
263

Abstract
This article presented a survey of two well-known algorithms,
TF-IDF and BM-25 methods, for document ranking on a single
CPU and parallel processes via HPC. An amazon review dataset
with more than two million reviews was measured to measure
the rank parameters. We set up the number of workers for the
parallel processing during the experiment, which we selected
as one and three. Four benchmarks evaluated the preprocess
and reading time, vectorization time, TF-IDF transformation
time, and overall time. Results metrics have shown a significant
difference in speed.

Keywords: TF-IDF, BM-25, Apache spark, Information
retrieval, HPC

A Survey of Retrieval Algorithms and Their
Parallelization in Large-Scale Systems
Suleyman Suleymanzade
Institute of Information Technology, Azerbaijan National Academy of Sciences, Baku,
Azerbaijan, suleyman.suleymanzade.nicat@gmail.az

*Correspondence:
Suleyman Suleymanzade,

Institute of Information
Technology, Azerbaijan

National Academy
of Sciences, Baku,

Azerbaijan, suleyman.
suleymanzade.nicat@

gmail.az

Azerbaijan Journal of High Performance Computing, Vol 4, Issue 2, 2021, pp. 263-266
https://doi.org/10.32010/26166127.2021.4.2.263.266

1. Introduction
One of the main challenges for searching (Kumar, R., & Sharma, S. C., 2018;

Ramli, F., Noah, S. A., & Kurniawan, T. B., 2016, August; Dietz, L., Xiong, C., Dalton,
J., & Meij, E., 2019). information on the Internet is the large amount of available data,
from which users must extract desired content within multiple links. This led to
fundamentally new approaches and strategies for search engines. To create a
successful search system, several problems that arise at different levels (Zheng, P.,
Wu, Z., Sun, J., et al., 2021) and stages of system creation must be solved. Moreover,
there must be research for optimizing these methods to use them in HPC (Lawson, M.,
Gropp, W., & Lofstead, J., 2021). The information retrieval system uses well-ordered
queries from a structured database (Järvelin, K., 2007), which must meet the needs of
users' information resources. For ordering such data, the search engine also includes
document ranking methods. The methods will introduce two well-known methods, such
as TF-IDF and Okapi algorithms. Then, there will be experiments for page ranking in
parallel by using the Apache Spark framework and comparing results with single
cluster approaches.

2. Methods
TF-IDF
TF-IDF (TF - term frequency, IDF (Robertson, S., 2004; Metzler, D., 2008, October;

Schütze, H., Manning, C. D., & Raghavan, P., 2008) - inverse document frequency) is
a ranking function used to evaluate the priority of a word in a document. Documentation
in the original is available in collections of documents (corpus), where a formula defines
TF.

𝑡𝑡𝑡𝑡(𝑡𝑡, 𝑑𝑑) = 	
𝑛𝑛!

∑ 𝑛𝑛""

Where 𝑛𝑛! is the number of occurrences of the term (word) t in document 𝑑𝑑, ∑ 𝑛𝑛""
- is the total number of words in 𝐷𝐷	set of documents.

𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡, 𝐷𝐷) = log
|𝐷𝐷|

|{𝑑𝑑#𝜖𝜖	𝐷𝐷	|𝑡𝑡	𝜖𝜖𝑑𝑑#}|

|𝐷𝐷| - documents number,
|{𝑑𝑑# ∈ 𝐷𝐷	|	𝑡𝑡 ∈ 𝑑𝑑#}| number of documents from document set 𝐷𝐷 where 𝑡𝑡 term is

presented.
The weight of a word is proportional to the frequency of occurrence of this word

in the document and inversely proportional to the frequency of occurrence of the word
in all documents in the collection. Usually, the base of the logarithm is chosen equal to
ten, but this does not play a difference because the ratio of all words remains the same

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡, 𝑑𝑑, 𝐷𝐷) = 𝑡𝑡𝑡𝑡(𝑡𝑡, 𝑑𝑑) × 𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡, 𝐷𝐷)
This method is a classic approach for ranking documents; however, to detect rare

terms that are synonyms of more common words, the TF-IDF method may not be
productive; for this, extended versions of the TF-İDF algorithm are usually used, where
a dictionary of synonyms is selected as a preprocessing for calculating weights "
Synonyms Based Term Weighting Scheme: An Extension to TF.IDF" (Kumari, M., Jain,
A., & Bhatia, A., 2016), in this work, it was proposed to create a cluster domain with a
set of synonyms for words called "Synonyms-Based Term Weighting Scheme" (SBT)
estimated by the formula.

𝑆𝑆𝐵𝐵 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇 ∗ (𝑆𝑆𝑆𝑆 − 𝐼𝐼𝐼𝐼𝐼𝐼)
Where 𝑆𝑆𝑆𝑆 is the set of the synonyms.

Experiment 1
The experiment Amazon Customer (Mudambi, S. M., & Schuff, D., 2010) dataset

was taken with more than 10 million reviews. The data preprocessing included
stemming and lemmatization. Word embedding was produced by hashing vectorizer
(Tito Svenstrup, D., Hansen, J., & Winther, O., 2017; Argerich, L., Zaffaroni, J. T., &
Cano, M. J., 2016), then TF-IDF was calculated corresponding to each review. Data
calculation was produced on Nvidia GTX 1660Ti (Krishnan, A. G., & Goswami, D.,
2021, December) as seen in the result table below the parallel approach (Mezzoudj,
S., Behloul, A., Seghir, R., & Saadna, Y., 2021) with Apache Spark, which gave 3x times
more speed performance concerning the single CPU approach for reading, the word
embedding by hashing gave 3.18 speed up. In row processing 2.5 times and
computation of TFIDF 2.29 times with three parallel processes.

BM-25
BM-25 (Lv, Y., & Zhai, C., 2011, October) is another ranking function based on

𝐵𝐵11 and 𝐵𝐵15 (Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu, M. M., &
Gatford, M., 1995). In the 𝑄𝑄 query, the 𝐵𝐵𝐵𝐵 − 25 function is assembled from the words
𝑞𝑞$, 𝑞𝑞% … 𝑞𝑞&	to evaluate the relevance of document 𝐷𝐷 to the 𝑄𝑄 query:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐷𝐷, 𝑄𝑄) = 	I𝐼𝐼𝐼𝐼𝐼𝐼(𝑞𝑞#)	
𝑓𝑓(𝑞𝑞#, 𝐷𝐷)(𝑘𝑘$ + 1)

𝑓𝑓(𝑞𝑞#, 𝐷𝐷) + 𝑘𝑘$	(1 − 𝑏𝑏 + 𝑏𝑏	 |𝐷𝐷|
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

&

#'$

Where 𝑓𝑓(𝑞𝑞#, 𝐷𝐷) is the frequency of word 𝑞𝑞# in document 𝐷𝐷, |𝐷𝐷| - length of the
document, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 - the average length of the document in the collection 𝑘𝑘$ and 𝑏𝑏 - free
coefficients, in practice usually 𝑘𝑘$ = 2.0	and 𝑏𝑏 = 0.75.

Experiment 2
For the second experiment, the same amazon review [11] dataset was selected,

and the preprocess and hashing were done in the same way as in the first experiment,
but the preprocessing took a long time because of the more complicated model. The
results show that BM-25 computed 1.36 times faster than on a single CPU with three
parallel processes.

Conclusion
For both experiments, the results of the parallel approach show almost 𝑛𝑛-th times

increasing the speed of computation depending on the preprocessing stages. The less
scalable part is the vectorization part in the algorithms and transformation phase in the
BM-25 example.

264

1. Introduction
One of the main challenges for searching (Kumar, R., & Sharma, S. C., 2018;

Ramli, F., Noah, S. A., & Kurniawan, T. B., 2016, August; Dietz, L., Xiong, C., Dalton,
J., & Meij, E., 2019). information on the Internet is the large amount of available data,
from which users must extract desired content within multiple links. This led to
fundamentally new approaches and strategies for search engines. To create a
successful search system, several problems that arise at different levels (Zheng, P.,
Wu, Z., Sun, J., et al., 2021) and stages of system creation must be solved. Moreover,
there must be research for optimizing these methods to use them in HPC (Lawson, M.,
Gropp, W., & Lofstead, J., 2021). The information retrieval system uses well-ordered
queries from a structured database (Järvelin, K., 2007), which must meet the needs of
users' information resources. For ordering such data, the search engine also includes
document ranking methods. The methods will introduce two well-known methods, such
as TF-IDF and Okapi algorithms. Then, there will be experiments for page ranking in
parallel by using the Apache Spark framework and comparing results with single
cluster approaches.

2. Methods
TF-IDF
TF-IDF (TF - term frequency, IDF (Robertson, S., 2004; Metzler, D., 2008, October;

Schütze, H., Manning, C. D., & Raghavan, P., 2008) - inverse document frequency) is
a ranking function used to evaluate the priority of a word in a document. Documentation
in the original is available in collections of documents (corpus), where a formula defines
TF.

𝑡𝑡𝑡𝑡(𝑡𝑡, 𝑑𝑑) = 	
𝑛𝑛!

∑ 𝑛𝑛""

Where 𝑛𝑛! is the number of occurrences of the term (word) t in document 𝑑𝑑, ∑ 𝑛𝑛""
- is the total number of words in 𝐷𝐷	set of documents.

𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡, 𝐷𝐷) = log
|𝐷𝐷|

|{𝑑𝑑#𝜖𝜖	𝐷𝐷	|𝑡𝑡	𝜖𝜖𝑑𝑑#}|

|𝐷𝐷| - documents number,
|{𝑑𝑑# ∈ 𝐷𝐷	|	𝑡𝑡 ∈ 𝑑𝑑#}| number of documents from document set 𝐷𝐷 where 𝑡𝑡 term is

presented.
The weight of a word is proportional to the frequency of occurrence of this word

in the document and inversely proportional to the frequency of occurrence of the word
in all documents in the collection. Usually, the base of the logarithm is chosen equal to
ten, but this does not play a difference because the ratio of all words remains the same

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡, 𝑑𝑑, 𝐷𝐷) = 𝑡𝑡𝑡𝑡(𝑡𝑡, 𝑑𝑑) × 𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡, 𝐷𝐷)
This method is a classic approach for ranking documents; however, to detect rare

terms that are synonyms of more common words, the TF-IDF method may not be
productive; for this, extended versions of the TF-İDF algorithm are usually used, where
a dictionary of synonyms is selected as a preprocessing for calculating weights "
Synonyms Based Term Weighting Scheme: An Extension to TF.IDF" (Kumari, M., Jain,
A., & Bhatia, A., 2016), in this work, it was proposed to create a cluster domain with a
set of synonyms for words called "Synonyms-Based Term Weighting Scheme" (SBT)
estimated by the formula.

𝑆𝑆𝐵𝐵 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇 ∗ (𝑆𝑆𝑆𝑆 − 𝐼𝐼𝐼𝐼𝐼𝐼)
Where 𝑆𝑆𝑆𝑆 is the set of the synonyms.

Experiment 1
The experiment Amazon Customer (Mudambi, S. M., & Schuff, D., 2010) dataset

was taken with more than 10 million reviews. The data preprocessing included
stemming and lemmatization. Word embedding was produced by hashing vectorizer
(Tito Svenstrup, D., Hansen, J., & Winther, O., 2017; Argerich, L., Zaffaroni, J. T., &
Cano, M. J., 2016), then TF-IDF was calculated corresponding to each review. Data
calculation was produced on Nvidia GTX 1660Ti (Krishnan, A. G., & Goswami, D.,
2021, December) as seen in the result table below the parallel approach (Mezzoudj,
S., Behloul, A., Seghir, R., & Saadna, Y., 2021) with Apache Spark, which gave 3x times
more speed performance concerning the single CPU approach for reading, the word
embedding by hashing gave 3.18 speed up. In row processing 2.5 times and
computation of TFIDF 2.29 times with three parallel processes.

BM-25
BM-25 (Lv, Y., & Zhai, C., 2011, October) is another ranking function based on

𝐵𝐵11 and 𝐵𝐵15 (Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu, M. M., &
Gatford, M., 1995). In the 𝑄𝑄 query, the 𝐵𝐵𝐵𝐵 − 25 function is assembled from the words
𝑞𝑞$, 𝑞𝑞% … 𝑞𝑞&	to evaluate the relevance of document 𝐷𝐷 to the 𝑄𝑄 query:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐷𝐷, 𝑄𝑄) = 	I𝐼𝐼𝐼𝐼𝐼𝐼(𝑞𝑞#)	
𝑓𝑓(𝑞𝑞#, 𝐷𝐷)(𝑘𝑘$ + 1)

𝑓𝑓(𝑞𝑞#, 𝐷𝐷) + 𝑘𝑘$	(1 − 𝑏𝑏 + 𝑏𝑏	 |𝐷𝐷|
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

&

#'$

Where 𝑓𝑓(𝑞𝑞#, 𝐷𝐷) is the frequency of word 𝑞𝑞# in document 𝐷𝐷, |𝐷𝐷| - length of the
document, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 - the average length of the document in the collection 𝑘𝑘$ and 𝑏𝑏 - free
coefficients, in practice usually 𝑘𝑘$ = 2.0	and 𝑏𝑏 = 0.75.

Experiment 2
For the second experiment, the same amazon review [11] dataset was selected,

and the preprocess and hashing were done in the same way as in the first experiment,
but the preprocessing took a long time because of the more complicated model. The
results show that BM-25 computed 1.36 times faster than on a single CPU with three
parallel processes.

Conclusion
For both experiments, the results of the parallel approach show almost 𝑛𝑛-th times

increasing the speed of computation depending on the preprocessing stages. The less
scalable part is the vectorization part in the algorithms and transformation phase in the
BM-25 example.

1. Introduction
One of the main challenges for searching (Kumar, R., & Sharma, S. C., 2018;

Ramli, F., Noah, S. A., & Kurniawan, T. B., 2016, August; Dietz, L., Xiong, C., Dalton,
J., & Meij, E., 2019). information on the Internet is the large amount of available data,
from which users must extract desired content within multiple links. This led to
fundamentally new approaches and strategies for search engines. To create a
successful search system, several problems that arise at different levels (Zheng, P.,
Wu, Z., Sun, J., et al., 2021) and stages of system creation must be solved. Moreover,
there must be research for optimizing these methods to use them in HPC (Lawson, M.,
Gropp, W., & Lofstead, J., 2021). The information retrieval system uses well-ordered
queries from a structured database (Järvelin, K., 2007), which must meet the needs of
users' information resources. For ordering such data, the search engine also includes
document ranking methods. The methods will introduce two well-known methods, such
as TF-IDF and Okapi algorithms. Then, there will be experiments for page ranking in
parallel by using the Apache Spark framework and comparing results with single
cluster approaches.

2. Methods
TF-IDF
TF-IDF (TF - term frequency, IDF (Robertson, S., 2004; Metzler, D., 2008, October;

Schütze, H., Manning, C. D., & Raghavan, P., 2008) - inverse document frequency) is
a ranking function used to evaluate the priority of a word in a document. Documentation
in the original is available in collections of documents (corpus), where a formula defines
TF.

𝑡𝑡𝑡𝑡(𝑡𝑡, 𝑑𝑑) = 	
𝑛𝑛!

∑ 𝑛𝑛""

Where 𝑛𝑛! is the number of occurrences of the term (word) t in document 𝑑𝑑, ∑ 𝑛𝑛""
- is the total number of words in 𝐷𝐷	set of documents.

𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡, 𝐷𝐷) = log
|𝐷𝐷|

|{𝑑𝑑#𝜖𝜖	𝐷𝐷	|𝑡𝑡	𝜖𝜖𝑑𝑑#}|

|𝐷𝐷| - documents number,
|{𝑑𝑑# ∈ 𝐷𝐷	|	𝑡𝑡 ∈ 𝑑𝑑#}| number of documents from document set 𝐷𝐷 where 𝑡𝑡 term is

presented.
The weight of a word is proportional to the frequency of occurrence of this word

in the document and inversely proportional to the frequency of occurrence of the word
in all documents in the collection. Usually, the base of the logarithm is chosen equal to
ten, but this does not play a difference because the ratio of all words remains the same

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡, 𝑑𝑑, 𝐷𝐷) = 𝑡𝑡𝑡𝑡(𝑡𝑡, 𝑑𝑑) × 𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡, 𝐷𝐷)
This method is a classic approach for ranking documents; however, to detect rare

terms that are synonyms of more common words, the TF-IDF method may not be
productive; for this, extended versions of the TF-İDF algorithm are usually used, where
a dictionary of synonyms is selected as a preprocessing for calculating weights "
Synonyms Based Term Weighting Scheme: An Extension to TF.IDF" (Kumari, M., Jain,
A., & Bhatia, A., 2016), in this work, it was proposed to create a cluster domain with a
set of synonyms for words called "Synonyms-Based Term Weighting Scheme" (SBT)
estimated by the formula.

𝑆𝑆𝐵𝐵 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇 ∗ (𝑆𝑆𝑆𝑆 − 𝐼𝐼𝐼𝐼𝐼𝐼)
Where 𝑆𝑆𝑆𝑆 is the set of the synonyms.

Experiment 1
The experiment Amazon Customer (Mudambi, S. M., & Schuff, D., 2010) dataset

was taken with more than 10 million reviews. The data preprocessing included
stemming and lemmatization. Word embedding was produced by hashing vectorizer
(Tito Svenstrup, D., Hansen, J., & Winther, O., 2017; Argerich, L., Zaffaroni, J. T., &
Cano, M. J., 2016), then TF-IDF was calculated corresponding to each review. Data
calculation was produced on Nvidia GTX 1660Ti (Krishnan, A. G., & Goswami, D.,
2021, December) as seen in the result table below the parallel approach (Mezzoudj,
S., Behloul, A., Seghir, R., & Saadna, Y., 2021) with Apache Spark, which gave 3x times
more speed performance concerning the single CPU approach for reading, the word
embedding by hashing gave 3.18 speed up. In row processing 2.5 times and
computation of TFIDF 2.29 times with three parallel processes.

BM-25
BM-25 (Lv, Y., & Zhai, C., 2011, October) is another ranking function based on

𝐵𝐵11 and 𝐵𝐵15 (Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu, M. M., &
Gatford, M., 1995). In the 𝑄𝑄 query, the 𝐵𝐵𝐵𝐵 − 25 function is assembled from the words
𝑞𝑞$, 𝑞𝑞% … 𝑞𝑞&	to evaluate the relevance of document 𝐷𝐷 to the 𝑄𝑄 query:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐷𝐷, 𝑄𝑄) = 	I𝐼𝐼𝐼𝐼𝐼𝐼(𝑞𝑞#)	
𝑓𝑓(𝑞𝑞#, 𝐷𝐷)(𝑘𝑘$ + 1)

𝑓𝑓(𝑞𝑞#, 𝐷𝐷) + 𝑘𝑘$	(1 − 𝑏𝑏 + 𝑏𝑏	 |𝐷𝐷|
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

&

#'$

Where 𝑓𝑓(𝑞𝑞#, 𝐷𝐷) is the frequency of word 𝑞𝑞# in document 𝐷𝐷, |𝐷𝐷| - length of the
document, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 - the average length of the document in the collection 𝑘𝑘$ and 𝑏𝑏 - free
coefficients, in practice usually 𝑘𝑘$ = 2.0	and 𝑏𝑏 = 0.75.

Experiment 2
For the second experiment, the same amazon review [11] dataset was selected,

and the preprocess and hashing were done in the same way as in the first experiment,
but the preprocessing took a long time because of the more complicated model. The
results show that BM-25 computed 1.36 times faster than on a single CPU with three
parallel processes.

Conclusion
For both experiments, the results of the parallel approach show almost 𝑛𝑛-th times

increasing the speed of computation depending on the preprocessing stages. The less
scalable part is the vectorization part in the algorithms and transformation phase in the
BM-25 example.

overall Reading Hashing TfIdf trans-
former

preprocess rows work-
ers

run

2123.623687 26.286626 731.965263 1123.351882 1241.842862 2050377 1 1

Parallel with Apache Spark
818.24355 8.542342 230.478812 489.765313 489.765313 2050377 3 1

Suleyman Suleymanzade

265

1. Introduction
One of the main challenges for searching (Kumar, R., & Sharma, S. C., 2018;

Ramli, F., Noah, S. A., & Kurniawan, T. B., 2016, August; Dietz, L., Xiong, C., Dalton,
J., & Meij, E., 2019). information on the Internet is the large amount of available data,
from which users must extract desired content within multiple links. This led to
fundamentally new approaches and strategies for search engines. To create a
successful search system, several problems that arise at different levels (Zheng, P.,
Wu, Z., Sun, J., et al., 2021) and stages of system creation must be solved. Moreover,
there must be research for optimizing these methods to use them in HPC (Lawson, M.,
Gropp, W., & Lofstead, J., 2021). The information retrieval system uses well-ordered
queries from a structured database (Järvelin, K., 2007), which must meet the needs of
users' information resources. For ordering such data, the search engine also includes
document ranking methods. The methods will introduce two well-known methods, such
as TF-IDF and Okapi algorithms. Then, there will be experiments for page ranking in
parallel by using the Apache Spark framework and comparing results with single
cluster approaches.

2. Methods
TF-IDF
TF-IDF (TF - term frequency, IDF (Robertson, S., 2004; Metzler, D., 2008, October;

Schütze, H., Manning, C. D., & Raghavan, P., 2008) - inverse document frequency) is
a ranking function used to evaluate the priority of a word in a document. Documentation
in the original is available in collections of documents (corpus), where a formula defines
TF.

𝑡𝑡𝑡𝑡(𝑡𝑡, 𝑑𝑑) = 	
𝑛𝑛!

∑ 𝑛𝑛""

Where 𝑛𝑛! is the number of occurrences of the term (word) t in document 𝑑𝑑, ∑ 𝑛𝑛""
- is the total number of words in 𝐷𝐷	set of documents.

𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡, 𝐷𝐷) = log
|𝐷𝐷|

|{𝑑𝑑#𝜖𝜖	𝐷𝐷	|𝑡𝑡	𝜖𝜖𝑑𝑑#}|

|𝐷𝐷| - documents number,
|{𝑑𝑑# ∈ 𝐷𝐷	|	𝑡𝑡 ∈ 𝑑𝑑#}| number of documents from document set 𝐷𝐷 where 𝑡𝑡 term is

presented.
The weight of a word is proportional to the frequency of occurrence of this word

in the document and inversely proportional to the frequency of occurrence of the word
in all documents in the collection. Usually, the base of the logarithm is chosen equal to
ten, but this does not play a difference because the ratio of all words remains the same

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡, 𝑑𝑑, 𝐷𝐷) = 𝑡𝑡𝑡𝑡(𝑡𝑡, 𝑑𝑑) × 𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡, 𝐷𝐷)
This method is a classic approach for ranking documents; however, to detect rare

terms that are synonyms of more common words, the TF-IDF method may not be
productive; for this, extended versions of the TF-İDF algorithm are usually used, where
a dictionary of synonyms is selected as a preprocessing for calculating weights "
Synonyms Based Term Weighting Scheme: An Extension to TF.IDF" (Kumari, M., Jain,
A., & Bhatia, A., 2016), in this work, it was proposed to create a cluster domain with a
set of synonyms for words called "Synonyms-Based Term Weighting Scheme" (SBT)
estimated by the formula.

𝑆𝑆𝐵𝐵 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇 ∗ (𝑆𝑆𝑆𝑆 − 𝐼𝐼𝐼𝐼𝐼𝐼)
Where 𝑆𝑆𝑆𝑆 is the set of the synonyms.

Experiment 1
The experiment Amazon Customer (Mudambi, S. M., & Schuff, D., 2010) dataset

was taken with more than 10 million reviews. The data preprocessing included
stemming and lemmatization. Word embedding was produced by hashing vectorizer
(Tito Svenstrup, D., Hansen, J., & Winther, O., 2017; Argerich, L., Zaffaroni, J. T., &
Cano, M. J., 2016), then TF-IDF was calculated corresponding to each review. Data
calculation was produced on Nvidia GTX 1660Ti (Krishnan, A. G., & Goswami, D.,
2021, December) as seen in the result table below the parallel approach (Mezzoudj,
S., Behloul, A., Seghir, R., & Saadna, Y., 2021) with Apache Spark, which gave 3x times
more speed performance concerning the single CPU approach for reading, the word
embedding by hashing gave 3.18 speed up. In row processing 2.5 times and
computation of TFIDF 2.29 times with three parallel processes.

BM-25
BM-25 (Lv, Y., & Zhai, C., 2011, October) is another ranking function based on

𝐵𝐵11 and 𝐵𝐵15 (Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu, M. M., &
Gatford, M., 1995). In the 𝑄𝑄 query, the 𝐵𝐵𝐵𝐵 − 25 function is assembled from the words
𝑞𝑞$, 𝑞𝑞% … 𝑞𝑞&	to evaluate the relevance of document 𝐷𝐷 to the 𝑄𝑄 query:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐷𝐷, 𝑄𝑄) = 	I𝐼𝐼𝐼𝐼𝐼𝐼(𝑞𝑞#)	
𝑓𝑓(𝑞𝑞#, 𝐷𝐷)(𝑘𝑘$ + 1)

𝑓𝑓(𝑞𝑞#, 𝐷𝐷) + 𝑘𝑘$	(1 − 𝑏𝑏 + 𝑏𝑏	 |𝐷𝐷|
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

&

#'$

Where 𝑓𝑓(𝑞𝑞#, 𝐷𝐷) is the frequency of word 𝑞𝑞# in document 𝐷𝐷, |𝐷𝐷| - length of the
document, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 - the average length of the document in the collection 𝑘𝑘$ and 𝑏𝑏 - free
coefficients, in practice usually 𝑘𝑘$ = 2.0	and 𝑏𝑏 = 0.75.

Experiment 2
For the second experiment, the same amazon review [11] dataset was selected,

and the preprocess and hashing were done in the same way as in the first experiment,
but the preprocessing took a long time because of the more complicated model. The
results show that BM-25 computed 1.36 times faster than on a single CPU with three
parallel processes.

Conclusion
For both experiments, the results of the parallel approach show almost 𝑛𝑛-th times

increasing the speed of computation depending on the preprocessing stages. The less
scalable part is the vectorization part in the algorithms and transformation phase in the
BM-25 example.

1. Introduction
One of the main challenges for searching (Kumar, R., & Sharma, S. C., 2018;

Ramli, F., Noah, S. A., & Kurniawan, T. B., 2016, August; Dietz, L., Xiong, C., Dalton,
J., & Meij, E., 2019). information on the Internet is the large amount of available data,
from which users must extract desired content within multiple links. This led to
fundamentally new approaches and strategies for search engines. To create a
successful search system, several problems that arise at different levels (Zheng, P.,
Wu, Z., Sun, J., et al., 2021) and stages of system creation must be solved. Moreover,
there must be research for optimizing these methods to use them in HPC (Lawson, M.,
Gropp, W., & Lofstead, J., 2021). The information retrieval system uses well-ordered
queries from a structured database (Järvelin, K., 2007), which must meet the needs of
users' information resources. For ordering such data, the search engine also includes
document ranking methods. The methods will introduce two well-known methods, such
as TF-IDF and Okapi algorithms. Then, there will be experiments for page ranking in
parallel by using the Apache Spark framework and comparing results with single
cluster approaches.

2. Methods
TF-IDF
TF-IDF (TF - term frequency, IDF (Robertson, S., 2004; Metzler, D., 2008, October;

Schütze, H., Manning, C. D., & Raghavan, P., 2008) - inverse document frequency) is
a ranking function used to evaluate the priority of a word in a document. Documentation
in the original is available in collections of documents (corpus), where a formula defines
TF.

𝑡𝑡𝑡𝑡(𝑡𝑡, 𝑑𝑑) = 	
𝑛𝑛!

∑ 𝑛𝑛""

Where 𝑛𝑛! is the number of occurrences of the term (word) t in document 𝑑𝑑, ∑ 𝑛𝑛""
- is the total number of words in 𝐷𝐷	set of documents.

𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡, 𝐷𝐷) = log
|𝐷𝐷|

|{𝑑𝑑#𝜖𝜖	𝐷𝐷	|𝑡𝑡	𝜖𝜖𝑑𝑑#}|

|𝐷𝐷| - documents number,
|{𝑑𝑑# ∈ 𝐷𝐷	|	𝑡𝑡 ∈ 𝑑𝑑#}| number of documents from document set 𝐷𝐷 where 𝑡𝑡 term is

presented.
The weight of a word is proportional to the frequency of occurrence of this word

in the document and inversely proportional to the frequency of occurrence of the word
in all documents in the collection. Usually, the base of the logarithm is chosen equal to
ten, but this does not play a difference because the ratio of all words remains the same

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡, 𝑑𝑑, 𝐷𝐷) = 𝑡𝑡𝑡𝑡(𝑡𝑡, 𝑑𝑑) × 𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡, 𝐷𝐷)
This method is a classic approach for ranking documents; however, to detect rare

terms that are synonyms of more common words, the TF-IDF method may not be
productive; for this, extended versions of the TF-İDF algorithm are usually used, where
a dictionary of synonyms is selected as a preprocessing for calculating weights "
Synonyms Based Term Weighting Scheme: An Extension to TF.IDF" (Kumari, M., Jain,
A., & Bhatia, A., 2016), in this work, it was proposed to create a cluster domain with a
set of synonyms for words called "Synonyms-Based Term Weighting Scheme" (SBT)
estimated by the formula.

𝑆𝑆𝐵𝐵 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇 ∗ (𝑆𝑆𝑆𝑆 − 𝐼𝐼𝐼𝐼𝐼𝐼)
Where 𝑆𝑆𝑆𝑆 is the set of the synonyms.

Experiment 1
The experiment Amazon Customer (Mudambi, S. M., & Schuff, D., 2010) dataset

was taken with more than 10 million reviews. The data preprocessing included
stemming and lemmatization. Word embedding was produced by hashing vectorizer
(Tito Svenstrup, D., Hansen, J., & Winther, O., 2017; Argerich, L., Zaffaroni, J. T., &
Cano, M. J., 2016), then TF-IDF was calculated corresponding to each review. Data
calculation was produced on Nvidia GTX 1660Ti (Krishnan, A. G., & Goswami, D.,
2021, December) as seen in the result table below the parallel approach (Mezzoudj,
S., Behloul, A., Seghir, R., & Saadna, Y., 2021) with Apache Spark, which gave 3x times
more speed performance concerning the single CPU approach for reading, the word
embedding by hashing gave 3.18 speed up. In row processing 2.5 times and
computation of TFIDF 2.29 times with three parallel processes.

BM-25
BM-25 (Lv, Y., & Zhai, C., 2011, October) is another ranking function based on

𝐵𝐵11 and 𝐵𝐵15 (Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu, M. M., &
Gatford, M., 1995). In the 𝑄𝑄 query, the 𝐵𝐵𝐵𝐵 − 25 function is assembled from the words
𝑞𝑞$, 𝑞𝑞% … 𝑞𝑞&	to evaluate the relevance of document 𝐷𝐷 to the 𝑄𝑄 query:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐷𝐷, 𝑄𝑄) = 	I𝐼𝐼𝐼𝐼𝐼𝐼(𝑞𝑞#)	
𝑓𝑓(𝑞𝑞#, 𝐷𝐷)(𝑘𝑘$ + 1)

𝑓𝑓(𝑞𝑞#, 𝐷𝐷) + 𝑘𝑘$	(1 − 𝑏𝑏 + 𝑏𝑏	 |𝐷𝐷|
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

&

#'$

Where 𝑓𝑓(𝑞𝑞#, 𝐷𝐷) is the frequency of word 𝑞𝑞# in document 𝐷𝐷, |𝐷𝐷| - length of the
document, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 - the average length of the document in the collection 𝑘𝑘$ and 𝑏𝑏 - free
coefficients, in practice usually 𝑘𝑘$ = 2.0	and 𝑏𝑏 = 0.75.

Experiment 2
For the second experiment, the same amazon review [11] dataset was selected,

and the preprocess and hashing were done in the same way as in the first experiment,
but the preprocessing took a long time because of the more complicated model. The
results show that BM-25 computed 1.36 times faster than on a single CPU with three
parallel processes.

Conclusion
For both experiments, the results of the parallel approach show almost 𝑛𝑛-th times

increasing the speed of computation depending on the preprocessing stages. The less
scalable part is the vectorization part in the algorithms and transformation phase in the
BM-25 example.

Overall Reading Hashing BM25 trans-
former

Preprocess Rows Work-
ers

Run

2123.623687 27.156626 723.343562 315.255326 1934.984372 2050377 1 1

Parallel with Apache Spark
1211.53112 8.224242 251.254812 230.330112 599.356313 2050377 3 1

Azerbaijan Journal of High Performance Computing, 4 (2), 2021

266

References
Argerich, L., Zaffaroni, J. T., & Cano, M. J. (2016). Hash2vec, feature hashing for

word embeddings. arXiv preprint arXiv:1608.08940.
Dietz, L., Xiong, C., Dalton, J., & Meij, E. (2019). Special issue on knowledge graphs

and semantics in text analysis and retrieval. Information Retrieval Journal, 22(3), 229-
231.

Järvelin, K. (2007). An analysis of two approaches in information retrieval: From
frameworks to study designs. Journal of the American Society for Information Science
and Technology, 58(7), 971-986.

Krishnan, A. G., & Goswami, D. (2021, December). Multi-Stage Memory Efficient
Strassen’s Matrix Multiplication on GPU. In 2021 IEEE 28th International Conference on
High Performance Computing, Data, and Analytics (HiPC) (pp. 212-221). IEEE.

Kumar, R., & Sharma, S. C. (2018). Information retrieval system: An overview, is-
sues, and challenges. International Journal of Technology Diffusion (IJTD), 9(1), 1-10.

Kumari, M., Jain, A., & Bhatia, A. (2016). Synonyms based term weighting scheme:
An extension to TF. IDF. Procedia Computer Science, 89, 555-561.

Lawson, M., Gropp, W., & Lofstead, J. (2021). Exploring Spatial Indexing for Accel-
erated Feature Retrieval in HPC. arXiv preprint arXiv:2106.13972.

Lv, Y., & Zhai, C. (2011, October). Adaptive term frequency normalization for BM25.
In Proceedings of the 20th ACM international conference on Information and knowl-
edge management (pp. 1985-1988).

Metzler, D. (2008, October). Generalized inverse document frequency. In Proceedings
of the 17th ACM conference on Information and knowledge management (pp. 399-408).

Mezzoudj, S., Behloul, A., Seghir, R., & Saadna, Y. (2021). A parallel content-based
image retrieval system using spark and tachyon frameworks. Journal of King Saud
University-Computer and Information Sciences, 33(2), 141-149.

Mudambi, S. M., & Schuff, D. (2010). Research note: What makes a helpful online
review? A study of customer reviews on Amazon. com. MIS quarterly, 185-200.

Ramli, F., Noah, S. A., & Kurniawan, T. B. (2016, August). Ontology-based infor-
mation retrieval for historical documents. In 2016 Third International Conference on
Information Retrieval and Knowledge Management (CAMP) (pp. 55-59). IEEE.

Robertson, S. (2004). Understanding inverse document frequency: on theoretical
arguments for IDF. Journal of documentation.

Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu, M. M., & Gatford, M.
(1995). Okapi at TREC-3. Nist Special Publication Sp, 109, 109.

Schütze, H., Manning, C. D., & Raghavan, P. (2008). Introduction to information
retrieval (Vol. 39, pp. 234-265). Cambridge: Cambridge University Press.

Tito Svenstrup, D., Hansen, J., & Winther, O. (2017). Hash embeddings for efficient
word representations. Advances in neural information processing systems, 30.

Zheng, P., Wu, Z., Sun, J., et al. (2021). A parallel unmixing-based content retriev-
al system for distributed hyperspectral imagery repository on cloud computing plat-
forms. Remote Sensing, 13(2), 176.

Submitted: 10.09.2021
Accepted: 29.11.2021

Suleyman Suleymanzade

