺𝐺", we solve the direct initial-and-
boundary value problem concerning (1) by some numerical method and the trajectory 
𝑢𝑢(𝑥𝑥, 𝑡𝑡; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") is identified. 

Step 2. We find the solution to the adjoint initial-and-boundary value problem (11)-
(13) corresponding to the direct problem's solution, and the trajectory 
𝜓𝜓(𝑥𝑥, 𝑡𝑡; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") is identified. 

Step 3. We calculate the components of the objective functional gradient are 
calculated by formulas (14) using any quadrature formula. 

Step 4. The new approximation of the control vector is calculated using first-order 
finite-dimensional optimization numerical procedures using the iterative gradient 
projection method (10).  

If the optimality condition is not met or the iterative process ends (for example, when 
|𝛼𝛼4| < 𝜀𝜀' or w𝐽𝐽C𝜗𝜗;9'D − 𝐽𝐽C𝜗𝜗;Dw < 𝜀𝜀", where 𝜀𝜀' and 𝜀𝜀" are given positive values), steps 1-
4 are repeated. 

The control system's quality with the use of zonal control actions described above 
is significantly affected by choice of both the number and the zones' structure (8) 
themselves. An increase in the number of zones due to their refinement can only 
decrease the objective function value. On the other hand, an increase in the number 
of zones leads to the fact that control actions can change their values more often in 
time, and, therefore, on the one hand, the robustness of the control system 
deteriorates; on the other hand, this leads to rapid wear and failure of the actuating 
mechanisms. Conversely, an increase in the size of the zones, i.e., a decrease in their 
number, on the one hand, worsens the controllability of the object, and with a small 
number of them, the object may become completely uncontrollable. On the other hand, 
this increases the objective functional value, i.e., the quality of control deteriorates. 
Taking these issues into account, the following approach is recommended, in which at 
first an initial value of 𝑚𝑚 is arbitrarily selected and some zones (8) are assigned. Having 
solved the above control synthesis problem, we can analyze the computed optimal 
zonal values of the controls for all neighboring zones. If the optimized parameters in 
any two adjacent zones differ by a sufficiently small amount, then these adjacent zones 
can be combined into one, thus reducing the number 𝑚𝑚, the number of switchings of 
the control. If the optimized parameters in two adjacent zones differ significantly, then, 
on the contrary, each of these adjacent zones should be divided, for example, into two 
zones, i.e., increase the number 𝑚𝑚, and again solve the considered control synthesis 
problem. An increase in the number of zones should be carried out until the objective 
functional value ceases to change (decrease) significantly. 

Remark 1. The frequency of observation times 𝜏𝜏, ∈ [0, 𝑇𝑇] (𝑖𝑖 = 0,1, … , 𝑞𝑞) should be 
such that while the object's state belongs to any zone, at least one observation is made. 
If this condition is not met, the zones through which the system's trajectory did not pass 
under all possible initial and boundary conditions, as well as the zones through which 
no state measurements were carried out, will not be assigned the values of the zonal 
control parameters. 

Remark 2. The main issue with the proposed approach to feedback is the high-
dimensionality of the optimizable control vector. The optimizable control vector's 
dimension represents a power function with respect to the number 𝑚𝑚 of temperature 
intervals within the range [𝑢𝑢-./, 𝑢𝑢-01] of all possible temperature values of the object, 
and an exponential function with respect to the number of thermal sensors installed 
along the length of the rod. Besides that, the number of thermal sources also affects 
the optimizable control vector (as a multiplication factor of the term 𝑚𝑚*). It is known 
that one of the basic problems of numerical optimization techniques (of any order) is 
the computation of optimal solutions of high-dimensional objective functions. This is 
because the optimization of high-dimensional objective functions is computationally 
expensive and cost involved, especially when seeking the global optimal solution. 
Many parameters characterize these kinds of problems, and many iterations and 
arithmetic operations are usually needed for evaluations of these objective functions. 
In order to speed up the evaluation of the objective functional in the posed optimal 
feedback control problem, under the given value of the control vector, we can make 
use of the inherent concurrency present in the form of the objective functional. Namely, 
because the evaluation of the objective functional involves the computation of definite 
integral (6), knowing that the elements of the sets 𝐺𝐺(, 𝐺𝐺', and 𝐺𝐺" are independent, we 
can efficiently parallelize its computation by assigning to each thread (or process) a 
specific triplet of functions 𝑔𝑔(, 𝑔𝑔', and 𝑔𝑔", and computing the innermost definite integral 
in (6) with sufficiently high accuracy. The innermost integration can also be parallelized 
if we preliminarily slice the interval [0,1] into several non-overlapping subintervals and 
computing the definite integral over all these subintervals concurrently (Deng, Y., 
2012). The same concurrency pattern also applies to evaluating the gradient of the 
objective functional by the formula (14). Note that the solution to both the direct and 
adjoint initial-and-boundary value problems with respect to the parabolic type 
differential equation can be easily parallelized, too, if we employ an explicit finite 
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functional obtained by incrementing the optimized parameters (Panteleev A.V. and 
Letova T.A., 2015; Itkis, U., 1976; Aida-Zade, K. R., & Kuliev, S. Z., 2008; Stewart, D. 
E., & Anitescu, M., 2010). The complete derivation of these formulas is provided in the 
Appendix. 

Let us denote by ∏ (𝜗𝜗),",,!,…,,$ ⊆ [0, 𝑇𝑇] the time interval during which the vector 𝑢𝑢A(𝑡𝑡) 
belongs to the (𝑖𝑖', 𝑖𝑖", … , 𝑖𝑖*)th phase parallelepiped under the chosen values of controls 
𝜗𝜗(𝑡𝑡) and functions 𝑔𝑔((𝑥𝑥), 𝑔𝑔'(𝑡𝑡), and 𝑔𝑔"(𝑡𝑡). Consider the following boundary-value 
problem adjoint to (1)-(4): 

𝜓𝜓! = −𝑎𝑎"	𝜓𝜓##, (𝑥𝑥, 𝑡𝑡) ∈ (0,1) × [0, 𝑇𝑇), (11) 
𝜓𝜓(𝑥𝑥, 𝑇𝑇) = −2[𝑢𝑢(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") − 𝑢𝑢(𝑥𝑥)], 𝑥𝑥 ∈ [0,1], (12) 
𝜓𝜓(0, 𝑡𝑡) = 𝜓𝜓(1, 𝑡𝑡) = 0,  𝑡𝑡 ∈ [0, 𝑇𝑇). (13) 

Here 𝜓𝜓(𝑥𝑥, 𝑡𝑡) = 𝜓𝜓(𝑥𝑥, 𝑡𝑡; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") is the adjoint variable – the solution of the problem 
(11)-(13) under some specific values of the controls 𝜗𝜗 and initial-boundary functions 
𝑔𝑔((𝑥𝑥), 𝑔𝑔'(𝑡𝑡), and 𝑔𝑔"(𝑡𝑡), to which corresponds the solution 𝑢𝑢(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") of the 
initial- and boundary-value problem (1)-(4). The following theorem holds. 

Theorem. The components of the gradient of the functional in the problem (1)-(4), 
in the space of piecewise constant controls (8) and (9), for an arbitrary control 𝜗𝜗 ∈ 𝑉𝑉 
are determined by the formula: 

𝜕𝜕𝜕𝜕(𝜗𝜗)
𝜕𝜕𝜗𝜗,",,!,…,,$

$

= N N N N −𝜓𝜓C𝑥𝑥$, 𝑡𝑡; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔"D	d𝑡𝑡
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, 

𝑖𝑖) ∈ {1,2, … ,𝑚𝑚}, 𝑠𝑠 = 1,2, … ,𝑁𝑁,  𝑗𝑗 = 1,2, … ,𝑀𝑀, 

(14) 

where  𝜓𝜓(𝑥𝑥, 𝑡𝑡; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") is the solution of the adjoint problem (11)-(13), 
corresponding to the current zonal control. 

Using the formulas for the objective functional gradient (14), we can propose the 
following iterative algorithm for determining piecewise constant synthesizing controls 
based on first-order optimization methods. 

Step 1. For the current admissible value of the vector 𝜗𝜗(𝑡𝑡) and all initial and 
boundary conditions 𝑔𝑔( ∈ 𝐺𝐺(, 𝑔𝑔' ∈ 𝐺𝐺', and 𝑔𝑔" ∈ 𝐺𝐺", we solve the direct initial-and-
boundary value problem concerning (1) by some numerical method and the trajectory 
𝑢𝑢(𝑥𝑥, 𝑡𝑡; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") is identified. 

Step 2. We find the solution to the adjoint initial-and-boundary value problem (11)-
(13) corresponding to the direct problem's solution, and the trajectory 
𝜓𝜓(𝑥𝑥, 𝑡𝑡; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") is identified. 

Step 3. We calculate the components of the objective functional gradient are 
calculated by formulas (14) using any quadrature formula. 

Step 4. The new approximation of the control vector is calculated using first-order 
finite-dimensional optimization numerical procedures using the iterative gradient 
projection method (10).  

If the optimality condition is not met or the iterative process ends (for example, when 
|𝛼𝛼4| < 𝜀𝜀' or w𝐽𝐽C𝜗𝜗;9'D − 𝐽𝐽C𝜗𝜗;Dw < 𝜀𝜀", where 𝜀𝜀' and 𝜀𝜀" are given positive values), steps 1-
4 are repeated. 

The control system's quality with the use of zonal control actions described above 
is significantly affected by choice of both the number and the zones' structure (8) 
themselves. An increase in the number of zones due to their refinement can only 
decrease the objective function value. On the other hand, an increase in the number 
of zones leads to the fact that control actions can change their values more often in 
time, and, therefore, on the one hand, the robustness of the control system 
deteriorates; on the other hand, this leads to rapid wear and failure of the actuating 
mechanisms. Conversely, an increase in the size of the zones, i.e., a decrease in their 
number, on the one hand, worsens the controllability of the object, and with a small 
number of them, the object may become completely uncontrollable. On the other hand, 
this increases the objective functional value, i.e., the quality of control deteriorates. 
Taking these issues into account, the following approach is recommended, in which at 
first an initial value of 𝑚𝑚 is arbitrarily selected and some zones (8) are assigned. Having 
solved the above control synthesis problem, we can analyze the computed optimal 
zonal values of the controls for all neighboring zones. If the optimized parameters in 
any two adjacent zones differ by a sufficiently small amount, then these adjacent zones 
can be combined into one, thus reducing the number 𝑚𝑚, the number of switchings of 
the control. If the optimized parameters in two adjacent zones differ significantly, then, 
on the contrary, each of these adjacent zones should be divided, for example, into two 
zones, i.e., increase the number 𝑚𝑚, and again solve the considered control synthesis 
problem. An increase in the number of zones should be carried out until the objective 
functional value ceases to change (decrease) significantly. 

Remark 1. The frequency of observation times 𝜏𝜏, ∈ [0, 𝑇𝑇] (𝑖𝑖 = 0,1, … , 𝑞𝑞) should be 
such that while the object's state belongs to any zone, at least one observation is made. 
If this condition is not met, the zones through which the system's trajectory did not pass 
under all possible initial and boundary conditions, as well as the zones through which 
no state measurements were carried out, will not be assigned the values of the zonal 
control parameters. 

Remark 2. The main issue with the proposed approach to feedback is the high-
dimensionality of the optimizable control vector. The optimizable control vector's 
dimension represents a power function with respect to the number 𝑚𝑚 of temperature 
intervals within the range [𝑢𝑢-./, 𝑢𝑢-01] of all possible temperature values of the object, 
and an exponential function with respect to the number of thermal sensors installed 
along the length of the rod. Besides that, the number of thermal sources also affects 
the optimizable control vector (as a multiplication factor of the term 𝑚𝑚*). It is known 
that one of the basic problems of numerical optimization techniques (of any order) is 
the computation of optimal solutions of high-dimensional objective functions. This is 
because the optimization of high-dimensional objective functions is computationally 
expensive and cost involved, especially when seeking the global optimal solution. 
Many parameters characterize these kinds of problems, and many iterations and 
arithmetic operations are usually needed for evaluations of these objective functions. 
In order to speed up the evaluation of the objective functional in the posed optimal 
feedback control problem, under the given value of the control vector, we can make 
use of the inherent concurrency present in the form of the objective functional. Namely, 
because the evaluation of the objective functional involves the computation of definite 
integral (6), knowing that the elements of the sets 𝐺𝐺(, 𝐺𝐺', and 𝐺𝐺" are independent, we 
can efficiently parallelize its computation by assigning to each thread (or process) a 
specific triplet of functions 𝑔𝑔(, 𝑔𝑔', and 𝑔𝑔", and computing the innermost definite integral 
in (6) with sufficiently high accuracy. The innermost integration can also be parallelized 
if we preliminarily slice the interval [0,1] into several non-overlapping subintervals and 
computing the definite integral over all these subintervals concurrently (Deng, Y., 
2012). The same concurrency pattern also applies to evaluating the gradient of the 
objective functional by the formula (14). Note that the solution to both the direct and 
adjoint initial-and-boundary value problems with respect to the parabolic type 
differential equation can be easily parallelized, too, if we employ an explicit finite 
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functional obtained by incrementing the optimized parameters (Panteleev A.V. and 
Letova T.A., 2015; Itkis, U., 1976; Aida-Zade, K. R., & Kuliev, S. Z., 2008; Stewart, D. 
E., & Anitescu, M., 2010). The complete derivation of these formulas is provided in the 
Appendix. 

Let us denote by ∏ (𝜗𝜗),",,!,…,,$ ⊆ [0, 𝑇𝑇] the time interval during which the vector 𝑢𝑢A(𝑡𝑡) 
belongs to the (𝑖𝑖', 𝑖𝑖", … , 𝑖𝑖*)th phase parallelepiped under the chosen values of controls 
𝜗𝜗(𝑡𝑡) and functions 𝑔𝑔((𝑥𝑥), 𝑔𝑔'(𝑡𝑡), and 𝑔𝑔"(𝑡𝑡). Consider the following boundary-value 
problem adjoint to (1)-(4): 

𝜓𝜓! = −𝑎𝑎"	𝜓𝜓##, (𝑥𝑥, 𝑡𝑡) ∈ (0,1) × [0, 𝑇𝑇), (11) 
𝜓𝜓(𝑥𝑥, 𝑇𝑇) = −2[𝑢𝑢(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") − 𝑢𝑢(𝑥𝑥)], 𝑥𝑥 ∈ [0,1], (12) 
𝜓𝜓(0, 𝑡𝑡) = 𝜓𝜓(1, 𝑡𝑡) = 0,  𝑡𝑡 ∈ [0, 𝑇𝑇). (13) 

Here 𝜓𝜓(𝑥𝑥, 𝑡𝑡) = 𝜓𝜓(𝑥𝑥, 𝑡𝑡; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") is the adjoint variable – the solution of the problem 
(11)-(13) under some specific values of the controls 𝜗𝜗 and initial-boundary functions 
𝑔𝑔((𝑥𝑥), 𝑔𝑔'(𝑡𝑡), and 𝑔𝑔"(𝑡𝑡), to which corresponds the solution 𝑢𝑢(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") of the 
initial- and boundary-value problem (1)-(4). The following theorem holds. 

Theorem. The components of the gradient of the functional in the problem (1)-(4), 
in the space of piecewise constant controls (8) and (9), for an arbitrary control 𝜗𝜗 ∈ 𝑉𝑉 
are determined by the formula: 

𝜕𝜕𝜕𝜕(𝜗𝜗)
𝜕𝜕𝜗𝜗,",,!,…,,$
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, 

𝑖𝑖) ∈ {1,2, … ,𝑚𝑚}, 𝑠𝑠 = 1,2, … ,𝑁𝑁,  𝑗𝑗 = 1,2, … ,𝑀𝑀, 

(14) 

where  𝜓𝜓(𝑥𝑥, 𝑡𝑡; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") is the solution of the adjoint problem (11)-(13), 
corresponding to the current zonal control. 

Using the formulas for the objective functional gradient (14), we can propose the 
following iterative algorithm for determining piecewise constant synthesizing controls 
based on first-order optimization methods. 

Step 1. For the current admissible value of the vector 𝜗𝜗(𝑡𝑡) and all initial and 
boundary conditions 𝑔𝑔( ∈ 𝐺𝐺(, 𝑔𝑔' ∈ 𝐺𝐺', and 𝑔𝑔" ∈ 𝐺𝐺", we solve the direct initial-and-
boundary value problem concerning (1) by some numerical method and the trajectory 
𝑢𝑢(𝑥𝑥, 𝑡𝑡; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") is identified. 

Step 2. We find the solution to the adjoint initial-and-boundary value problem (11)-
(13) corresponding to the direct problem's solution, and the trajectory 
𝜓𝜓(𝑥𝑥, 𝑡𝑡; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") is identified. 

Step 3. We calculate the components of the objective functional gradient are 
calculated by formulas (14) using any quadrature formula. 

Step 4. The new approximation of the control vector is calculated using first-order 
finite-dimensional optimization numerical procedures using the iterative gradient 
projection method (10).  

If the optimality condition is not met or the iterative process ends (for example, when 
|𝛼𝛼4| < 𝜀𝜀' or w𝐽𝐽C𝜗𝜗;9'D − 𝐽𝐽C𝜗𝜗;Dw < 𝜀𝜀", where 𝜀𝜀' and 𝜀𝜀" are given positive values), steps 1-
4 are repeated. 

The control system's quality with the use of zonal control actions described above 
is significantly affected by choice of both the number and the zones' structure (8) 
themselves. An increase in the number of zones due to their refinement can only 
decrease the objective function value. On the other hand, an increase in the number 
of zones leads to the fact that control actions can change their values more often in 
time, and, therefore, on the one hand, the robustness of the control system 
deteriorates; on the other hand, this leads to rapid wear and failure of the actuating 
mechanisms. Conversely, an increase in the size of the zones, i.e., a decrease in their 
number, on the one hand, worsens the controllability of the object, and with a small 
number of them, the object may become completely uncontrollable. On the other hand, 
this increases the objective functional value, i.e., the quality of control deteriorates. 
Taking these issues into account, the following approach is recommended, in which at 
first an initial value of 𝑚𝑚 is arbitrarily selected and some zones (8) are assigned. Having 
solved the above control synthesis problem, we can analyze the computed optimal 
zonal values of the controls for all neighboring zones. If the optimized parameters in 
any two adjacent zones differ by a sufficiently small amount, then these adjacent zones 
can be combined into one, thus reducing the number 𝑚𝑚, the number of switchings of 
the control. If the optimized parameters in two adjacent zones differ significantly, then, 
on the contrary, each of these adjacent zones should be divided, for example, into two 
zones, i.e., increase the number 𝑚𝑚, and again solve the considered control synthesis 
problem. An increase in the number of zones should be carried out until the objective 
functional value ceases to change (decrease) significantly. 

Remark 1. The frequency of observation times 𝜏𝜏, ∈ [0, 𝑇𝑇] (𝑖𝑖 = 0,1, … , 𝑞𝑞) should be 
such that while the object's state belongs to any zone, at least one observation is made. 
If this condition is not met, the zones through which the system's trajectory did not pass 
under all possible initial and boundary conditions, as well as the zones through which 
no state measurements were carried out, will not be assigned the values of the zonal 
control parameters. 

Remark 2. The main issue with the proposed approach to feedback is the high-
dimensionality of the optimizable control vector. The optimizable control vector's 
dimension represents a power function with respect to the number 𝑚𝑚 of temperature 
intervals within the range [𝑢𝑢-./, 𝑢𝑢-01] of all possible temperature values of the object, 
and an exponential function with respect to the number of thermal sensors installed 
along the length of the rod. Besides that, the number of thermal sources also affects 
the optimizable control vector (as a multiplication factor of the term 𝑚𝑚*). It is known 
that one of the basic problems of numerical optimization techniques (of any order) is 
the computation of optimal solutions of high-dimensional objective functions. This is 
because the optimization of high-dimensional objective functions is computationally 
expensive and cost involved, especially when seeking the global optimal solution. 
Many parameters characterize these kinds of problems, and many iterations and 
arithmetic operations are usually needed for evaluations of these objective functions. 
In order to speed up the evaluation of the objective functional in the posed optimal 
feedback control problem, under the given value of the control vector, we can make 
use of the inherent concurrency present in the form of the objective functional. Namely, 
because the evaluation of the objective functional involves the computation of definite 
integral (6), knowing that the elements of the sets 𝐺𝐺(, 𝐺𝐺', and 𝐺𝐺" are independent, we 
can efficiently parallelize its computation by assigning to each thread (or process) a 
specific triplet of functions 𝑔𝑔(, 𝑔𝑔', and 𝑔𝑔", and computing the innermost definite integral 
in (6) with sufficiently high accuracy. The innermost integration can also be parallelized 
if we preliminarily slice the interval [0,1] into several non-overlapping subintervals and 
computing the definite integral over all these subintervals concurrently (Deng, Y., 
2012). The same concurrency pattern also applies to evaluating the gradient of the 
objective functional by the formula (14). Note that the solution to both the direct and 
adjoint initial-and-boundary value problems with respect to the parabolic type 
differential equation can be easily parallelized, too, if we employ an explicit finite 
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difference scheme to their solution (Deng, Y., 2012;  Dongarra, J., Foster, I., Fox, G., 
Gropp, W., Kennedy, K., Torczon, L., & White, A., 2003). Even if employ implicit finite 
difference schemes to their solution, we will still be able to parallelize computations 
using efficient iterative methods of solution to linear systems with banded coefficient 
matrices. 

 
3. Conclusion 
In this work, we have obtained formulas for the gradient of the objective function in 

synthesizing optimal zonal control of an object described by a system of differential 
equations with partial derivatives given inaccurate information on the values of the 
initial and boundary conditions of the object. The formulas obtained make it possible 
to apply first-order finite-dimensional optimization methods for the numerical solution 
of the problems under consideration. It is known that the technical implementation of 
piecewise-constant synthesizing functions with sufficiently high accuracy is relatively 
simple. Therefore, the proposed approach to solving optimal control synthesis 
problems can find wide application in automated systems and automatic control of 
systems in the presence of inaccurate information on the object's state. The application 
objects can be many controlled mechanical systems, technological processes 
described by systems of nonlinear differential equations. Note that the proposed 
approach can easily be extended to two- and three-dimensional heat conduction 
processes. 

 
Appendix 
Without loss of generality of the reasoning given below, to avoid the 

cumbersomeness of the resulting formulas, we consider the case when there is only 
one control function, i.e., 𝑀𝑀 = 1 (we will henceforth omit the superscript of the function 
𝜗𝜗'(𝑡𝑡), i.e., denote it by 𝜗𝜗(𝑡𝑡)). In further calculations, the following remark is important. 
The initial and boundary conditions (2)-(4), i.e., the elements of the sets 𝐺𝐺((𝑥𝑥), 𝐺𝐺'(𝑡𝑡), 
and	𝐺𝐺"(𝑡𝑡) are independent. Then the gradient of the functional satisfies the formula 

∇𝐽𝐽(𝜗𝜗) = N N N∇𝐼𝐼(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔")	dΦ"(𝑔𝑔")
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Therefore, starting now, to obtain formulas for ∇𝐽𝐽(𝜗𝜗), we obtain formulas for the 
gradient of 𝐼𝐼(. ) with respect to individual terms 𝑔𝑔((𝑥𝑥), 𝑔𝑔'(𝑡𝑡), and 𝑔𝑔"(𝑡𝑡), (i.e., assuming 
that each of the sets 𝐺𝐺((𝑥𝑥), 𝐺𝐺'(𝑡𝑡), and 𝐺𝐺"(𝑡𝑡) consists of a single term). For this purpose, 
we obtain the formula for the increment of the functional (7), obtained by incrementing 
the parameter value 𝜗𝜗 = C𝜗𝜗,",,!,…,,$D = C𝜗𝜗', 𝜗𝜗", … , 𝜗𝜗AD

∗, 	𝑖𝑖) ∈ {1,2, … ,𝑚𝑚}, 𝑠𝑠 = 1,2, … ,𝑁𝑁. 
Suppose that one of the optimizable parameters of the vector 𝜗𝜗 is incremented, for 
example, 𝜗𝜗4, i.e.  

𝜗̅𝜗 = 𝜗𝜗 + Δ𝜗𝜗, Δ𝜗𝜗 = (0,0, … ,0, Δ𝜗𝜗4, 0, … ,0)∗, 
where 𝜗̅𝜗 denotes the perturbed control action. 
To express the increment of the functional (7) in terms of the increment of the control 

action, Δ𝜗𝜗, we introduce the Lagrangian for the considered problem: 

𝐿𝐿(𝑢𝑢, 𝜓𝜓; 𝜗𝜗) = N[𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢R(𝑥𝑥)]"	d𝑥𝑥
'

(

+ N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)	δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓(𝑥𝑥, 𝑡𝑡)	d𝑥𝑥
'

(
d𝑡𝑡

B

(
 

(15) 

where 𝑢𝑢(𝑥𝑥, 𝑇𝑇) = 𝑢𝑢(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") denotes the solution of PDE  
𝑢𝑢! = 𝑎𝑎"𝑢𝑢## + 𝜗𝜗(𝑡𝑡)	δ(𝑥𝑥 − 𝑥̅𝑥) (16) 

at the final moment of time 𝑡𝑡 = 𝑇𝑇, satisfying the initial and boundary conditions  
𝑢𝑢(𝑥𝑥, 0) = 𝑔𝑔((𝑥𝑥), 𝑥𝑥 ∈ [0,1], (17) 
𝑢𝑢(0, 𝑡𝑡) = 𝑔𝑔'(𝑡𝑡), 𝑡𝑡 ∈ [0, 𝑇𝑇], (18) 
𝑢𝑢(1, 𝑡𝑡) = 𝑔𝑔"(𝑡𝑡), 𝑡𝑡 ∈ [0, 𝑇𝑇], (19) 

and 𝜓𝜓 = 𝜓𝜓(𝑥𝑥, 𝑡𝑡) is yet an arbitrary smooth function. 
Assume that at the moment of time 𝜏𝜏4, the measurements taken at the thermal 

sensors indicate that the object’s state belongs to the 𝑘𝑘th zone, while at any last 
moments of time, 𝜏𝜏(, 𝜏𝜏', …, 𝜏𝜏45', the object’s state does not belong to the 𝑘𝑘th zone. 
Then we can rewrite (15) as follows: 

𝐿𝐿(𝑢𝑢, 𝜓𝜓; 𝜃𝜃) = N [𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢R(𝑥𝑥)]"	d𝑥𝑥
'

(

+N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)

(
+ 

+N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
+ 

+N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

C)*+
 

(20) 

Here 𝜏𝜏49D denotes the last moment at which measurements taken at the thermal 
sensors indicate that the object’s state belongs to the 𝑘𝑘th zone.  

Let’s denote by 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) + ∆𝑢𝑢(𝑥𝑥, 𝑡𝑡) the solution of the PDE (16) 
corresponding to the perturbed control 𝜗̅𝜗 and satisfying the same initial and boundary 
conditions (17)-(19). We assume that the increment Δ𝜗𝜗 of the control is so small (which 
ultimately is due to the definition of the derivative) that the measurements were taken 
at the thermal sensors during the time interval [𝜏𝜏4, 𝜏𝜏49D] still indicates that the object’s 
state belongs to the 𝑘𝑘th zone. Under these assumptions, the Lagrangian (20) for the 
perturbed solution 𝑢𝑢}(𝑥𝑥, 𝑡𝑡) takes on the following form: 

𝐿𝐿(𝑢𝑢}, 𝜓𝜓; 𝜗̅𝜗) = N [𝑢𝑢}(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢R(𝑥𝑥)]"	d𝑥𝑥
'

(

+N N [𝑢𝑢}! − 𝑎𝑎"𝑢𝑢}## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)

(
+ 

+N N [𝑢𝑢}! − 𝑎𝑎"𝑢𝑢}## − (𝜗𝜗4 + Δ𝜗𝜗4)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
+ 

+N N [𝑢𝑢}! − 𝑎𝑎"𝑢𝑢}## − 𝜗𝜗(𝑡𝑡)𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

C)*+
 

(21) 

Subtracting (21) from (20) produces the increment of the Lagrangian: 
Δ𝐿𝐿 = 𝐿𝐿(𝑢𝑢}, 𝜓𝜓; 𝜗̅𝜗) − 𝐿𝐿(𝑢𝑢, 𝜓𝜓; 𝜗𝜗)

= N [𝑢𝑢(𝑥𝑥, 𝑇𝑇) + Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢R(𝑥𝑥)]"	d𝑥𝑥
'

(
−N [𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢R(𝑥𝑥)]"	d𝑥𝑥

'

(
+ 

+N N [𝑢𝑢! + Δ𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝑎𝑎"Δ𝑢𝑢## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)

(
+ 

+N N [𝑢𝑢! + Δ𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝑎𝑎"Δ𝑢𝑢## − (𝜗𝜗4 + Δ𝜗𝜗4)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
+ 
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difference scheme to their solution (Deng, Y., 2012;  Dongarra, J., Foster, I., Fox, G., 
Gropp, W., Kennedy, K., Torczon, L., & White, A., 2003). Even if employ implicit finite 
difference schemes to their solution, we will still be able to parallelize computations 
using efficient iterative methods of solution to linear systems with banded coefficient 
matrices. 

 
3. Conclusion 
In this work, we have obtained formulas for the gradient of the objective function in 

synthesizing optimal zonal control of an object described by a system of differential 
equations with partial derivatives given inaccurate information on the values of the 
initial and boundary conditions of the object. The formulas obtained make it possible 
to apply first-order finite-dimensional optimization methods for the numerical solution 
of the problems under consideration. It is known that the technical implementation of 
piecewise-constant synthesizing functions with sufficiently high accuracy is relatively 
simple. Therefore, the proposed approach to solving optimal control synthesis 
problems can find wide application in automated systems and automatic control of 
systems in the presence of inaccurate information on the object's state. The application 
objects can be many controlled mechanical systems, technological processes 
described by systems of nonlinear differential equations. Note that the proposed 
approach can easily be extended to two- and three-dimensional heat conduction 
processes. 

 
Appendix 
Without loss of generality of the reasoning given below, to avoid the 

cumbersomeness of the resulting formulas, we consider the case when there is only 
one control function, i.e., 𝑀𝑀 = 1 (we will henceforth omit the superscript of the function 
𝜗𝜗'(𝑡𝑡), i.e., denote it by 𝜗𝜗(𝑡𝑡)). In further calculations, the following remark is important. 
The initial and boundary conditions (2)-(4), i.e., the elements of the sets 𝐺𝐺((𝑥𝑥), 𝐺𝐺'(𝑡𝑡), 
and	𝐺𝐺"(𝑡𝑡) are independent. Then the gradient of the functional satisfies the formula 

∇𝐽𝐽(𝜗𝜗) = N N N∇𝐼𝐼(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔")	dΦ"(𝑔𝑔")
	

3!

dΦ'(𝑔𝑔')
	

3"

dΦ((𝑔𝑔()
	

3#

 

Therefore, starting now, to obtain formulas for ∇𝐽𝐽(𝜗𝜗), we obtain formulas for the 
gradient of 𝐼𝐼(. ) with respect to individual terms 𝑔𝑔((𝑥𝑥), 𝑔𝑔'(𝑡𝑡), and 𝑔𝑔"(𝑡𝑡), (i.e., assuming 
that each of the sets 𝐺𝐺((𝑥𝑥), 𝐺𝐺'(𝑡𝑡), and 𝐺𝐺"(𝑡𝑡) consists of a single term). For this purpose, 
we obtain the formula for the increment of the functional (7), obtained by incrementing 
the parameter value 𝜗𝜗 = C𝜗𝜗,",,!,…,,$D = C𝜗𝜗', 𝜗𝜗", … , 𝜗𝜗AD

∗, 	𝑖𝑖) ∈ {1,2, … ,𝑚𝑚}, 𝑠𝑠 = 1,2, … ,𝑁𝑁. 
Suppose that one of the optimizable parameters of the vector 𝜗𝜗 is incremented, for 
example, 𝜗𝜗4, i.e.  

𝜗̅𝜗 = 𝜗𝜗 + Δ𝜗𝜗, Δ𝜗𝜗 = (0,0, … ,0, Δ𝜗𝜗4, 0, … ,0)∗, 
where 𝜗̅𝜗 denotes the perturbed control action. 
To express the increment of the functional (7) in terms of the increment of the control 

action, Δ𝜗𝜗, we introduce the Lagrangian for the considered problem: 

𝐿𝐿(𝑢𝑢, 𝜓𝜓; 𝜗𝜗) = N[𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢R(𝑥𝑥)]"	d𝑥𝑥
'

(

+ N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)	δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓(𝑥𝑥, 𝑡𝑡)	d𝑥𝑥
'

(
d𝑡𝑡

B

(
 

(15) 

where 𝑢𝑢(𝑥𝑥, 𝑇𝑇) = 𝑢𝑢(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") denotes the solution of PDE  
𝑢𝑢! = 𝑎𝑎"𝑢𝑢## + 𝜗𝜗(𝑡𝑡)	δ(𝑥𝑥 − 𝑥̅𝑥) (16) 

at the final moment of time 𝑡𝑡 = 𝑇𝑇, satisfying the initial and boundary conditions  
𝑢𝑢(𝑥𝑥, 0) = 𝑔𝑔((𝑥𝑥), 𝑥𝑥 ∈ [0,1], (17) 
𝑢𝑢(0, 𝑡𝑡) = 𝑔𝑔'(𝑡𝑡), 𝑡𝑡 ∈ [0, 𝑇𝑇], (18) 
𝑢𝑢(1, 𝑡𝑡) = 𝑔𝑔"(𝑡𝑡), 𝑡𝑡 ∈ [0, 𝑇𝑇], (19) 

and 𝜓𝜓 = 𝜓𝜓(𝑥𝑥, 𝑡𝑡) is yet an arbitrary smooth function. 
Assume that at the moment of time 𝜏𝜏4, the measurements taken at the thermal 

sensors indicate that the object’s state belongs to the 𝑘𝑘th zone, while at any last 
moments of time, 𝜏𝜏(, 𝜏𝜏', …, 𝜏𝜏45', the object’s state does not belong to the 𝑘𝑘th zone. 
Then we can rewrite (15) as follows: 

𝐿𝐿(𝑢𝑢, 𝜓𝜓; 𝜃𝜃) = N [𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢R(𝑥𝑥)]"	d𝑥𝑥
'

(

+N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)

(
+ 

+N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
+ 

+N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

C)*+
 

(20) 

Here 𝜏𝜏49D denotes the last moment at which measurements taken at the thermal 
sensors indicate that the object’s state belongs to the 𝑘𝑘th zone.  

Let’s denote by 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) + ∆𝑢𝑢(𝑥𝑥, 𝑡𝑡) the solution of the PDE (16) 
corresponding to the perturbed control 𝜗̅𝜗 and satisfying the same initial and boundary 
conditions (17)-(19). We assume that the increment Δ𝜗𝜗 of the control is so small (which 
ultimately is due to the definition of the derivative) that the measurements were taken 
at the thermal sensors during the time interval [𝜏𝜏4, 𝜏𝜏49D] still indicates that the object’s 
state belongs to the 𝑘𝑘th zone. Under these assumptions, the Lagrangian (20) for the 
perturbed solution 𝑢𝑢}(𝑥𝑥, 𝑡𝑡) takes on the following form: 

𝐿𝐿(𝑢𝑢}, 𝜓𝜓; 𝜗̅𝜗) = N [𝑢𝑢}(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢R(𝑥𝑥)]"	d𝑥𝑥
'

(

+N N [𝑢𝑢}! − 𝑎𝑎"𝑢𝑢}## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)

(
+ 

+N N [𝑢𝑢}! − 𝑎𝑎"𝑢𝑢}## − (𝜗𝜗4 + Δ𝜗𝜗4)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
+ 

+N N [𝑢𝑢}! − 𝑎𝑎"𝑢𝑢}## − 𝜗𝜗(𝑡𝑡)𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

C)*+
 

(21) 

Subtracting (21) from (20) produces the increment of the Lagrangian: 
Δ𝐿𝐿 = 𝐿𝐿(𝑢𝑢}, 𝜓𝜓; 𝜗̅𝜗) − 𝐿𝐿(𝑢𝑢, 𝜓𝜓; 𝜗𝜗)

= N [𝑢𝑢(𝑥𝑥, 𝑇𝑇) + Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢R(𝑥𝑥)]"	d𝑥𝑥
'

(
−N [𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢R(𝑥𝑥)]"	d𝑥𝑥

'

(
+ 

+N N [𝑢𝑢! + Δ𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝑎𝑎"Δ𝑢𝑢## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)

(
+ 

+N N [𝑢𝑢! + Δ𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝑎𝑎"Δ𝑢𝑢## − (𝜗𝜗4 + Δ𝜗𝜗4)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
+ 
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difference scheme to their solution (Deng, Y., 2012;  Dongarra, J., Foster, I., Fox, G., 
Gropp, W., Kennedy, K., Torczon, L., & White, A., 2003). Even if employ implicit finite 
difference schemes to their solution, we will still be able to parallelize computations 
using efficient iterative methods of solution to linear systems with banded coefficient 
matrices. 

 
3. Conclusion 
In this work, we have obtained formulas for the gradient of the objective function in 

synthesizing optimal zonal control of an object described by a system of differential 
equations with partial derivatives given inaccurate information on the values of the 
initial and boundary conditions of the object. The formulas obtained make it possible 
to apply first-order finite-dimensional optimization methods for the numerical solution 
of the problems under consideration. It is known that the technical implementation of 
piecewise-constant synthesizing functions with sufficiently high accuracy is relatively 
simple. Therefore, the proposed approach to solving optimal control synthesis 
problems can find wide application in automated systems and automatic control of 
systems in the presence of inaccurate information on the object's state. The application 
objects can be many controlled mechanical systems, technological processes 
described by systems of nonlinear differential equations. Note that the proposed 
approach can easily be extended to two- and three-dimensional heat conduction 
processes. 

 
Appendix 
Without loss of generality of the reasoning given below, to avoid the 

cumbersomeness of the resulting formulas, we consider the case when there is only 
one control function, i.e., 𝑀𝑀 = 1 (we will henceforth omit the superscript of the function 
𝜗𝜗'(𝑡𝑡), i.e., denote it by 𝜗𝜗(𝑡𝑡)). In further calculations, the following remark is important. 
The initial and boundary conditions (2)-(4), i.e., the elements of the sets 𝐺𝐺((𝑥𝑥), 𝐺𝐺'(𝑡𝑡), 
and	𝐺𝐺"(𝑡𝑡) are independent. Then the gradient of the functional satisfies the formula 

∇𝐽𝐽(𝜗𝜗) = N N N∇𝐼𝐼(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔")	dΦ"(𝑔𝑔")
	

3!

dΦ'(𝑔𝑔')
	

3"

dΦ((𝑔𝑔()
	

3#

 

Therefore, starting now, to obtain formulas for ∇𝐽𝐽(𝜗𝜗), we obtain formulas for the 
gradient of 𝐼𝐼(. ) with respect to individual terms 𝑔𝑔((𝑥𝑥), 𝑔𝑔'(𝑡𝑡), and 𝑔𝑔"(𝑡𝑡), (i.e., assuming 
that each of the sets 𝐺𝐺((𝑥𝑥), 𝐺𝐺'(𝑡𝑡), and 𝐺𝐺"(𝑡𝑡) consists of a single term). For this purpose, 
we obtain the formula for the increment of the functional (7), obtained by incrementing 
the parameter value 𝜗𝜗 = C𝜗𝜗,",,!,…,,$D = C𝜗𝜗', 𝜗𝜗", … , 𝜗𝜗AD

∗, 	𝑖𝑖) ∈ {1,2, … ,𝑚𝑚}, 𝑠𝑠 = 1,2, … ,𝑁𝑁. 
Suppose that one of the optimizable parameters of the vector 𝜗𝜗 is incremented, for 
example, 𝜗𝜗4, i.e.  

𝜗̅𝜗 = 𝜗𝜗 + Δ𝜗𝜗, Δ𝜗𝜗 = (0,0, … ,0, Δ𝜗𝜗4, 0, … ,0)∗, 
where 𝜗̅𝜗 denotes the perturbed control action. 
To express the increment of the functional (7) in terms of the increment of the control 

action, Δ𝜗𝜗, we introduce the Lagrangian for the considered problem: 

𝐿𝐿(𝑢𝑢, 𝜓𝜓; 𝜗𝜗) = N[𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢R(𝑥𝑥)]"	d𝑥𝑥
'

(

+ N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)	δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓(𝑥𝑥, 𝑡𝑡)	d𝑥𝑥
'

(
d𝑡𝑡

B

(
 

(15) 

where 𝑢𝑢(𝑥𝑥, 𝑇𝑇) = 𝑢𝑢(𝑥𝑥, 𝑇𝑇; 𝜗𝜗, 𝑔𝑔(, 𝑔𝑔', 𝑔𝑔") denotes the solution of PDE  
𝑢𝑢! = 𝑎𝑎"𝑢𝑢## + 𝜗𝜗(𝑡𝑡)	δ(𝑥𝑥 − 𝑥̅𝑥) (16) 

at the final moment of time 𝑡𝑡 = 𝑇𝑇, satisfying the initial and boundary conditions  
𝑢𝑢(𝑥𝑥, 0) = 𝑔𝑔((𝑥𝑥), 𝑥𝑥 ∈ [0,1], (17) 
𝑢𝑢(0, 𝑡𝑡) = 𝑔𝑔'(𝑡𝑡), 𝑡𝑡 ∈ [0, 𝑇𝑇], (18) 
𝑢𝑢(1, 𝑡𝑡) = 𝑔𝑔"(𝑡𝑡), 𝑡𝑡 ∈ [0, 𝑇𝑇], (19) 

and 𝜓𝜓 = 𝜓𝜓(𝑥𝑥, 𝑡𝑡) is yet an arbitrary smooth function. 
Assume that at the moment of time 𝜏𝜏4, the measurements taken at the thermal 

sensors indicate that the object’s state belongs to the 𝑘𝑘th zone, while at any last 
moments of time, 𝜏𝜏(, 𝜏𝜏', …, 𝜏𝜏45', the object’s state does not belong to the 𝑘𝑘th zone. 
Then we can rewrite (15) as follows: 

𝐿𝐿(𝑢𝑢, 𝜓𝜓; 𝜃𝜃) = N [𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢R(𝑥𝑥)]"	d𝑥𝑥
'

(

+N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)

(
+ 

+N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
+ 

+N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

C)*+
 

(20) 

Here 𝜏𝜏49D denotes the last moment at which measurements taken at the thermal 
sensors indicate that the object’s state belongs to the 𝑘𝑘th zone.  

Let’s denote by 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) + ∆𝑢𝑢(𝑥𝑥, 𝑡𝑡) the solution of the PDE (16) 
corresponding to the perturbed control 𝜗̅𝜗 and satisfying the same initial and boundary 
conditions (17)-(19). We assume that the increment Δ𝜗𝜗 of the control is so small (which 
ultimately is due to the definition of the derivative) that the measurements were taken 
at the thermal sensors during the time interval [𝜏𝜏4, 𝜏𝜏49D] still indicates that the object’s 
state belongs to the 𝑘𝑘th zone. Under these assumptions, the Lagrangian (20) for the 
perturbed solution 𝑢𝑢}(𝑥𝑥, 𝑡𝑡) takes on the following form: 

𝐿𝐿(𝑢𝑢}, 𝜓𝜓; 𝜗̅𝜗) = N [𝑢𝑢}(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢R(𝑥𝑥)]"	d𝑥𝑥
'

(

+N N [𝑢𝑢}! − 𝑎𝑎"𝑢𝑢}## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)

(
+ 

+N N [𝑢𝑢}! − 𝑎𝑎"𝑢𝑢}## − (𝜗𝜗4 + Δ𝜗𝜗4)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
+ 

+N N [𝑢𝑢}! − 𝑎𝑎"𝑢𝑢}## − 𝜗𝜗(𝑡𝑡)𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

C)*+
 

(21) 

Subtracting (21) from (20) produces the increment of the Lagrangian: 
Δ𝐿𝐿 = 𝐿𝐿(𝑢𝑢}, 𝜓𝜓; 𝜗̅𝜗) − 𝐿𝐿(𝑢𝑢, 𝜓𝜓; 𝜗𝜗)

= N [𝑢𝑢(𝑥𝑥, 𝑇𝑇) + Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢R(𝑥𝑥)]"	d𝑥𝑥
'

(
−N [𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢R(𝑥𝑥)]"	d𝑥𝑥

'

(
+ 

+N N [𝑢𝑢! + Δ𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝑎𝑎"Δ𝑢𝑢## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)

(
+ 

+N N [𝑢𝑢! + Δ𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝑎𝑎"Δ𝑢𝑢## − (𝜗𝜗4 + Δ𝜗𝜗4)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
+ 

+N N [𝑢𝑢! + Δ𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝑎𝑎"Δ𝑢𝑢## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

C)*+
− 

−N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)

(

− N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
− 

−N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

C)*+
 

We denote by Δ'𝐿𝐿 the sum of the first two terms and by Δ"𝐿𝐿 the sum of all the other 
terms in the last expression. First, we modify Δ'𝐿𝐿: 

Δ'𝐿𝐿 = N [𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥) + Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥
'

(
− N [𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]"	d𝑥𝑥

'

(
= 

= N [𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]"	d𝑥𝑥
'

(
+ N 2[𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)	d𝑥𝑥

'

(
+ N [Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥

'

(
− 

−N [𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]"	d𝑥𝑥
'

(
 

After canceling out the similar terms, we obtain: 

Δ'𝐿𝐿 = N 2[𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)	d𝑥𝑥
'

(
+ N [Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥

'

(
. 

Then, we modify Δ"𝐿𝐿: 

Δ"𝐿𝐿 = N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)

(
+N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

C)

(
+ 

+N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
+ 

+N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢## − Δ𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
+ 

+N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

C)*+
+ N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

B

C)*+
− 

−N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)

(

− N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
− 

−N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

C)*+
 

After cancelling out the similar terms, we obtain: 

Δ"𝐿𝐿 = N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)

(
+ N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

C)*+

C)
+ 

+N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

C)*+
+ N N [−Δ𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

C)*+

C)
 

By combining the first three terms of the last expression, we obtain: 

Δ"𝐿𝐿 = N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

(
+ N N [−Δ𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

C)*+

C)
 

Taking Δ'𝐿𝐿 and Δ"𝐿𝐿 into account in Δ𝐿𝐿, we obtain: 

Δ𝐿𝐿 = N 2[𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)	d𝑥𝑥
'

(
+ N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

B

(
+ 

+N [Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥
'

(
+ N N [−Δ𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

C)*+

C)
 

(22) 

We have managed to extract the linear (with respect to Δ𝜗𝜗4) part of the Lagrangian 
increment. In order to obtain the expression for the derivative of 𝐿𝐿(. ) with respect to 
Δ𝜗𝜗4, we have to eliminate the first two terms of (22). In order to do that, we modify the 
second term of (22) by breaking it down into two terms: 

N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

(
= N N Δ𝑢𝑢!𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

B

(
− N N 𝑎𝑎"Δ𝑢𝑢##𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

B

(
 

We apply the integration by parts technique to both the integrals. For the first of 
these integrals, we have: 

N N Δ𝑢𝑢!𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

(
= N �N Δ𝑢𝑢!𝜓𝜓	d𝑡𝑡

B

(
Ä d𝑥𝑥

'

(
= N �N 𝜓𝜓	dEΔ𝑢𝑢

B

(
Äd𝑥𝑥

'

(
= 

= N �𝜓𝜓Δ𝑢𝑢|(B −N Δ𝑢𝑢	dE𝜓𝜓
B

(
Ä d𝑥𝑥

'

(

= N �𝜓𝜓(𝑥𝑥, 𝑇𝑇)Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝜓𝜓(𝑥𝑥, 0)Δ𝑢𝑢(𝑥𝑥, 0) −N Δ𝑢𝑢	𝜓𝜓!	dt
B

(
Ä d𝑥𝑥

'

(
 

According to initial condition (17), we have: 
Δ𝑢𝑢(𝑥𝑥, 0) = 𝑢𝑢}(𝑥𝑥, 0) − 𝑢𝑢(𝑥𝑥, 0) = 𝑔𝑔((𝑥𝑥) − 𝑔𝑔((𝑥𝑥) = 0 for all 𝑥𝑥 ∈ [0,1]. 
Therefore 

N N Δ𝑢𝑢!𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

(
= N 𝜓𝜓(𝑥𝑥, 𝑇𝑇)Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)	d𝑥𝑥

'

(
− N N Δ𝑢𝑢	𝜓𝜓!	d𝑥𝑥

'

(
d𝑡𝑡

B

(
 (23) 

For the second integral, we have: 

−N N 𝑎𝑎"Δ𝑢𝑢##𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

(
= −𝑎𝑎" N �N 𝜓𝜓	d1Δ𝑢𝑢#

'

(
Ä d𝑡𝑡

B

(
= 

= −𝑎𝑎"N �𝜓𝜓	Δ𝑢𝑢#|(' − N Δ𝑢𝑢#	d#𝜓𝜓
'

(
Ä

B

(
d𝑡𝑡 = 

= 𝑎𝑎" N �𝜓𝜓(0, 𝑡𝑡)Δ𝑢𝑢#(0, 𝑡𝑡) − 𝜓𝜓(1, 𝑡𝑡)Δ𝑢𝑢#(1, 𝑡𝑡) + N Δ𝑢𝑢#	𝜓𝜓#d𝑥𝑥
'

(
Ä 	d𝑡𝑡

B

(
 

Due to the arbitrariness of the function 𝜓𝜓(𝑥𝑥, 𝑡𝑡), we require that 
𝜓𝜓(0, 𝑡𝑡) = 𝜓𝜓(1, 𝑡𝑡) = 0 for all 𝑡𝑡 ∈ [0, 𝑇𝑇]. (24) 

Then the last expression reduces to: 

−N N 𝑎𝑎"Δ𝑢𝑢##𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

(
= 𝑎𝑎" N �N Δ𝑢𝑢#	𝜓𝜓#d𝑥𝑥

'

(
Ä 	d𝑡𝑡

B

(
, 

which we can further modify by applying the integration by parts technique again. 
We thus obtain: 

𝑎𝑎" N �N Δ𝑢𝑢#	𝜓𝜓#d𝑥𝑥
'

(
Ä 	d𝑡𝑡

B

(
= 𝑎𝑎" N �N 	𝜓𝜓#d1∆𝑢𝑢

'

(
Ä 	d𝑡𝑡

B

(
= 

= 𝑎𝑎" N �𝜓𝜓#	Δ𝑢𝑢|(' − N 	∆𝑢𝑢d1𝜓𝜓#
'

(
Ä d𝑡𝑡

B

(
= 

= 𝑎𝑎"N �𝜓𝜓#(1, 𝑡𝑡)	Δ𝑢𝑢(1, 𝑡𝑡) − 𝜓𝜓#(0, 𝑡𝑡)	Δ𝑢𝑢(0, 𝑡𝑡) − N 	∆𝑢𝑢	𝜓𝜓##	d𝑥𝑥
'

(
Ä d𝑡𝑡

B

(
 

According to boundary conditions (18) and (19), we have: 
Δ𝑢𝑢(0, 𝑡𝑡) = 𝑢𝑢}(0, 𝑡𝑡) − 𝑢𝑢(0, 𝑡𝑡) = 𝑔𝑔'(𝑡𝑡) − 𝑔𝑔'(𝑡𝑡) for all 𝑡𝑡 ∈ [0, 𝑇𝑇], 
Δ𝑢𝑢(1, 𝑡𝑡) = 𝑢𝑢}(1, 𝑡𝑡) − 𝑢𝑢(1, 𝑡𝑡) = 𝑔𝑔"(𝑡𝑡) − 𝑔𝑔"(𝑡𝑡) for all 𝑡𝑡 ∈ [0, 𝑇𝑇]. 
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+N N [𝑢𝑢! + Δ𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝑎𝑎"Δ𝑢𝑢## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

C)*+
− 

−N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)

(

− N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
− 

−N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

C)*+
 

We denote by Δ'𝐿𝐿 the sum of the first two terms and by Δ"𝐿𝐿 the sum of all the other 
terms in the last expression. First, we modify Δ'𝐿𝐿: 

Δ'𝐿𝐿 = N [𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥) + Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥
'

(
− N [𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]"	d𝑥𝑥

'

(
= 

= N [𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]"	d𝑥𝑥
'

(
+ N 2[𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)	d𝑥𝑥

'

(
+ N [Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥

'

(
− 

−N [𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]"	d𝑥𝑥
'

(
 

After canceling out the similar terms, we obtain: 

Δ'𝐿𝐿 = N 2[𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)	d𝑥𝑥
'

(
+ N [Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥

'

(
. 

Then, we modify Δ"𝐿𝐿: 

Δ"𝐿𝐿 = N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)

(
+N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

C)

(
+ 

+N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
+ 

+N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢## − Δ𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
+ 

+N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

C)*+
+ N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

B

C)*+
− 

−N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)

(

− N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
− 

−N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

C)*+
 

After cancelling out the similar terms, we obtain: 

Δ"𝐿𝐿 = N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)

(
+ N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

C)*+

C)
+ 

+N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

C)*+
+ N N [−Δ𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

C)*+

C)
 

By combining the first three terms of the last expression, we obtain: 

Δ"𝐿𝐿 = N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

(
+ N N [−Δ𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

C)*+

C)
 

Taking Δ'𝐿𝐿 and Δ"𝐿𝐿 into account in Δ𝐿𝐿, we obtain: 

Δ𝐿𝐿 = N 2[𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)	d𝑥𝑥
'

(
+ N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

B

(
+ 

+N [Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥
'

(
+ N N [−Δ𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

C)*+

C)
 

(22) 

We have managed to extract the linear (with respect to Δ𝜗𝜗4) part of the Lagrangian 
increment. In order to obtain the expression for the derivative of 𝐿𝐿(. ) with respect to 
Δ𝜗𝜗4, we have to eliminate the first two terms of (22). In order to do that, we modify the 
second term of (22) by breaking it down into two terms: 

N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

(
= N N Δ𝑢𝑢!𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

B

(
− N N 𝑎𝑎"Δ𝑢𝑢##𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

B

(
 

We apply the integration by parts technique to both the integrals. For the first of 
these integrals, we have: 

N N Δ𝑢𝑢!𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

(
= N �N Δ𝑢𝑢!𝜓𝜓	d𝑡𝑡

B

(
Ä d𝑥𝑥

'

(
= N �N 𝜓𝜓	dEΔ𝑢𝑢

B

(
Äd𝑥𝑥

'

(
= 

= N �𝜓𝜓Δ𝑢𝑢|(B −N Δ𝑢𝑢	dE𝜓𝜓
B

(
Ä d𝑥𝑥

'

(

= N �𝜓𝜓(𝑥𝑥, 𝑇𝑇)Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝜓𝜓(𝑥𝑥, 0)Δ𝑢𝑢(𝑥𝑥, 0) −N Δ𝑢𝑢	𝜓𝜓!	dt
B

(
Ä d𝑥𝑥

'

(
 

According to initial condition (17), we have: 
Δ𝑢𝑢(𝑥𝑥, 0) = 𝑢𝑢}(𝑥𝑥, 0) − 𝑢𝑢(𝑥𝑥, 0) = 𝑔𝑔((𝑥𝑥) − 𝑔𝑔((𝑥𝑥) = 0 for all 𝑥𝑥 ∈ [0,1]. 
Therefore 

N N Δ𝑢𝑢!𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

(
= N 𝜓𝜓(𝑥𝑥, 𝑇𝑇)Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)	d𝑥𝑥

'

(
− N N Δ𝑢𝑢	𝜓𝜓!	d𝑥𝑥

'

(
d𝑡𝑡

B

(
 (23) 

For the second integral, we have: 

−N N 𝑎𝑎"Δ𝑢𝑢##𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

(
= −𝑎𝑎" N �N 𝜓𝜓	d1Δ𝑢𝑢#

'

(
Ä d𝑡𝑡

B

(
= 

= −𝑎𝑎"N �𝜓𝜓	Δ𝑢𝑢#|(' − N Δ𝑢𝑢#	d#𝜓𝜓
'

(
Ä

B

(
d𝑡𝑡 = 

= 𝑎𝑎" N �𝜓𝜓(0, 𝑡𝑡)Δ𝑢𝑢#(0, 𝑡𝑡) − 𝜓𝜓(1, 𝑡𝑡)Δ𝑢𝑢#(1, 𝑡𝑡) + N Δ𝑢𝑢#	𝜓𝜓#d𝑥𝑥
'

(
Ä 	d𝑡𝑡

B

(
 

Due to the arbitrariness of the function 𝜓𝜓(𝑥𝑥, 𝑡𝑡), we require that 
𝜓𝜓(0, 𝑡𝑡) = 𝜓𝜓(1, 𝑡𝑡) = 0 for all 𝑡𝑡 ∈ [0, 𝑇𝑇]. (24) 

Then the last expression reduces to: 

−N N 𝑎𝑎"Δ𝑢𝑢##𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

(
= 𝑎𝑎" N �N Δ𝑢𝑢#	𝜓𝜓#d𝑥𝑥

'

(
Ä 	d𝑡𝑡

B

(
, 

which we can further modify by applying the integration by parts technique again. 
We thus obtain: 

𝑎𝑎" N �N Δ𝑢𝑢#	𝜓𝜓#d𝑥𝑥
'

(
Ä 	d𝑡𝑡

B

(
= 𝑎𝑎" N �N 	𝜓𝜓#d1∆𝑢𝑢

'

(
Ä 	d𝑡𝑡

B

(
= 

= 𝑎𝑎" N �𝜓𝜓#	Δ𝑢𝑢|(' − N 	∆𝑢𝑢d1𝜓𝜓#
'

(
Ä d𝑡𝑡

B

(
= 

= 𝑎𝑎"N �𝜓𝜓#(1, 𝑡𝑡)	Δ𝑢𝑢(1, 𝑡𝑡) − 𝜓𝜓#(0, 𝑡𝑡)	Δ𝑢𝑢(0, 𝑡𝑡) − N 	∆𝑢𝑢	𝜓𝜓##	d𝑥𝑥
'

(
Ä d𝑡𝑡

B

(
 

According to boundary conditions (18) and (19), we have: 
Δ𝑢𝑢(0, 𝑡𝑡) = 𝑢𝑢}(0, 𝑡𝑡) − 𝑢𝑢(0, 𝑡𝑡) = 𝑔𝑔'(𝑡𝑡) − 𝑔𝑔'(𝑡𝑡) for all 𝑡𝑡 ∈ [0, 𝑇𝑇], 
Δ𝑢𝑢(1, 𝑡𝑡) = 𝑢𝑢}(1, 𝑡𝑡) − 𝑢𝑢(1, 𝑡𝑡) = 𝑔𝑔"(𝑡𝑡) − 𝑔𝑔"(𝑡𝑡) for all 𝑡𝑡 ∈ [0, 𝑇𝑇]. 

Samir Z. Guliyev
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+N N [𝑢𝑢! + Δ𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝑎𝑎"Δ𝑢𝑢## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

C)*+
− 

−N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)

(

− N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
− 

−N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

C)*+
 

We denote by Δ'𝐿𝐿 the sum of the first two terms and by Δ"𝐿𝐿 the sum of all the other 
terms in the last expression. First, we modify Δ'𝐿𝐿: 

Δ'𝐿𝐿 = N [𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥) + Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥
'

(
− N [𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]"	d𝑥𝑥

'

(
= 

= N [𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]"	d𝑥𝑥
'

(
+ N 2[𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)	d𝑥𝑥

'

(
+ N [Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥

'

(
− 

−N [𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]"	d𝑥𝑥
'

(
 

After canceling out the similar terms, we obtain: 

Δ'𝐿𝐿 = N 2[𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)	d𝑥𝑥
'

(
+ N [Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥

'

(
. 

Then, we modify Δ"𝐿𝐿: 

Δ"𝐿𝐿 = N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)

(
+N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

C)

(
+ 

+N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
+ 

+N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢## − Δ𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
+ 

+N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

C)*+
+ N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

B

C)*+
− 

−N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)

(

− N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
− 

−N N [𝑢𝑢! − 𝑎𝑎"𝑢𝑢## − 𝜗𝜗(𝑡𝑡)δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

C)*+
 

After cancelling out the similar terms, we obtain: 

Δ"𝐿𝐿 = N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

C)

(
+ N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

C)*+

C)
+ 

+N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

C)*+
+ N N [−Δ𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

C)*+

C)
 

By combining the first three terms of the last expression, we obtain: 

Δ"𝐿𝐿 = N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

(
+ N N [−Δ𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

C)*+

C)
 

Taking Δ'𝐿𝐿 and Δ"𝐿𝐿 into account in Δ𝐿𝐿, we obtain: 

Δ𝐿𝐿 = N 2[𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)	d𝑥𝑥
'

(
+ N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

B

(
+ 

+N [Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥
'

(
+ N N [−Δ𝜗𝜗4δ(𝑥𝑥 − 𝑥̅𝑥)]𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

C)*+

C)
 

(22) 

We have managed to extract the linear (with respect to Δ𝜗𝜗4) part of the Lagrangian 
increment. In order to obtain the expression for the derivative of 𝐿𝐿(. ) with respect to 
Δ𝜗𝜗4, we have to eliminate the first two terms of (22). In order to do that, we modify the 
second term of (22) by breaking it down into two terms: 

N N [Δ𝑢𝑢! − 𝑎𝑎"Δ𝑢𝑢##]𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

(
= N N Δ𝑢𝑢!𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

B

(
− N N 𝑎𝑎"Δ𝑢𝑢##𝜓𝜓	d𝑥𝑥

'

(
d𝑡𝑡

B

(
 

We apply the integration by parts technique to both the integrals. For the first of 
these integrals, we have: 

N N Δ𝑢𝑢!𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

(
= N �N Δ𝑢𝑢!𝜓𝜓	d𝑡𝑡

B

(
Ä d𝑥𝑥

'

(
= N �N 𝜓𝜓	dEΔ𝑢𝑢

B

(
Äd𝑥𝑥

'

(
= 

= N �𝜓𝜓Δ𝑢𝑢|(B −N Δ𝑢𝑢	dE𝜓𝜓
B

(
Ä d𝑥𝑥

'

(

= N �𝜓𝜓(𝑥𝑥, 𝑇𝑇)Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝜓𝜓(𝑥𝑥, 0)Δ𝑢𝑢(𝑥𝑥, 0) −N Δ𝑢𝑢	𝜓𝜓!	dt
B

(
Ä d𝑥𝑥

'

(
 

According to initial condition (17), we have: 
Δ𝑢𝑢(𝑥𝑥, 0) = 𝑢𝑢}(𝑥𝑥, 0) − 𝑢𝑢(𝑥𝑥, 0) = 𝑔𝑔((𝑥𝑥) − 𝑔𝑔((𝑥𝑥) = 0 for all 𝑥𝑥 ∈ [0,1]. 
Therefore 

N N Δ𝑢𝑢!𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

(
= N 𝜓𝜓(𝑥𝑥, 𝑇𝑇)Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)	d𝑥𝑥

'

(
− N N Δ𝑢𝑢	𝜓𝜓!	d𝑥𝑥

'

(
d𝑡𝑡

B

(
 (23) 

For the second integral, we have: 

−N N 𝑎𝑎"Δ𝑢𝑢##𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

(
= −𝑎𝑎" N �N 𝜓𝜓	d1Δ𝑢𝑢#

'

(
Ä d𝑡𝑡

B

(
= 

= −𝑎𝑎"N �𝜓𝜓	Δ𝑢𝑢#|(' − N Δ𝑢𝑢#	d#𝜓𝜓
'

(
Ä

B

(
d𝑡𝑡 = 

= 𝑎𝑎" N �𝜓𝜓(0, 𝑡𝑡)Δ𝑢𝑢#(0, 𝑡𝑡) − 𝜓𝜓(1, 𝑡𝑡)Δ𝑢𝑢#(1, 𝑡𝑡) + N Δ𝑢𝑢#	𝜓𝜓#d𝑥𝑥
'

(
Ä 	d𝑡𝑡

B

(
 

Due to the arbitrariness of the function 𝜓𝜓(𝑥𝑥, 𝑡𝑡), we require that 
𝜓𝜓(0, 𝑡𝑡) = 𝜓𝜓(1, 𝑡𝑡) = 0 for all 𝑡𝑡 ∈ [0, 𝑇𝑇]. (24) 

Then the last expression reduces to: 

−N N 𝑎𝑎"Δ𝑢𝑢##𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

(
= 𝑎𝑎" N �N Δ𝑢𝑢#	𝜓𝜓#d𝑥𝑥

'

(
Ä 	d𝑡𝑡

B

(
, 

which we can further modify by applying the integration by parts technique again. 
We thus obtain: 

𝑎𝑎" N �N Δ𝑢𝑢#	𝜓𝜓#d𝑥𝑥
'

(
Ä 	d𝑡𝑡

B

(
= 𝑎𝑎" N �N 	𝜓𝜓#d1∆𝑢𝑢

'

(
Ä 	d𝑡𝑡

B

(
= 

= 𝑎𝑎" N �𝜓𝜓#	Δ𝑢𝑢|(' − N 	∆𝑢𝑢d1𝜓𝜓#
'

(
Ä d𝑡𝑡

B

(
= 

= 𝑎𝑎"N �𝜓𝜓#(1, 𝑡𝑡)	Δ𝑢𝑢(1, 𝑡𝑡) − 𝜓𝜓#(0, 𝑡𝑡)	Δ𝑢𝑢(0, 𝑡𝑡) − N 	∆𝑢𝑢	𝜓𝜓##	d𝑥𝑥
'

(
Ä d𝑡𝑡

B

(
 

According to boundary conditions (18) and (19), we have: 
Δ𝑢𝑢(0, 𝑡𝑡) = 𝑢𝑢}(0, 𝑡𝑡) − 𝑢𝑢(0, 𝑡𝑡) = 𝑔𝑔'(𝑡𝑡) − 𝑔𝑔'(𝑡𝑡) for all 𝑡𝑡 ∈ [0, 𝑇𝑇], 
Δ𝑢𝑢(1, 𝑡𝑡) = 𝑢𝑢}(1, 𝑡𝑡) − 𝑢𝑢(1, 𝑡𝑡) = 𝑔𝑔"(𝑡𝑡) − 𝑔𝑔"(𝑡𝑡) for all 𝑡𝑡 ∈ [0, 𝑇𝑇]. 
Therefore: 

−N N 𝑎𝑎"Δ𝑢𝑢##𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

(
= −N N 𝑎𝑎"	𝜓𝜓##	Δ𝑢𝑢	d𝑥𝑥

'

(
d𝑡𝑡

B

(
 (25) 

Taking (23) and (25) into account in (22) produces: 

Δ𝐿𝐿 = N 2[𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)	d𝑥𝑥
'

(
+N [Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥

'

(
+ 

+N 𝜓𝜓(𝑥𝑥, 𝑇𝑇)Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)	d𝑥𝑥
'

(
− N N 𝜓𝜓!	Δ𝑢𝑢	d𝑥𝑥

'

(
d𝑡𝑡

B

(
− 

−N N 𝑎𝑎"	𝜓𝜓##	Δ𝑢𝑢	d𝑥𝑥
'

(
d𝑡𝑡

B

(
+ N N 𝜓𝜓	[−Δ𝜃𝜃4𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)]	d𝑥𝑥

'

(
d𝑡𝑡

C)*+

C)
 

 
By combining the 1st with the 3rd terms, and the 4th with the 5th terms, we obtain: 

Δ𝐿𝐿 = N {𝜓𝜓(𝑥𝑥, 𝑇𝑇) + 2[𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]}	Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)	d𝑥𝑥
'

(
+ N [Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥

'

(
− 

−N N {𝜓𝜓! + 𝑎𝑎"	𝜓𝜓##}	Δ𝑢𝑢	d𝑥𝑥
'

(
d𝑡𝑡

B

(
+ N N 𝜓𝜓	[−Δ𝜃𝜃4𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)]	d𝑥𝑥

'

(
d𝑡𝑡

C)*+

C)
 

Assume that: 
𝜓𝜓(𝑥𝑥, 𝑇𝑇) = −2[𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)] for all 𝑥𝑥 ∈ [0,1], (26) 

𝜓𝜓! = −𝑎𝑎"	𝜓𝜓##	for	(𝑥𝑥, 𝑡𝑡) ∈ Ω.	 (27) 
Then the increment of the Lagrangian takes on the following form: 

Δ𝐿𝐿 = N N 𝜓𝜓	[−Δ𝜗𝜗4𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)]	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
+ N [Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥

'

(
. 

Because Δ𝜗𝜗4 is constant, we can take it out of the integral sign, thus obtaining: 

Δ𝐿𝐿 = N N −𝜓𝜓	𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
Δ𝜗𝜗4 + N [Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥

'

(
. 

Dropping the second term of the last expression and taking into account the 
definition of Dirac’s delta function, we obtain the expression for the derivative of 
𝐿𝐿(𝑢𝑢, 𝜓𝜓; 𝜃𝜃) with respect to 𝜃𝜃4: 

𝜕𝜕𝜕𝜕(𝑢𝑢, 𝜓𝜓; 𝜃𝜃)
𝜕𝜕𝜃𝜃4

= N −𝜓𝜓(𝑥̅𝑥, 𝑡𝑡)	d𝑡𝑡
C)*+

C)
 (28) 

Remark 3. In general, the object’s state at the observed points can belong to the 
same zone in disparate time intervals [𝜏𝜏,, 𝜏𝜏,9'), 𝑖𝑖 ∈ {0,1,2, … , 𝑞𝑞 − 1}, i.e. the trajectory of 
the system may lie in the same zone again and again in different points of time 𝜏𝜏,. In 
this case, we have to modify the formula (28) by calculating the definite integral over 
the combined time interval 

Ç (𝜗𝜗)
,",,!,…,,$

= U [𝜏𝜏,, 𝜏𝜏,9')
FG(C&)∈I&",&!,…,&$

 

during which the vector 𝑢𝑢A(𝑡𝑡) belongs to the (𝑖𝑖', 𝑖𝑖", … , 𝑖𝑖*)th phase parallelepiped 
under the chosen values of controls 𝜗𝜗(𝑡𝑡) and functions 𝑔𝑔((𝑥𝑥), 𝑔𝑔'(𝑡𝑡), and 𝑔𝑔"(𝑡𝑡). The 
formula (28) should be modified accordingly: 

𝜕𝜕𝜕𝜕(𝑢𝑢, 𝜓𝜓; 𝜃𝜃)
𝜕𝜕𝜃𝜃4

= N −𝜓𝜓(𝑥̅𝑥, 𝑡𝑡)	d𝑡𝑡
	

∏ (K)&",&!,…,&$

 (29) 

Generalizing this formula to all possible states of the initial and boundary conditions, 
i.e., covering the entire sets 𝐺𝐺((. ), 𝐺𝐺'(. ), and 𝐺𝐺"(. ), we arrive at formula (14). 
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Therefore: 

−N N 𝑎𝑎"Δ𝑢𝑢##𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

(
= −N N 𝑎𝑎"	𝜓𝜓##	Δ𝑢𝑢	d𝑥𝑥

'

(
d𝑡𝑡

B

(
 (25) 

Taking (23) and (25) into account in (22) produces: 

Δ𝐿𝐿 = N 2[𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)	d𝑥𝑥
'

(
+N [Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥

'

(
+ 

+N 𝜓𝜓(𝑥𝑥, 𝑇𝑇)Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)	d𝑥𝑥
'

(
− N N 𝜓𝜓!	Δ𝑢𝑢	d𝑥𝑥

'

(
d𝑡𝑡

B

(
− 

−N N 𝑎𝑎"	𝜓𝜓##	Δ𝑢𝑢	d𝑥𝑥
'

(
d𝑡𝑡

B

(
+N N 𝜓𝜓	[−Δ𝜃𝜃4𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)]	d𝑥𝑥

'

(
d𝑡𝑡

C)*+

C)
 

 
By combining the 1st with the 3rd terms, and the 4th with the 5th terms, we obtain: 

Δ𝐿𝐿 = N {𝜓𝜓(𝑥𝑥, 𝑇𝑇) + 2[𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]}	Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)	d𝑥𝑥
'

(
+ N [Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥

'

(
− 

−N N {𝜓𝜓! + 𝑎𝑎"	𝜓𝜓##}	Δ𝑢𝑢	d𝑥𝑥
'

(
d𝑡𝑡

B

(
+ N N 𝜓𝜓	[−Δ𝜃𝜃4𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)]	d𝑥𝑥

'

(
d𝑡𝑡

C)*+

C)
 

Assume that: 
𝜓𝜓(𝑥𝑥, 𝑇𝑇) = −2[𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)] for all 𝑥𝑥 ∈ [0,1], (26) 

𝜓𝜓! = −𝑎𝑎"	𝜓𝜓##	for	(𝑥𝑥, 𝑡𝑡) ∈ Ω.	 (27) 
Then the increment of the Lagrangian takes on the following form: 

Δ𝐿𝐿 = N N 𝜓𝜓	[−Δ𝜗𝜗4𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)]	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
+ N [Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥

'

(
. 

Because Δ𝜗𝜗4 is constant, we can take it out of the integral sign, thus obtaining: 

Δ𝐿𝐿 = N N −𝜓𝜓	𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
Δ𝜗𝜗4 + N [Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥

'

(
. 

Dropping the second term of the last expression and taking into account the 
definition of Dirac’s delta function, we obtain the expression for the derivative of 
𝐿𝐿(𝑢𝑢, 𝜓𝜓; 𝜃𝜃) with respect to 𝜃𝜃4: 

𝜕𝜕𝜕𝜕(𝑢𝑢, 𝜓𝜓; 𝜃𝜃)
𝜕𝜕𝜃𝜃4

= N −𝜓𝜓(𝑥̅𝑥, 𝑡𝑡)	d𝑡𝑡
C)*+

C)
 (28) 

Remark 3. In general, the object’s state at the observed points can belong to the 
same zone in disparate time intervals [𝜏𝜏,, 𝜏𝜏,9'), 𝑖𝑖 ∈ {0,1,2, … , 𝑞𝑞 − 1}, i.e. the trajectory of 
the system may lie in the same zone again and again in different points of time 𝜏𝜏,. In 
this case, we have to modify the formula (28) by calculating the definite integral over 
the combined time interval 

Ç (𝜗𝜗)
,",,!,…,,$

= U [𝜏𝜏,, 𝜏𝜏,9')
FG(C&)∈I&",&!,…,&$

 

during which the vector 𝑢𝑢A(𝑡𝑡) belongs to the (𝑖𝑖', 𝑖𝑖", … , 𝑖𝑖*)th phase parallelepiped 
under the chosen values of controls 𝜗𝜗(𝑡𝑡) and functions 𝑔𝑔((𝑥𝑥), 𝑔𝑔'(𝑡𝑡), and 𝑔𝑔"(𝑡𝑡). The 
formula (28) should be modified accordingly: 

𝜕𝜕𝜕𝜕(𝑢𝑢, 𝜓𝜓; 𝜃𝜃)
𝜕𝜕𝜃𝜃4

= N −𝜓𝜓(𝑥̅𝑥, 𝑡𝑡)	d𝑡𝑡
	

∏ (K)&",&!,…,&$

 (29) 

Generalizing this formula to all possible states of the initial and boundary conditions, 
i.e., covering the entire sets 𝐺𝐺((. ), 𝐺𝐺'(. ), and 𝐺𝐺"(. ), we arrive at formula (14). 
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Therefore: 

−N N 𝑎𝑎"Δ𝑢𝑢##𝜓𝜓	d𝑥𝑥
'

(
d𝑡𝑡

B

(
= −N N 𝑎𝑎"	𝜓𝜓##	Δ𝑢𝑢	d𝑥𝑥

'

(
d𝑡𝑡

B

(
 (25) 

Taking (23) and (25) into account in (22) produces: 

Δ𝐿𝐿 = N 2[𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)	d𝑥𝑥
'

(
+N [Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥

'

(
+ 

+N 𝜓𝜓(𝑥𝑥, 𝑇𝑇)Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)	d𝑥𝑥
'

(
− N N 𝜓𝜓!	Δ𝑢𝑢	d𝑥𝑥

'

(
d𝑡𝑡

B

(
− 

−N N 𝑎𝑎"	𝜓𝜓##	Δ𝑢𝑢	d𝑥𝑥
'

(
d𝑡𝑡

B

(
+ N N 𝜓𝜓	[−Δ𝜃𝜃4𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)]	d𝑥𝑥

'

(
d𝑡𝑡

C)*+

C)
 

 
By combining the 1st with the 3rd terms, and the 4th with the 5th terms, we obtain: 

Δ𝐿𝐿 = N {𝜓𝜓(𝑥𝑥, 𝑇𝑇) + 2[𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)]}	Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)	d𝑥𝑥
'

(
+ N [Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥

'

(
− 

−N N {𝜓𝜓! + 𝑎𝑎"	𝜓𝜓##}	Δ𝑢𝑢	d𝑥𝑥
'

(
d𝑡𝑡

B

(
+ N N 𝜓𝜓	[−Δ𝜃𝜃4𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)]	d𝑥𝑥

'

(
d𝑡𝑡

C)*+

C)
 

Assume that: 
𝜓𝜓(𝑥𝑥, 𝑇𝑇) = −2[𝑢𝑢(𝑥𝑥, 𝑇𝑇) − 𝑢𝑢A(𝑥𝑥)] for all 𝑥𝑥 ∈ [0,1], (26) 

𝜓𝜓! = −𝑎𝑎"	𝜓𝜓##	for	(𝑥𝑥, 𝑡𝑡) ∈ Ω.	 (27) 
Then the increment of the Lagrangian takes on the following form: 

Δ𝐿𝐿 = N N 𝜓𝜓	[−Δ𝜗𝜗4𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)]	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
+ N [Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥

'

(
. 

Because Δ𝜗𝜗4 is constant, we can take it out of the integral sign, thus obtaining: 

Δ𝐿𝐿 = N N −𝜓𝜓	𝛿𝛿(𝑥𝑥 − 𝑥̅𝑥)	d𝑥𝑥
'

(
d𝑡𝑡

C)*+

C)
Δ𝜗𝜗4 + N [Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)]"	d𝑥𝑥

'

(
. 

Dropping the second term of the last expression and taking into account the 
definition of Dirac’s delta function, we obtain the expression for the derivative of 
𝐿𝐿(𝑢𝑢, 𝜓𝜓; 𝜃𝜃) with respect to 𝜃𝜃4: 

𝜕𝜕𝜕𝜕(𝑢𝑢, 𝜓𝜓; 𝜃𝜃)
𝜕𝜕𝜃𝜃4

= N −𝜓𝜓(𝑥̅𝑥, 𝑡𝑡)	d𝑡𝑡
C)*+

C)
 (28) 

Remark 3. In general, the object’s state at the observed points can belong to the 
same zone in disparate time intervals [𝜏𝜏,, 𝜏𝜏,9'), 𝑖𝑖 ∈ {0,1,2, … , 𝑞𝑞 − 1}, i.e. the trajectory of 
the system may lie in the same zone again and again in different points of time 𝜏𝜏,. In 
this case, we have to modify the formula (28) by calculating the definite integral over 
the combined time interval 

Ç (𝜗𝜗)
,",,!,…,,$

= U [𝜏𝜏,, 𝜏𝜏,9')
FG(C&)∈I&",&!,…,&$

 

during which the vector 𝑢𝑢A(𝑡𝑡) belongs to the (𝑖𝑖', 𝑖𝑖", … , 𝑖𝑖*)th phase parallelepiped 
under the chosen values of controls 𝜗𝜗(𝑡𝑡) and functions 𝑔𝑔((𝑥𝑥), 𝑔𝑔'(𝑡𝑡), and 𝑔𝑔"(𝑡𝑡). The 
formula (28) should be modified accordingly: 

𝜕𝜕𝜕𝜕(𝑢𝑢, 𝜓𝜓; 𝜃𝜃)
𝜕𝜕𝜃𝜃4

= N −𝜓𝜓(𝑥̅𝑥, 𝑡𝑡)	d𝑡𝑡
	

∏ (K)&",&!,…,&$

 (29) 

Generalizing this formula to all possible states of the initial and boundary conditions, 
i.e., covering the entire sets 𝐺𝐺((. ), 𝐺𝐺'(. ), and 𝐺𝐺"(. ), we arrive at formula (14). 

References
Aida-Zade, K. R., Kuliev, S. Z. (2008). A class of inverse problems for discontinuous 

systems. Cybernetics and Systems Analysis, 44(6), 915-924.
Aida-Zade, K. R., Kuliev, S. Z. (2011). Numerical solution of nonlinear inverse 

coefficient problems for ordinary differential equations.  Computational Mathematics 
and Mathematical Physics, 51(5), 803-815. 

Aida-Zade, K. R., Kuliev, S. Z. (2012). On numerical solution of one class of inverse 
problems for discontinuous dynamic systems. Automation and Remote Control, 73(5), 
786-796. 

Arthur, E., Bryson, Yu-Chi Ho. (1975) Applied optimal control: Optimization, 
estimation and control. CRC Press; 1st edt., 1975.

Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2013).  Nonlinear programming: 
theory and algorithms. John Wiley & Sons.

Butkovsky, A.G. (1975) Methods for controlling systems with distributed parameters. 
Moscow: Nauka. (in Russian)

Deng, Y. (2012). Applied parallel computing. World Scientific.
Dongarra, J., Foster, I., Fox, G., Gropp, W., Kennedy, K., Torczon, L., & White, A. 

(2003). Sourcebook of parallel computing (Vol. 3003). San Francisco eCA CA: Morgan 
Kaufmann Publishers.

Egorov, A.I. (2004) Foundations of control theory. Moscow: Fizmatlit. (in Russian)
Fursikov, A.V. (1999) Optimal control of distributed systems: Theory and applications. 

American Mathematical Society.
Guliyev, S. Z. (2013). Synthesis of control in nonlinear systems with different 

types of feedback and strategies of control.  Journal of Automation and Information 
Sciences, 45(7), 74-86.

Guliyev, S. Z. (2018). Numerical solution of a zonal feedback control problem for the 
heating process. IFAC-PapersOnLine, 51(30), 251-256.

Guliyev, S.Z., Aida-zade, K.R. (2005) Optimization of location and operation modes 
of oilfield wells. Computational Technologies SB RAS, 10 (4), 52-62. (in Russian)

Guliyev, S.Z., Aida-zade, K.R. (2016) Hydraulic resistance coefficient identification 
in pipelines. Automation and Remote Control, 77 (7), 1225–1239.

Itkis, U. (1976). Control systems of variable structure. Halsted Press.
Kuliev, S. Z. (2011). Synthesis of zonal controls of nonlinear systems under discrete 

observations. Automatic Control and Computer Sciences, 45(6), 338-345.
Lions, J.L. (1971) Optimal control of systems governed by partial differential 

Azerbaijan Journal of High Performance Computing, 3 (2), 2020



222

equations. Springer-Verlag (Berlin).
Lurie, K.A. (1993) Applied optimal control theory of distributed systems. Springer 

US.
Moiseev, N.N. (1971) Numerical methods in the theory of optimal systems. Moscow: 

Nauka. (in Russian)
Nocedal, J., Wright, S. (2006). Numerical optimization. Springer Science & Business 

Media.
Panteleev, A.V. Letova, T.A. (2015) Optimization methods in examples and 

problems. Saint-Petersburg: Lan Publishing. (in Russian)
Rapoport, E.Ya. (2009) Optimal control of systems with distributed parameters. 

Moscow: Higher school. (in Russian)
Sirazetdinov, T.K. (1977) Optimization of systems with distributed parameters. 

Moscow: Nauka. (in Russian)
Stewart, D. E., Anitescu, M. (2010). Optimal control of systems with discontinuous 

differential equations. Numerische Mathematik, 114(4), 653-695.
Vasiliev, F.P. (2002) Optimization methods. Moscow: Factorial Press, 2002. (in 

Russian)

Submitted: 02.05.2020
Accepted: 25.11.2020

Samir Z. Guliyev


