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Abstract
This paper proposes a vaccination approach based on ro-
bust control for the SEIR (susceptible plus exposed plus 
infectious plus recovered populations) model of epidemic 
diseases. First, a classic sliding mode controller is investi-
gated based on the SEIR model. Next, fuzzy logic is utilized 
to better approximate the uncertainties in the SEIR system 
using the sliding mode controller. Therefore, the proposed 
controller is a fuzzy sliding mode controller, which, com-
pared to the sliding mode controller, provides an appropriate 
estimation of systems' actual parameters and removes the 
chattering phenomenon from the control signal. The stability 
of the controlled system is guaranteed using the Lyapunov 
theory simulations in which the classical sliding mode and 
the proposed controllers are compared, Using data from 
previous articles. Simulation results show that the proposed 
controller eliminates the susceptible subpopulation, incubat-
ed disease, and infectious diseases, eradicating the disease. 
Comparison with other methods reveals the better efficiency 
of the proposed method.
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1. Introduction 
In the past few years, epidemic disease prevalence (e.g., Ebola, H1N1, H7N9 

influenza, and COVID-19) has caused physical, mental, and economic harm to 
societies and governments. This has led both private and public sections to pay more 
attention to this issue and perform more studies about how to control, observe and act 
in such situations (Yang, F., Liu, H., Qi, H., & Liu, X., 2016, December). 

Failing to control the disease is perilous, especially when facing an increase in 
travelers worldwide. Mathematical models describing infectious disease populations 
play an essential role in understanding the outbreak and control of the disease in the 
long term. Numerous epidemic frequency models have been proposed and analyzed 
over recent years to predict the spread of infectious disease in a region (Ibeas, A., De 
La Sen, M., & Alonso-Quesada, S., 2014; Di Giamberardino, P., & Iacoviello, D., 2017). 

Depending on the behavior of the epidemic and assuming that the incubation 
period is neglected, there can be two models: SIR and SEIR. One of these models 
divides the total population into subpopulations based on people's conditions. The first 
subpopulation is represented by S (meaning people susceptible to disease). The next 
is shown by E (exposed, meaning infected people, but symptoms are not apparent). 
The third is I (meaning infectious people). The last subpopulation is R (meaning people 
who are recovered or are immune to the disease). In addition, based on the fact that 
the immunity of recovered individuals to the disease is permanent or temporary, two 
other models can be considered: SIRS and SEIRS (McCluskey, C. C., 2010; Yi, N., 
Zhang, Q., Mao, K., Yang, D., & Li, Q., 2009). 

The main objective of this paper is to design a robust vaccination strategy capable 
of eradicating infectious diseases in a population, regardless of unknown parameters' 
uncertainties of the disease. 

The rest of this paper is structured as follows: Section 2, previous works are studied. 
Section 3 describes the SEIR epidemic model. Section 4 discusses the classic sliding 
mode controller. The fuzzy controller is described in section 5. Section 6 proposes the 
fuzzy sliding mode controller. Simulations and discussions to investigate the efficiency 
of the proposed controller are provided in section 7. Finally, section 8 concludes the 
paper. 

 
2. Related Work 
Studying epidemic diseases plays an essential role in the world as it provides 

scientists with more knowledge to manage diseases. Therefore, this section mentions 
recent studies using different methods based on control theory for epidemic disease 
models such as SIR and SEIR.   

In (Ibeas, A., de la Sen, M., & Alonso-Quesada, S., 2014, December), Micken's 
discretizing method is used to obtain the discrete-time SEIR epidemic model. Then, an 
adaptive controller is devised to ensure that estimated parameters are non-negative 
and that the disease is thoroughly eradicated. A feedback-based vaccination strategy 
for the SEIR epidemic model is proposed in (Ibeas, A., de la Sen, M., Alonso-Quesada, 
S., & Nistal, R., 2015, May). This strategy hinges on the relative stability concept. In 
this vaccination strategy, the whole susceptible population does not need to converge 
to 0, and it can be under a certain threshold. Directly resulting from this method, not 
every person in the population needs to be vaccinated. Thus, this method is more 
economical. Yan Cheng has investigated the delayed version of the epidemic SEIR 
model in (Cheng, Y., Pan, Q., & He, M., 2013) with a nonlinear prevalence rate based 
on continuous treatment and impulsive vaccination. Seasonal weather changes can 
impact the infectious disease spread vastly. Therefore, a study of the epidemic disease 
SEIR model based on periodic impulsive vaccination and seasonal contact rate is 
presented in (Bai, Z., & Zhou, Y., 2012). 

The vaccination strategy in (Alonso-Quesada, S., De la Sen, M., Agarwal, R. P., & 
Ibeas, A., 2012) is based on a time-continuous nonlinear control rule that linearizes the 
output-input feedback. An observer is fitted in the general control scheme, To provide 
an online estimate of the population prone to disease and diseased population when 
an online measurement is not feasible. 

In (Jiao, H., & Shen, Q., 2020), an SEIR epidemic model was introduced to analyze 
the significant characteristics such as positivity and boundedness. Moreover, it 
proposed an approach to deal with the primary reproduction number. A sliding mode 
control strategy was also used to limit the number of infectious people to the desired 
value. However, model parameters are considered to be known. A fuzzy fractional 
strategy was used in (Dong, N. P., Long, H. V., & Khastan, A., 2020), in which epidemic 
models were investigated in the presence of uncertain parameters.  

Asier Ibeas et al. have designed a sliding mode controller for the epidemic SEIR 
model (Ibeas, A., De La Sen, M., & Alonso-Quesada, S., 2014) In this paper, a controller 
is designed, supposing that specific knowledge about the upper limit of the uncertainty 
signal is acquired. Then, this condition is eliminated by designing an adaptive sliding 
mode control system. Furthermore, the SEIR epidemic model is developed based on 
a fractional degree dynamic (Ibeas, A., Shafi, M., Ishfaq, M., & Ali, M., 2017). 

Choosing the design method of the controller depends on the controlled system 
and its definition of appropriate performance. Systems are usually nonlinear with 
uncertainties  (Schoukens, J., & Ljung, L., 2019). These uncertainties can be caused 
by imprecise recognition of the controlled system and noise and distortion (Mattsson, 
P., Zachariah, D., & Stoica, P., 2018). Traditional nonlinear control methods are 
primarily based on a system model, whereas system identification is needed when the 
system model is non-existent. System identification might introduce uncertainties 
caused by the imprecise recognition of system parameters. Therefore, it is reasonable 
to use proper control methods, which are not dependent on the system model and are 
capable of adequately covering all uncertainties (G. Drakopoulos, P. Mylonas and S. 
Sioutas, 2019). This leads us to intelligent controllers such as fuzzy logic and neural 
networks. (Wu, S. J., & Lin, C. T., 2000). These controllers facilitate different abilities, 
including various structure designs based on needs, training, and expertise (Jang, J. 
S., 1992, March). Classic controllers' strong background in analysis and proof of 
stability on one hand and system model independency of the intelligent controllers 
makes it considerably tangible to combine these two types of controllers to obtain a 
superior controller (Jang, J. S., 1992, March; Lee, H., Kim, E., Kang, H. J., & Park, M., 
1998). In (Manthouri, M., Aghajari, Z., & Safary, S., 2022), a reliable processing system 
for blood samples and classifying five types of white blood cells in microscopic images 
is designed. The Gram-Schmidt algorithm is used for segmentation purposes. Scale-
Invariant Feature Transform (SIFT) feature detection technique with a deep 
convolutional neural network is applied to classify different types of white blood cells. 

This paper proposes a combination of adaptive fuzzy controllers with a classic 
sliding mode, Considering un-modeled dynamics and the presence of uncertainties in 
unknown parameters. This way, the gain of the switching part of the system's sliding 
mode control rule, which corresponds to compensating the difference between actual 
and nominal values of the system, is estimated through fuzzy control. This is followed 
by a discussion over the improvement of the system's output, parameters' and 
functions' estimations, and a comparison to the classic sliding mode controller 
(Ohtake, H., Tanaka, K., & Wang, H. O., 2006). An analytic vaccination policy using 
only the inaccurate information of the infected is established for a susceptible-infected-
recovered epidemic model based on Takagi-Sugeno (T-S) fuzzy model presented 
(Lee, H. J., 2022). 

 
3. SEIR Model Characteristics 



144
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In the past few years, epidemic disease prevalence (e.g., Ebola, H1N1, H7N9 

influenza, and COVID-19) has caused physical, mental, and economic harm to 
societies and governments. This has led both private and public sections to pay more 
attention to this issue and perform more studies about how to control, observe and act 
in such situations (Yang, F., Liu, H., Qi, H., & Liu, X., 2016, December). 

Failing to control the disease is perilous, especially when facing an increase in 
travelers worldwide. Mathematical models describing infectious disease populations 
play an essential role in understanding the outbreak and control of the disease in the 
long term. Numerous epidemic frequency models have been proposed and analyzed 
over recent years to predict the spread of infectious disease in a region (Ibeas, A., De 
La Sen, M., & Alonso-Quesada, S., 2014; Di Giamberardino, P., & Iacoviello, D., 2017). 

Depending on the behavior of the epidemic and assuming that the incubation 
period is neglected, there can be two models: SIR and SEIR. One of these models 
divides the total population into subpopulations based on people's conditions. The first 
subpopulation is represented by S (meaning people susceptible to disease). The next 
is shown by E (exposed, meaning infected people, but symptoms are not apparent). 
The third is I (meaning infectious people). The last subpopulation is R (meaning people 
who are recovered or are immune to the disease). In addition, based on the fact that 
the immunity of recovered individuals to the disease is permanent or temporary, two 
other models can be considered: SIRS and SEIRS (McCluskey, C. C., 2010; Yi, N., 
Zhang, Q., Mao, K., Yang, D., & Li, Q., 2009). 

The main objective of this paper is to design a robust vaccination strategy capable 
of eradicating infectious diseases in a population, regardless of unknown parameters' 
uncertainties of the disease. 

The rest of this paper is structured as follows: Section 2, previous works are studied. 
Section 3 describes the SEIR epidemic model. Section 4 discusses the classic sliding 
mode controller. The fuzzy controller is described in section 5. Section 6 proposes the 
fuzzy sliding mode controller. Simulations and discussions to investigate the efficiency 
of the proposed controller are provided in section 7. Finally, section 8 concludes the 
paper. 
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scientists with more knowledge to manage diseases. Therefore, this section mentions 
recent studies using different methods based on control theory for epidemic disease 
models such as SIR and SEIR.   

In (Ibeas, A., de la Sen, M., & Alonso-Quesada, S., 2014, December), Micken's 
discretizing method is used to obtain the discrete-time SEIR epidemic model. Then, an 
adaptive controller is devised to ensure that estimated parameters are non-negative 
and that the disease is thoroughly eradicated. A feedback-based vaccination strategy 
for the SEIR epidemic model is proposed in (Ibeas, A., de la Sen, M., Alonso-Quesada, 
S., & Nistal, R., 2015, May). This strategy hinges on the relative stability concept. In 
this vaccination strategy, the whole susceptible population does not need to converge 
to 0, and it can be under a certain threshold. Directly resulting from this method, not 
every person in the population needs to be vaccinated. Thus, this method is more 
economical. Yan Cheng has investigated the delayed version of the epidemic SEIR 
model in (Cheng, Y., Pan, Q., & He, M., 2013) with a nonlinear prevalence rate based 
on continuous treatment and impulsive vaccination. Seasonal weather changes can 
impact the infectious disease spread vastly. Therefore, a study of the epidemic disease 
SEIR model based on periodic impulsive vaccination and seasonal contact rate is 
presented in (Bai, Z., & Zhou, Y., 2012). 

The vaccination strategy in (Alonso-Quesada, S., De la Sen, M., Agarwal, R. P., & 
Ibeas, A., 2012) is based on a time-continuous nonlinear control rule that linearizes the 
output-input feedback. An observer is fitted in the general control scheme, To provide 
an online estimate of the population prone to disease and diseased population when 
an online measurement is not feasible. 

In (Jiao, H., & Shen, Q., 2020), an SEIR epidemic model was introduced to analyze 
the significant characteristics such as positivity and boundedness. Moreover, it 
proposed an approach to deal with the primary reproduction number. A sliding mode 
control strategy was also used to limit the number of infectious people to the desired 
value. However, model parameters are considered to be known. A fuzzy fractional 
strategy was used in (Dong, N. P., Long, H. V., & Khastan, A., 2020), in which epidemic 
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Asier Ibeas et al. have designed a sliding mode controller for the epidemic SEIR 
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is designed, supposing that specific knowledge about the upper limit of the uncertainty 
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uncertainties  (Schoukens, J., & Ljung, L., 2019). These uncertainties can be caused 
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P., Zachariah, D., & Stoica, P., 2018). Traditional nonlinear control methods are 
primarily based on a system model, whereas system identification is needed when the 
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caused by the imprecise recognition of system parameters. Therefore, it is reasonable 
to use proper control methods, which are not dependent on the system model and are 
capable of adequately covering all uncertainties (G. Drakopoulos, P. Mylonas and S. 
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stability on one hand and system model independency of the intelligent controllers 
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superior controller (Jang, J. S., 1992, March; Lee, H., Kim, E., Kang, H. J., & Park, M., 
1998). In (Manthouri, M., Aghajari, Z., & Safary, S., 2022), a reliable processing system 
for blood samples and classifying five types of white blood cells in microscopic images 
is designed. The Gram-Schmidt algorithm is used for segmentation purposes. Scale-
Invariant Feature Transform (SIFT) feature detection technique with a deep 
convolutional neural network is applied to classify different types of white blood cells. 

This paper proposes a combination of adaptive fuzzy controllers with a classic 
sliding mode, Considering un-modeled dynamics and the presence of uncertainties in 
unknown parameters. This way, the gain of the switching part of the system's sliding 
mode control rule, which corresponds to compensating the difference between actual 
and nominal values of the system, is estimated through fuzzy control. This is followed 
by a discussion over the improvement of the system's output, parameters' and 
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1. Introduction 
In the past few years, epidemic disease prevalence (e.g., Ebola, H1N1, H7N9 

influenza, and COVID-19) has caused physical, mental, and economic harm to 
societies and governments. This has led both private and public sections to pay more 
attention to this issue and perform more studies about how to control, observe and act 
in such situations (Yang, F., Liu, H., Qi, H., & Liu, X., 2016, December). 

Failing to control the disease is perilous, especially when facing an increase in 
travelers worldwide. Mathematical models describing infectious disease populations 
play an essential role in understanding the outbreak and control of the disease in the 
long term. Numerous epidemic frequency models have been proposed and analyzed 
over recent years to predict the spread of infectious disease in a region (Ibeas, A., De 
La Sen, M., & Alonso-Quesada, S., 2014; Di Giamberardino, P., & Iacoviello, D., 2017). 

Depending on the behavior of the epidemic and assuming that the incubation 
period is neglected, there can be two models: SIR and SEIR. One of these models 
divides the total population into subpopulations based on people's conditions. The first 
subpopulation is represented by S (meaning people susceptible to disease). The next 
is shown by E (exposed, meaning infected people, but symptoms are not apparent). 
The third is I (meaning infectious people). The last subpopulation is R (meaning people 
who are recovered or are immune to the disease). In addition, based on the fact that 
the immunity of recovered individuals to the disease is permanent or temporary, two 
other models can be considered: SIRS and SEIRS (McCluskey, C. C., 2010; Yi, N., 
Zhang, Q., Mao, K., Yang, D., & Li, Q., 2009). 

The main objective of this paper is to design a robust vaccination strategy capable 
of eradicating infectious diseases in a population, regardless of unknown parameters' 
uncertainties of the disease. 

The rest of this paper is structured as follows: Section 2, previous works are studied. 
Section 3 describes the SEIR epidemic model. Section 4 discusses the classic sliding 
mode controller. The fuzzy controller is described in section 5. Section 6 proposes the 
fuzzy sliding mode controller. Simulations and discussions to investigate the efficiency 
of the proposed controller are provided in section 7. Finally, section 8 concludes the 
paper. 
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scientists with more knowledge to manage diseases. Therefore, this section mentions 
recent studies using different methods based on control theory for epidemic disease 
models such as SIR and SEIR.   

In (Ibeas, A., de la Sen, M., & Alonso-Quesada, S., 2014, December), Micken's 
discretizing method is used to obtain the discrete-time SEIR epidemic model. Then, an 
adaptive controller is devised to ensure that estimated parameters are non-negative 
and that the disease is thoroughly eradicated. A feedback-based vaccination strategy 
for the SEIR epidemic model is proposed in (Ibeas, A., de la Sen, M., Alonso-Quesada, 
S., & Nistal, R., 2015, May). This strategy hinges on the relative stability concept. In 
this vaccination strategy, the whole susceptible population does not need to converge 
to 0, and it can be under a certain threshold. Directly resulting from this method, not 
every person in the population needs to be vaccinated. Thus, this method is more 
economical. Yan Cheng has investigated the delayed version of the epidemic SEIR 
model in (Cheng, Y., Pan, Q., & He, M., 2013) with a nonlinear prevalence rate based 
on continuous treatment and impulsive vaccination. Seasonal weather changes can 
impact the infectious disease spread vastly. Therefore, a study of the epidemic disease 
SEIR model based on periodic impulsive vaccination and seasonal contact rate is 
presented in (Bai, Z., & Zhou, Y., 2012). 

The vaccination strategy in (Alonso-Quesada, S., De la Sen, M., Agarwal, R. P., & 
Ibeas, A., 2012) is based on a time-continuous nonlinear control rule that linearizes the 
output-input feedback. An observer is fitted in the general control scheme, To provide 
an online estimate of the population prone to disease and diseased population when 
an online measurement is not feasible. 

In (Jiao, H., & Shen, Q., 2020), an SEIR epidemic model was introduced to analyze 
the significant characteristics such as positivity and boundedness. Moreover, it 
proposed an approach to deal with the primary reproduction number. A sliding mode 
control strategy was also used to limit the number of infectious people to the desired 
value. However, model parameters are considered to be known. A fuzzy fractional 
strategy was used in (Dong, N. P., Long, H. V., & Khastan, A., 2020), in which epidemic 
models were investigated in the presence of uncertain parameters.  

Asier Ibeas et al. have designed a sliding mode controller for the epidemic SEIR 
model (Ibeas, A., De La Sen, M., & Alonso-Quesada, S., 2014) In this paper, a controller 
is designed, supposing that specific knowledge about the upper limit of the uncertainty 
signal is acquired. Then, this condition is eliminated by designing an adaptive sliding 
mode control system. Furthermore, the SEIR epidemic model is developed based on 
a fractional degree dynamic (Ibeas, A., Shafi, M., Ishfaq, M., & Ali, M., 2017). 

Choosing the design method of the controller depends on the controlled system 
and its definition of appropriate performance. Systems are usually nonlinear with 
uncertainties  (Schoukens, J., & Ljung, L., 2019). These uncertainties can be caused 
by imprecise recognition of the controlled system and noise and distortion (Mattsson, 
P., Zachariah, D., & Stoica, P., 2018). Traditional nonlinear control methods are 
primarily based on a system model, whereas system identification is needed when the 
system model is non-existent. System identification might introduce uncertainties 
caused by the imprecise recognition of system parameters. Therefore, it is reasonable 
to use proper control methods, which are not dependent on the system model and are 
capable of adequately covering all uncertainties (G. Drakopoulos, P. Mylonas and S. 
Sioutas, 2019). This leads us to intelligent controllers such as fuzzy logic and neural 
networks. (Wu, S. J., & Lin, C. T., 2000). These controllers facilitate different abilities, 
including various structure designs based on needs, training, and expertise (Jang, J. 
S., 1992, March). Classic controllers' strong background in analysis and proof of 
stability on one hand and system model independency of the intelligent controllers 
makes it considerably tangible to combine these two types of controllers to obtain a 
superior controller (Jang, J. S., 1992, March; Lee, H., Kim, E., Kang, H. J., & Park, M., 
1998). In (Manthouri, M., Aghajari, Z., & Safary, S., 2022), a reliable processing system 
for blood samples and classifying five types of white blood cells in microscopic images 
is designed. The Gram-Schmidt algorithm is used for segmentation purposes. Scale-
Invariant Feature Transform (SIFT) feature detection technique with a deep 
convolutional neural network is applied to classify different types of white blood cells. 

This paper proposes a combination of adaptive fuzzy controllers with a classic 
sliding mode, Considering un-modeled dynamics and the presence of uncertainties in 
unknown parameters. This way, the gain of the switching part of the system's sliding 
mode control rule, which corresponds to compensating the difference between actual 
and nominal values of the system, is estimated through fuzzy control. This is followed 
by a discussion over the improvement of the system's output, parameters' and 
functions' estimations, and a comparison to the classic sliding mode controller 
(Ohtake, H., Tanaka, K., & Wang, H. O., 2006). An analytic vaccination policy using 
only the inaccurate information of the infected is established for a susceptible-infected-
recovered epidemic model based on Takagi-Sugeno (T-S) fuzzy model presented 
(Lee, H. J., 2022). 
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1. Introduction 
In the past few years, epidemic disease prevalence (e.g., Ebola, H1N1, H7N9 

influenza, and COVID-19) has caused physical, mental, and economic harm to 
societies and governments. This has led both private and public sections to pay more 
attention to this issue and perform more studies about how to control, observe and act 
in such situations (Yang, F., Liu, H., Qi, H., & Liu, X., 2016, December). 

Failing to control the disease is perilous, especially when facing an increase in 
travelers worldwide. Mathematical models describing infectious disease populations 
play an essential role in understanding the outbreak and control of the disease in the 
long term. Numerous epidemic frequency models have been proposed and analyzed 
over recent years to predict the spread of infectious disease in a region (Ibeas, A., De 
La Sen, M., & Alonso-Quesada, S., 2014; Di Giamberardino, P., & Iacoviello, D., 2017). 

Depending on the behavior of the epidemic and assuming that the incubation 
period is neglected, there can be two models: SIR and SEIR. One of these models 
divides the total population into subpopulations based on people's conditions. The first 
subpopulation is represented by S (meaning people susceptible to disease). The next 
is shown by E (exposed, meaning infected people, but symptoms are not apparent). 
The third is I (meaning infectious people). The last subpopulation is R (meaning people 
who are recovered or are immune to the disease). In addition, based on the fact that 
the immunity of recovered individuals to the disease is permanent or temporary, two 
other models can be considered: SIRS and SEIRS (McCluskey, C. C., 2010; Yi, N., 
Zhang, Q., Mao, K., Yang, D., & Li, Q., 2009). 

The main objective of this paper is to design a robust vaccination strategy capable 
of eradicating infectious diseases in a population, regardless of unknown parameters' 
uncertainties of the disease. 

The rest of this paper is structured as follows: Section 2, previous works are studied. 
Section 3 describes the SEIR epidemic model. Section 4 discusses the classic sliding 
mode controller. The fuzzy controller is described in section 5. Section 6 proposes the 
fuzzy sliding mode controller. Simulations and discussions to investigate the efficiency 
of the proposed controller are provided in section 7. Finally, section 8 concludes the 
paper. 
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Studying epidemic diseases plays an essential role in the world as it provides 

scientists with more knowledge to manage diseases. Therefore, this section mentions 
recent studies using different methods based on control theory for epidemic disease 
models such as SIR and SEIR.   

In (Ibeas, A., de la Sen, M., & Alonso-Quesada, S., 2014, December), Micken's 
discretizing method is used to obtain the discrete-time SEIR epidemic model. Then, an 
adaptive controller is devised to ensure that estimated parameters are non-negative 
and that the disease is thoroughly eradicated. A feedback-based vaccination strategy 
for the SEIR epidemic model is proposed in (Ibeas, A., de la Sen, M., Alonso-Quesada, 
S., & Nistal, R., 2015, May). This strategy hinges on the relative stability concept. In 
this vaccination strategy, the whole susceptible population does not need to converge 
to 0, and it can be under a certain threshold. Directly resulting from this method, not 
every person in the population needs to be vaccinated. Thus, this method is more 
economical. Yan Cheng has investigated the delayed version of the epidemic SEIR 
model in (Cheng, Y., Pan, Q., & He, M., 2013) with a nonlinear prevalence rate based 
on continuous treatment and impulsive vaccination. Seasonal weather changes can 
impact the infectious disease spread vastly. Therefore, a study of the epidemic disease 
SEIR model based on periodic impulsive vaccination and seasonal contact rate is 
presented in (Bai, Z., & Zhou, Y., 2012). 

The vaccination strategy in (Alonso-Quesada, S., De la Sen, M., Agarwal, R. P., & 
Ibeas, A., 2012) is based on a time-continuous nonlinear control rule that linearizes the 
output-input feedback. An observer is fitted in the general control scheme, To provide 
an online estimate of the population prone to disease and diseased population when 
an online measurement is not feasible. 

In (Jiao, H., & Shen, Q., 2020), an SEIR epidemic model was introduced to analyze 
the significant characteristics such as positivity and boundedness. Moreover, it 
proposed an approach to deal with the primary reproduction number. A sliding mode 
control strategy was also used to limit the number of infectious people to the desired 
value. However, model parameters are considered to be known. A fuzzy fractional 
strategy was used in (Dong, N. P., Long, H. V., & Khastan, A., 2020), in which epidemic 
models were investigated in the presence of uncertain parameters.  

Asier Ibeas et al. have designed a sliding mode controller for the epidemic SEIR 
model (Ibeas, A., De La Sen, M., & Alonso-Quesada, S., 2014) In this paper, a controller 
is designed, supposing that specific knowledge about the upper limit of the uncertainty 
signal is acquired. Then, this condition is eliminated by designing an adaptive sliding 
mode control system. Furthermore, the SEIR epidemic model is developed based on 
a fractional degree dynamic (Ibeas, A., Shafi, M., Ishfaq, M., & Ali, M., 2017). 

Choosing the design method of the controller depends on the controlled system 
and its definition of appropriate performance. Systems are usually nonlinear with 
uncertainties  (Schoukens, J., & Ljung, L., 2019). These uncertainties can be caused 
by imprecise recognition of the controlled system and noise and distortion (Mattsson, 
P., Zachariah, D., & Stoica, P., 2018). Traditional nonlinear control methods are 
primarily based on a system model, whereas system identification is needed when the 
system model is non-existent. System identification might introduce uncertainties 
caused by the imprecise recognition of system parameters. Therefore, it is reasonable 
to use proper control methods, which are not dependent on the system model and are 
capable of adequately covering all uncertainties (G. Drakopoulos, P. Mylonas and S. 
Sioutas, 2019). This leads us to intelligent controllers such as fuzzy logic and neural 
networks. (Wu, S. J., & Lin, C. T., 2000). These controllers facilitate different abilities, 
including various structure designs based on needs, training, and expertise (Jang, J. 
S., 1992, March). Classic controllers' strong background in analysis and proof of 
stability on one hand and system model independency of the intelligent controllers 
makes it considerably tangible to combine these two types of controllers to obtain a 
superior controller (Jang, J. S., 1992, March; Lee, H., Kim, E., Kang, H. J., & Park, M., 
1998). In (Manthouri, M., Aghajari, Z., & Safary, S., 2022), a reliable processing system 
for blood samples and classifying five types of white blood cells in microscopic images 
is designed. The Gram-Schmidt algorithm is used for segmentation purposes. Scale-
Invariant Feature Transform (SIFT) feature detection technique with a deep 
convolutional neural network is applied to classify different types of white blood cells. 

This paper proposes a combination of adaptive fuzzy controllers with a classic 
sliding mode, Considering un-modeled dynamics and the presence of uncertainties in 
unknown parameters. This way, the gain of the switching part of the system's sliding 
mode control rule, which corresponds to compensating the difference between actual 
and nominal values of the system, is estimated through fuzzy control. This is followed 
by a discussion over the improvement of the system's output, parameters' and 
functions' estimations, and a comparison to the classic sliding mode controller 
(Ohtake, H., Tanaka, K., & Wang, H. O., 2006). An analytic vaccination policy using 
only the inaccurate information of the infected is established for a susceptible-infected-
recovered epidemic model based on Takagi-Sugeno (T-S) fuzzy model presented 
(Lee, H. J., 2022). 

 
3. SEIR Model Characteristics 
Various types of models have been used to study epidemic disease contagion. 

Figure (1) shows the block diagram of the SEIR epidemic disease dynamic model. 
Based on the SEIR model presented in [2], the population is divided into 4 groups. 
These four groups are as follows: population exposed to the disease (susceptible) S(t), 
population exposed to the disease whereas the disease is not infectious yet E(t), 
population with the infectious disease I(t), and recovered population R(t). The latter 
group corresponds to the population in which individuals have naturally managed to 
recuperate from the disease or through vaccination. 

The SEIR model is described using the below equations: 

(1) 𝑆̇𝑆(𝑡𝑡) = −𝜇𝜇𝑆𝑆(𝑡𝑡) + 𝜔𝜔𝜔𝜔(𝑡𝑡) − 𝜑𝜑(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) + 𝜈𝜈𝜈𝜈(𝑡𝑡) − 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) 

(2) 𝐸̇𝐸(𝑡𝑡) = 	𝜑𝜑(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) − (𝜇𝜇 + 𝜎𝜎)𝐸𝐸(𝑡𝑡) 

(3) 𝐼𝐼̇(𝑡𝑡) = −(𝜇𝜇 + 𝛾𝛾)𝐼𝐼(𝑡𝑡) + 𝜎𝜎𝜎𝜎(𝑡𝑡) 

(4) 𝑅̇𝑅(𝑡𝑡) = −(𝜇𝜇 + 𝜔𝜔)𝑅𝑅(𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) 

Where 	𝑋𝑋7 = [𝑆𝑆	𝐸𝐸	𝐼𝐼	𝑅𝑅] is the state vector, N(t) shows the whole population at any 
given moment, µ is an indicator of mortality rate due to causes other than infectious 
diseases, v is a representative of birth rate, w shows loss of health rate, a is saturation 
coefficient, and s and g correspond to mean incubation and infectious periods, 
respectively. φ is a nonlinear function representing the disease prevalence rate. When 
𝜑𝜑(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) = β𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡), this function is called a two-way linear prevalence rate, and 
when 𝜑𝜑(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) = β𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡)/(1 + 𝛼𝛼𝛼𝛼(𝑡𝑡)), it is called to be a saturated prevalence rate. 
Here β represents the transmission rate. The standard prevalence rate is described as 
follows (in the literature, standard prevalence rate is the most commonly used rate): 

(5) 𝜑𝜑(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) = β𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡)/𝑁𝑁(𝑡𝑡) 
By summing equations 1 to 4, population changes are obtained as follows: 

(6) 𝑁𝑁(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) + 𝐸𝐸(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝑅𝑅(𝑡𝑡) 

(7) 𝑁̇𝑁(𝑡𝑡) = (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) 

The error signal can be defined as shown in equation 8, in which 𝑁𝑁>?@(𝑡𝑡) 
corresponds to the desired process of immunity of the population. In other words, 
𝑁𝑁>?@(𝑡𝑡) is the reference signal. 

(8) 𝑒𝑒(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑁𝑁>?@(𝑡𝑡) 

(9) 𝑁𝑁>?@(0) = 𝑅𝑅(0) 

(10) C𝑅𝑅(𝑡𝑡) − 𝑁𝑁>?@(𝑡𝑡)D → 0, 𝑡𝑡 → ∞ 
 
4. The Classic Sliding Mode Controller 
In this section, we discuss the classic sliding mode controller. Sliding mode 

controlling is one of the most well-known methods due to design simplicity and 
generalizability, providing good results. The main idea behind the sliding mode 
controller is to simplify the nonlinear nth degree equations of the control problem to a 
control problem with nonlinear first-degree equations while considering parameters' 
uncertainties and system disturbance (Hung, J. Y., Gao, W., & Hung, J. C., 1993). 
Various structures on the two sides of the sliding surface in the nonlinear sliding mode 
controller make it capable of obtaining robust control features (Edwards, C., & 
Spurgeon, S., 1998). A single input non-autonomous dynamic open-loop system of 
order n could be given as (Tokat, S., Eksin, I., & Güzelkaya, M., 2003). 

(11) 

𝑥̇𝑥H(𝑡𝑡) = 𝑥𝑥HIJ(𝑡𝑡)				(𝑗𝑗 = 1,… , 𝑛𝑛 + 1) 

𝑥̇𝑥N(𝑡𝑡) =O(𝑎𝑎Q + ΔQ(𝑡𝑡))	𝑓𝑓Q(𝑥𝑥, 𝑡𝑡) + 𝑝𝑝(𝑥𝑥, 𝑡𝑡)𝑢𝑢(𝑡𝑡) + 𝑑𝑑(𝑡𝑡)
W

QXJ

 

Where 𝑋𝑋(𝑡𝑡) = (𝑥𝑥J, 𝑥𝑥Y, … , 𝑥𝑥N) ∈ 𝑅𝑅N×J is the state vector, and 𝑎𝑎Q	(𝑖𝑖 = 1…𝑞𝑞) shows 
static system parameters. ΔQ(𝑡𝑡) represents parameter perturbations with bounded 
uncertainties, 𝑢𝑢(𝑡𝑡) Shows the input signal, d(t) is a time-dependent disturbance with 
the known upper bound 𝑓𝑓Q(𝑥𝑥, 𝑡𝑡)(𝑖𝑖 = 1…𝑞𝑞)	and	𝑝𝑝(𝑥𝑥, 𝑡𝑡) are functions that define system 
characteristics. Thus, the control problem is for X(t) to determine 𝑋𝑋a(𝑡𝑡) =
(𝑥𝑥aJ(𝑡𝑡), 𝑥𝑥aY(𝑡𝑡), … , 𝑥𝑥aN(𝑡𝑡)) track. a general linear sliding surface for system (10) can be 
written as: 

(12) 𝜙𝜙(𝑥𝑥, 𝑡𝑡) =O𝑒𝑒H(𝑡𝑡) + 𝜆𝜆H𝑒𝑒H(𝑡𝑡)
N

HXJ

 

Where 𝜆𝜆H is a strictly positive real value. Track error can be defined as follows: 

(13) 𝑒𝑒(𝑡𝑡) ≜ C𝑒𝑒J(𝑡𝑡)	, … , 𝑒𝑒N(𝑡𝑡)D = C𝑥𝑥J(𝑡𝑡) − 𝑥𝑥aJ(𝑡𝑡)	, 𝑥𝑥N(𝑡𝑡) − 𝑥𝑥aN(𝑡𝑡)D 

Where 𝑋𝑋aN is the nth state of the track. Equation 11 is a linear function of the system's 
error, and 𝜆𝜆H determines the sliding level. Assuming 𝑒̇𝑒(NeJ)(𝑡𝑡) = 𝑒𝑒N(𝑡𝑡) we can consider 
𝑥̇𝑥a(NeJ)(𝑡𝑡) = 𝑥𝑥aN(𝑡𝑡) A homogenous differential equation with the unique answer of e=0 
can be obtained by tuning 𝜙𝜙 = 0. Therefore, the error asymptotically approaches 0 if 
a proper control rule is used. This rule must contain the track within the sliding level. 
The nominated function from the direct Lyapunov method can be defined as below: 

(14) 𝑉𝑉(𝑠𝑠) =
1
2𝜙𝜙

Y 

Where 𝑉𝑉(𝑠𝑠) > 0	𝑎𝑎𝑎𝑎𝑎𝑎	𝑉𝑉(0) = 0 for every 𝑠𝑠 ≠ 0. The aim here is to define a negative 
derivative for the Lyapunov function. A sufficient statement for system stability is given 
in the below inequality: 

(15) 𝑉̇𝑉 =
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑 𝜙𝜙

Y ≤ 𝜂𝜂|𝜙𝜙| 

Where 𝜂𝜂 is a determinable strictly positive number. The inequality in equation 15 
implies that the system is stable and controlled. This means that the system's state 
always moves towards the sliding level. Thus, equation 15 is the condition required to 
reach the sliding level. Replacing equation 12 in equation 15, we obtain: 

(16) 𝜙𝜙. 𝜙̇𝜙 = nOO(𝑎𝑎Q + ΔQ)	𝑓𝑓Q + 𝑝𝑝𝑝𝑝 + 𝑑𝑑 − 𝑥̇𝑥aN + 𝜆𝜆HC𝑥𝑥HIJ − 𝑥̇𝑥aH	D
W

QXJ

NeJ

HXJ

o ≤ 𝜂𝜂|𝜙𝜙| 

In equation 16, a sigmoid function is achieved. Note that the sigmoid function 
definition is as in the following: 

(17) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = q
−1		𝑖𝑖𝑖𝑖	𝑥𝑥 < 0
0				𝑖𝑖𝑖𝑖	𝑥𝑥 = 0
1			𝑖𝑖𝑖𝑖	𝑥𝑥 > 0

 

Uncertainties need to be limited to formulate an SMC rule such that: 
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Fig. 1. Block diagram of the SEIR epidemic disease dynamic model (Ibeas, A., de la 
Sen, M., & Alonso-Quesada, S., 2014, December)

Various types of models have been used to study epidemic disease contagion. 
Figure (1) shows the block diagram of the SEIR epidemic disease dynamic model. 
Based on the SEIR model presented in [2], the population is divided into 4 groups. 
These four groups are as follows: population exposed to the disease (susceptible) S(t), 
population exposed to the disease whereas the disease is not infectious yet E(t), 
population with the infectious disease I(t), and recovered population R(t). The latter 
group corresponds to the population in which individuals have naturally managed to 
recuperate from the disease or through vaccination. 

The SEIR model is described using the below equations: 

(1) 𝑆̇𝑆(𝑡𝑡) = −𝜇𝜇𝑆𝑆(𝑡𝑡) + 𝜔𝜔𝜔𝜔(𝑡𝑡) − 𝜑𝜑(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) + 𝜈𝜈𝜈𝜈(𝑡𝑡) − 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) 

(2) 𝐸̇𝐸(𝑡𝑡) = 	𝜑𝜑(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) − (𝜇𝜇 + 𝜎𝜎)𝐸𝐸(𝑡𝑡) 

(3) 𝐼𝐼̇(𝑡𝑡) = −(𝜇𝜇 + 𝛾𝛾)𝐼𝐼(𝑡𝑡) + 𝜎𝜎𝜎𝜎(𝑡𝑡) 

(4) 𝑅̇𝑅(𝑡𝑡) = −(𝜇𝜇 + 𝜔𝜔)𝑅𝑅(𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) 

Where 	𝑋𝑋7 = [𝑆𝑆	𝐸𝐸	𝐼𝐼	𝑅𝑅] is the state vector, N(t) shows the whole population at any 
given moment, µ is an indicator of mortality rate due to causes other than infectious 
diseases, v is a representative of birth rate, w shows loss of health rate, a is saturation 
coefficient, and s and g correspond to mean incubation and infectious periods, 
respectively. φ is a nonlinear function representing the disease prevalence rate. When 
𝜑𝜑(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) = β𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡), this function is called a two-way linear prevalence rate, and 
when 𝜑𝜑(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) = β𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡)/(1 + 𝛼𝛼𝛼𝛼(𝑡𝑡)), it is called to be a saturated prevalence rate. 
Here β represents the transmission rate. The standard prevalence rate is described as 
follows (in the literature, standard prevalence rate is the most commonly used rate): 

(5) 𝜑𝜑(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) = β𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡)/𝑁𝑁(𝑡𝑡) 
By summing equations 1 to 4, population changes are obtained as follows: 

(6) 𝑁𝑁(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) + 𝐸𝐸(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝑅𝑅(𝑡𝑡) 

(7) 𝑁̇𝑁(𝑡𝑡) = (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) 

The error signal can be defined as shown in equation 8, in which 𝑁𝑁>?@(𝑡𝑡) 
corresponds to the desired process of immunity of the population. In other words, 
𝑁𝑁>?@(𝑡𝑡) is the reference signal. 

(8) 𝑒𝑒(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑁𝑁>?@(𝑡𝑡) 

(9) 𝑁𝑁>?@(0) = 𝑅𝑅(0) 

(10) C𝑅𝑅(𝑡𝑡) − 𝑁𝑁>?@(𝑡𝑡)D → 0, 𝑡𝑡 → ∞ 
 
4. The Classic Sliding Mode Controller 
In this section, we discuss the classic sliding mode controller. Sliding mode 

controlling is one of the most well-known methods due to design simplicity and 
generalizability, providing good results. The main idea behind the sliding mode 
controller is to simplify the nonlinear nth degree equations of the control problem to a 
control problem with nonlinear first-degree equations while considering parameters' 
uncertainties and system disturbance (Hung, J. Y., Gao, W., & Hung, J. C., 1993). 
Various structures on the two sides of the sliding surface in the nonlinear sliding mode 
controller make it capable of obtaining robust control features (Edwards, C., & 
Spurgeon, S., 1998). A single input non-autonomous dynamic open-loop system of 
order n could be given as (Tokat, S., Eksin, I., & Güzelkaya, M., 2003). 

(11) 

𝑥̇𝑥H(𝑡𝑡) = 𝑥𝑥HIJ(𝑡𝑡)				(𝑗𝑗 = 1,… , 𝑛𝑛 + 1) 

𝑥̇𝑥N(𝑡𝑡) =O(𝑎𝑎Q + ΔQ(𝑡𝑡))	𝑓𝑓Q(𝑥𝑥, 𝑡𝑡) + 𝑝𝑝(𝑥𝑥, 𝑡𝑡)𝑢𝑢(𝑡𝑡) + 𝑑𝑑(𝑡𝑡)
W

QXJ

 

Where 𝑋𝑋(𝑡𝑡) = (𝑥𝑥J, 𝑥𝑥Y, … , 𝑥𝑥N) ∈ 𝑅𝑅N×J is the state vector, and 𝑎𝑎Q	(𝑖𝑖 = 1…𝑞𝑞) shows 
static system parameters. ΔQ(𝑡𝑡) represents parameter perturbations with bounded 
uncertainties, 𝑢𝑢(𝑡𝑡) Shows the input signal, d(t) is a time-dependent disturbance with 
the known upper bound 𝑓𝑓Q(𝑥𝑥, 𝑡𝑡)(𝑖𝑖 = 1…𝑞𝑞)	and	𝑝𝑝(𝑥𝑥, 𝑡𝑡) are functions that define system 
characteristics. Thus, the control problem is for X(t) to determine 𝑋𝑋a(𝑡𝑡) =
(𝑥𝑥aJ(𝑡𝑡), 𝑥𝑥aY(𝑡𝑡), … , 𝑥𝑥aN(𝑡𝑡)) track. a general linear sliding surface for system (10) can be 
written as: 

(12) 𝜙𝜙(𝑥𝑥, 𝑡𝑡) =O𝑒𝑒H(𝑡𝑡) + 𝜆𝜆H𝑒𝑒H(𝑡𝑡)
N

HXJ

 

Where 𝜆𝜆H is a strictly positive real value. Track error can be defined as follows: 

(13) 𝑒𝑒(𝑡𝑡) ≜ C𝑒𝑒J(𝑡𝑡)	, … , 𝑒𝑒N(𝑡𝑡)D = C𝑥𝑥J(𝑡𝑡) − 𝑥𝑥aJ(𝑡𝑡)	, 𝑥𝑥N(𝑡𝑡) − 𝑥𝑥aN(𝑡𝑡)D 

Where 𝑋𝑋aN is the nth state of the track. Equation 11 is a linear function of the system's 
error, and 𝜆𝜆H determines the sliding level. Assuming 𝑒̇𝑒(NeJ)(𝑡𝑡) = 𝑒𝑒N(𝑡𝑡) we can consider 
𝑥̇𝑥a(NeJ)(𝑡𝑡) = 𝑥𝑥aN(𝑡𝑡) A homogenous differential equation with the unique answer of e=0 
can be obtained by tuning 𝜙𝜙 = 0. Therefore, the error asymptotically approaches 0 if 
a proper control rule is used. This rule must contain the track within the sliding level. 
The nominated function from the direct Lyapunov method can be defined as below: 

(14) 𝑉𝑉(𝑠𝑠) =
1
2𝜙𝜙

Y 

Where 𝑉𝑉(𝑠𝑠) > 0	𝑎𝑎𝑎𝑎𝑎𝑎	𝑉𝑉(0) = 0 for every 𝑠𝑠 ≠ 0. The aim here is to define a negative 
derivative for the Lyapunov function. A sufficient statement for system stability is given 
in the below inequality: 

(15) 𝑉̇𝑉 =
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑 𝜙𝜙

Y ≤ 𝜂𝜂|𝜙𝜙| 

Where 𝜂𝜂 is a determinable strictly positive number. The inequality in equation 15 
implies that the system is stable and controlled. This means that the system's state 
always moves towards the sliding level. Thus, equation 15 is the condition required to 
reach the sliding level. Replacing equation 12 in equation 15, we obtain: 

(16) 𝜙𝜙. 𝜙̇𝜙 = nOO(𝑎𝑎Q + ΔQ)	𝑓𝑓Q + 𝑝𝑝𝑝𝑝 + 𝑑𝑑 − 𝑥̇𝑥aN + 𝜆𝜆HC𝑥𝑥HIJ − 𝑥̇𝑥aH	D
W

QXJ

NeJ

HXJ

o ≤ 𝜂𝜂|𝜙𝜙| 

In equation 16, a sigmoid function is achieved. Note that the sigmoid function 
definition is as in the following: 

(17) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = q
−1		𝑖𝑖𝑖𝑖	𝑥𝑥 < 0
0				𝑖𝑖𝑖𝑖	𝑥𝑥 = 0
1			𝑖𝑖𝑖𝑖	𝑥𝑥 > 0

 

Uncertainties need to be limited to formulate an SMC rule such that: 

Azerbaijan Journal of High Performance Computing, 5 (1), 2022



148

Various types of models have been used to study epidemic disease contagion. 
Figure (1) shows the block diagram of the SEIR epidemic disease dynamic model. 
Based on the SEIR model presented in [2], the population is divided into 4 groups. 
These four groups are as follows: population exposed to the disease (susceptible) S(t), 
population exposed to the disease whereas the disease is not infectious yet E(t), 
population with the infectious disease I(t), and recovered population R(t). The latter 
group corresponds to the population in which individuals have naturally managed to 
recuperate from the disease or through vaccination. 

The SEIR model is described using the below equations: 

(1) 𝑆̇𝑆(𝑡𝑡) = −𝜇𝜇𝑆𝑆(𝑡𝑡) + 𝜔𝜔𝜔𝜔(𝑡𝑡) − 𝜑𝜑(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) + 𝜈𝜈𝜈𝜈(𝑡𝑡) − 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) 

(2) 𝐸̇𝐸(𝑡𝑡) = 	𝜑𝜑(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) − (𝜇𝜇 + 𝜎𝜎)𝐸𝐸(𝑡𝑡) 

(3) 𝐼𝐼̇(𝑡𝑡) = −(𝜇𝜇 + 𝛾𝛾)𝐼𝐼(𝑡𝑡) + 𝜎𝜎𝜎𝜎(𝑡𝑡) 

(4) 𝑅̇𝑅(𝑡𝑡) = −(𝜇𝜇 + 𝜔𝜔)𝑅𝑅(𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) 

Where 	𝑋𝑋7 = [𝑆𝑆	𝐸𝐸	𝐼𝐼	𝑅𝑅] is the state vector, N(t) shows the whole population at any 
given moment, µ is an indicator of mortality rate due to causes other than infectious 
diseases, v is a representative of birth rate, w shows loss of health rate, a is saturation 
coefficient, and s and g correspond to mean incubation and infectious periods, 
respectively. φ is a nonlinear function representing the disease prevalence rate. When 
𝜑𝜑(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) = β𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡), this function is called a two-way linear prevalence rate, and 
when 𝜑𝜑(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) = β𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡)/(1 + 𝛼𝛼𝛼𝛼(𝑡𝑡)), it is called to be a saturated prevalence rate. 
Here β represents the transmission rate. The standard prevalence rate is described as 
follows (in the literature, standard prevalence rate is the most commonly used rate): 

(5) 𝜑𝜑(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) = β𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡)/𝑁𝑁(𝑡𝑡) 
By summing equations 1 to 4, population changes are obtained as follows: 

(6) 𝑁𝑁(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) + 𝐸𝐸(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝑅𝑅(𝑡𝑡) 

(7) 𝑁̇𝑁(𝑡𝑡) = (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) 

The error signal can be defined as shown in equation 8, in which 𝑁𝑁>?@(𝑡𝑡) 
corresponds to the desired process of immunity of the population. In other words, 
𝑁𝑁>?@(𝑡𝑡) is the reference signal. 

(8) 𝑒𝑒(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑁𝑁>?@(𝑡𝑡) 

(9) 𝑁𝑁>?@(0) = 𝑅𝑅(0) 

(10) C𝑅𝑅(𝑡𝑡) − 𝑁𝑁>?@(𝑡𝑡)D → 0, 𝑡𝑡 → ∞ 
 
4. The Classic Sliding Mode Controller 
In this section, we discuss the classic sliding mode controller. Sliding mode 

controlling is one of the most well-known methods due to design simplicity and 
generalizability, providing good results. The main idea behind the sliding mode 
controller is to simplify the nonlinear nth degree equations of the control problem to a 
control problem with nonlinear first-degree equations while considering parameters' 
uncertainties and system disturbance (Hung, J. Y., Gao, W., & Hung, J. C., 1993). 
Various structures on the two sides of the sliding surface in the nonlinear sliding mode 
controller make it capable of obtaining robust control features (Edwards, C., & 
Spurgeon, S., 1998). A single input non-autonomous dynamic open-loop system of 
order n could be given as (Tokat, S., Eksin, I., & Güzelkaya, M., 2003). 

(11) 

𝑥̇𝑥H(𝑡𝑡) = 𝑥𝑥HIJ(𝑡𝑡)				(𝑗𝑗 = 1,… , 𝑛𝑛 + 1) 

𝑥̇𝑥N(𝑡𝑡) =O(𝑎𝑎Q + ΔQ(𝑡𝑡))	𝑓𝑓Q(𝑥𝑥, 𝑡𝑡) + 𝑝𝑝(𝑥𝑥, 𝑡𝑡)𝑢𝑢(𝑡𝑡) + 𝑑𝑑(𝑡𝑡)
W

QXJ

 

Where 𝑋𝑋(𝑡𝑡) = (𝑥𝑥J, 𝑥𝑥Y, … , 𝑥𝑥N) ∈ 𝑅𝑅N×J is the state vector, and 𝑎𝑎Q	(𝑖𝑖 = 1…𝑞𝑞) shows 
static system parameters. ΔQ(𝑡𝑡) represents parameter perturbations with bounded 
uncertainties, 𝑢𝑢(𝑡𝑡) Shows the input signal, d(t) is a time-dependent disturbance with 
the known upper bound 𝑓𝑓Q(𝑥𝑥, 𝑡𝑡)(𝑖𝑖 = 1…𝑞𝑞)	and	𝑝𝑝(𝑥𝑥, 𝑡𝑡) are functions that define system 
characteristics. Thus, the control problem is for X(t) to determine 𝑋𝑋a(𝑡𝑡) =
(𝑥𝑥aJ(𝑡𝑡), 𝑥𝑥aY(𝑡𝑡), … , 𝑥𝑥aN(𝑡𝑡)) track. a general linear sliding surface for system (10) can be 
written as: 

(12) 𝜙𝜙(𝑥𝑥, 𝑡𝑡) =O𝑒𝑒H(𝑡𝑡) + 𝜆𝜆H𝑒𝑒H(𝑡𝑡)
N

HXJ

 

Where 𝜆𝜆H is a strictly positive real value. Track error can be defined as follows: 

(13) 𝑒𝑒(𝑡𝑡) ≜ C𝑒𝑒J(𝑡𝑡)	, … , 𝑒𝑒N(𝑡𝑡)D = C𝑥𝑥J(𝑡𝑡) − 𝑥𝑥aJ(𝑡𝑡)	, 𝑥𝑥N(𝑡𝑡) − 𝑥𝑥aN(𝑡𝑡)D 

Where 𝑋𝑋aN is the nth state of the track. Equation 11 is a linear function of the system's 
error, and 𝜆𝜆H determines the sliding level. Assuming 𝑒̇𝑒(NeJ)(𝑡𝑡) = 𝑒𝑒N(𝑡𝑡) we can consider 
𝑥̇𝑥a(NeJ)(𝑡𝑡) = 𝑥𝑥aN(𝑡𝑡) A homogenous differential equation with the unique answer of e=0 
can be obtained by tuning 𝜙𝜙 = 0. Therefore, the error asymptotically approaches 0 if 
a proper control rule is used. This rule must contain the track within the sliding level. 
The nominated function from the direct Lyapunov method can be defined as below: 

(14) 𝑉𝑉(𝑠𝑠) =
1
2𝜙𝜙

Y 

Where 𝑉𝑉(𝑠𝑠) > 0	𝑎𝑎𝑎𝑎𝑎𝑎	𝑉𝑉(0) = 0 for every 𝑠𝑠 ≠ 0. The aim here is to define a negative 
derivative for the Lyapunov function. A sufficient statement for system stability is given 
in the below inequality: 

(15) 𝑉̇𝑉 =
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑 𝜙𝜙

Y ≤ 𝜂𝜂|𝜙𝜙| 

Where 𝜂𝜂 is a determinable strictly positive number. The inequality in equation 15 
implies that the system is stable and controlled. This means that the system's state 
always moves towards the sliding level. Thus, equation 15 is the condition required to 
reach the sliding level. Replacing equation 12 in equation 15, we obtain: 

(16) 𝜙𝜙. 𝜙̇𝜙 = nOO(𝑎𝑎Q + ΔQ)	𝑓𝑓Q + 𝑝𝑝𝑝𝑝 + 𝑑𝑑 − 𝑥̇𝑥aN + 𝜆𝜆HC𝑥𝑥HIJ − 𝑥̇𝑥aH	D
W

QXJ

NeJ

HXJ

o ≤ 𝜂𝜂|𝜙𝜙| 

In equation 16, a sigmoid function is achieved. Note that the sigmoid function 
definition is as in the following: 

(17) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = q
−1		𝑖𝑖𝑖𝑖	𝑥𝑥 < 0
0				𝑖𝑖𝑖𝑖	𝑥𝑥 = 0
1			𝑖𝑖𝑖𝑖	𝑥𝑥 > 0

 

Uncertainties need to be limited to formulate an SMC rule such that: 

(18) ∆e≤ ∆Q(𝑡𝑡) ≤ ∆I 

(19) 𝛾𝛾e ≤ 𝑑𝑑(𝑡𝑡) ≤ 𝛾𝛾I 
Control input that could satisfy the reach condition can be chosen as: 

(20) 

𝑢𝑢 = n−OO𝑎𝑎Q

W

QXJ

𝑓𝑓Q + 𝑥̇𝑥aN − 𝜆𝜆HC𝑥𝑥HIJ − 𝑥̇𝑥aH	D
NeJ

HXJ

o /𝑝𝑝
tuuuuuuuuuuuuuvuuuuuuuuuuuuuw

xyz

− {𝑘𝑘 +O|∆}Q𝑓𝑓Q|
W

QXJ

~ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)/𝑝𝑝
tuuuuuuuuvuuuuuuuuw

x�ÄÅ

 

A cautious choice for ∆ is: 
(21) ∆}= 𝑚𝑚𝑚𝑚𝑚𝑚{|∆e|, |∆I|} 

Considering the external disturbance, we can write the lower limit of K as: 
(22) 𝑘𝑘 > 𝜂𝜂 +𝑚𝑚𝑚𝑚𝑚𝑚(|𝛾𝛾e|, |𝛾𝛾I|) 

Where 𝑘𝑘 + ∑ |∆}Q𝑓𝑓Q|
W
QXJ  is the discontinuous control rule gain, this is a strictly positive 

actual function whose lower limit depends on systems' parameters' estimation and 
external disturbance. Control input in equation 20 comprises two parts. The first part 

is Ueq, a continuous term recognized as equivalent control based on systems' 
parameters. This term compensates for undesired dynamic estimation of the system. 
The second term is the sigmoid function of the discontinuous control rule. Udis needs 

unlimited switching at the cross-section of the error state track and sliding level for 
the control signal. Therefore, the track must constantly move toward the sliding level 

(Bartoszewicz, A.,1995). 
 
5. Fuzzy Controller 
In the past two decades, it has been shown that fuzzy systems and neural networks 

can be considered global function approximators and can correctly estimate almost 
any continuous function with a small and compact set. There are several advantages 
to using fuzzy systems compared to other nonlinear models. These advantages include 
understanding the structure, empirical and statistical knowledge, and interpretability. 
This section presents a fuzzy dynamic model using the TAKAGI-SUGENO (TS) as a 
global function approximator. 

Figure 2 depicts the main structure of fuzzy systems. This structure comprises four 
segments; fuzzified, fuzzy rule base, fuzzy inference engine, and defuzzifire. The 
deterministic input is firstly fuzzified and normalized to fuzzy input sets. This stimulates 
and activates the fuzzy inference engine and fuzzy rule base, which outputs fuzzy sets. 
Finally, defuzzifiring these sets output deterministic output values. 

This fuzzy method is based on "if-then" fuzzy rules to map input vector 𝑋𝑋 =
[𝑥𝑥J, 𝑥𝑥Y, … , 𝑥𝑥N] to output 𝑔𝑔Ü(𝑥𝑥, 𝜃𝜃). A fuzzy rule base contains a set of "if-then" rules as 

below (Tokat, S., Eksin, I., & Güzelkaya, M., 2003): if is and …, then 𝑔𝑔Ü is ، 
Where 𝐹𝐹Qâ𝑖𝑖 = 1,… , 𝑛𝑛 are fuzzy variables based on fuzzy membership functions 

𝜇𝜇äÄã(𝑥𝑥Q). 𝜃𝜃å
â relates to fuzzy output values. Fuzzy system output can be expressed 

based on individual fuzzified, multiplication inference, and mean center defuzzifire as 
below: 

(23) 𝑔𝑔ÜåC𝑥𝑥, 𝜃𝜃åD =
∑ 𝜃𝜃Q

Hâ
HXJ ç∏ 𝜇𝜇äÄè

(𝑥𝑥Q)N
QXJ ê

∑ ç∏ 𝜇𝜇äÄ
è(𝑥𝑥Q)N

QXJ êâ
HXJ

= 𝜃𝜃å7𝜉𝜉å(𝑥𝑥) 

Where m is the total number of fuzzy rules and 𝜃𝜃å = í𝜃𝜃åJ, 𝜃𝜃åY, … , 𝜃𝜃åâì
7 is the tuning 

parameters' vector. 
𝜉𝜉å(𝑥𝑥) = [𝜉𝜉Jå(𝑥𝑥), 𝜉𝜉Yå(𝑥𝑥), … , 𝜉𝜉âå (𝑥𝑥)]7 is the fuzzy base function vector. 

(24) 𝜉𝜉Hå(𝑥𝑥) =
ç∏ 𝜇𝜇äÄè

(𝑥𝑥Q)N
QXJ ê

∑ ç∏ 𝜇𝜇äÄ
è(𝑥𝑥Q)N

QXJ êâ
HXJ

 

Optimized parameters' vector and fuzzy estimation error are defined as below: 

(25) 𝜃𝜃å∗ = arg
óò∈ô

min
∏ úÄò
Äùû

üsup
£∈ô

§𝑔𝑔åC𝑥𝑥D − 𝑔𝑔ÜåC𝑥𝑥, 𝜃𝜃QD§• 

Also, 𝑔𝑔Ü(𝑥𝑥) tunable parameters can be tuned online using Lyapunov method. 
 
6. Proposed Controller 
This section uses a classic sliding mode controller for the SEIR model. Then, using 

fuzzy logic and online parameters tuning, the switching gain of the control rule of the 
sliding mode controller is estimated. This compensates for the uncertainty of the 
system. In addition, a comparison is made between the performance and robustness 
of the proposed fuzzy sliding mode controller and an SEIR model with parametric 
uncertainties. 

 
6.1. Designing Fuzzy Sliding Mode Controller for SEIR Model 
Here we represent how to design a fuzzy sliding mode controller for the SEIR model 

based on the one proposed in [2]. 
First, the sliding level is defined as follows. Note that 𝜆𝜆 is the constant positive gain. 

(26) 𝜙𝜙(𝑡𝑡) = 𝑒𝑒(𝑡𝑡) + 𝜆𝜆¶ 𝑒𝑒(𝜏𝜏)𝑑𝑑𝑑𝑑
®

©
 

(27) 𝜙𝜙(𝑡𝑡) = 𝑒𝑒(𝑡𝑡) + 𝜆𝜆¶ 𝑒𝑒(𝜏𝜏)𝑑𝑑𝑑𝑑
®

©
= 0 

The reference signal used in this paper for theoretical analysis and simulation is an 
exponential one which is defined as below: 

(28) 𝑁𝑁>?@(𝑡𝑡) = (𝑅𝑅(0) − 𝑁𝑁(0))𝑒𝑒e™® + 𝑁𝑁(𝑡𝑡) 

It can be seen that satisfying equation 26 ensures achieving the control objective. 

(29) 

𝜙̇𝜙(𝑡𝑡) = 𝑒̇𝑒(𝑡𝑡) + 𝜆𝜆𝜆𝜆(𝑡𝑡) 
= 𝑅̇𝑅(𝑡𝑡) − 𝑁̇𝑁>?@(𝑡𝑡) + 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝜆𝜆>?@(𝑡𝑡) 

= −(𝜇𝜇 + 𝜔𝜔)𝑅𝑅(𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) − (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) 

											+𝜀𝜀𝑒𝑒e™® ¨𝑅𝑅(0) − 𝑁𝑁>?@(0)≠ + 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝑒𝑒e™® ¨𝑅𝑅(0) − 𝑁𝑁>?@(0)≠ 

For simplicity, it is assumed ε = λ. This removes parts with the initial value. 
(30) = −(𝜇𝜇 + 𝜔𝜔)𝑅𝑅(𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) − (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) + 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝑁𝑁(𝑡𝑡) = 0 

Equivalent control rule can be obtained from the above equation: 

(31) 𝑉𝑉?W(𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡)
[(𝜆𝜆 + 𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) + (𝜇𝜇 + 𝜔𝜔 − 𝜆𝜆)𝑅𝑅(𝑡𝑡) − 𝛾𝛾𝛾𝛾(𝑡𝑡)] 

Since θ includes systems' actual parameters and is unknown, we use nominal and 
estimated values instead and show them as θØ. To simplify the equations, we consider 
the below substitutions: 

1x m
1F m

lq
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(18) ∆e≤ ∆Q(𝑡𝑡) ≤ ∆I 

(19) 𝛾𝛾e ≤ 𝑑𝑑(𝑡𝑡) ≤ 𝛾𝛾I 
Control input that could satisfy the reach condition can be chosen as: 

(20) 

𝑢𝑢 = n−OO𝑎𝑎Q

W

QXJ

𝑓𝑓Q + 𝑥̇𝑥aN − 𝜆𝜆HC𝑥𝑥HIJ − 𝑥̇𝑥aH	D
NeJ

HXJ

o /𝑝𝑝
tuuuuuuuuuuuuuvuuuuuuuuuuuuuw

xyz

− {𝑘𝑘 +O|∆}Q𝑓𝑓Q|
W

QXJ

~ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)/𝑝𝑝
tuuuuuuuuvuuuuuuuuw

x�ÄÅ

 

A cautious choice for ∆ is: 
(21) ∆}= 𝑚𝑚𝑚𝑚𝑚𝑚{|∆e|, |∆I|} 

Considering the external disturbance, we can write the lower limit of K as: 
(22) 𝑘𝑘 > 𝜂𝜂 +𝑚𝑚𝑚𝑚𝑚𝑚(|𝛾𝛾e|, |𝛾𝛾I|) 

Where 𝑘𝑘 + ∑ |∆}Q𝑓𝑓Q|
W
QXJ  is the discontinuous control rule gain, this is a strictly positive 

actual function whose lower limit depends on systems' parameters' estimation and 
external disturbance. Control input in equation 20 comprises two parts. The first part 

is Ueq, a continuous term recognized as equivalent control based on systems' 
parameters. This term compensates for undesired dynamic estimation of the system. 
The second term is the sigmoid function of the discontinuous control rule. Udis needs 

unlimited switching at the cross-section of the error state track and sliding level for 
the control signal. Therefore, the track must constantly move toward the sliding level 

(Bartoszewicz, A.,1995). 
 
5. Fuzzy Controller 
In the past two decades, it has been shown that fuzzy systems and neural networks 

can be considered global function approximators and can correctly estimate almost 
any continuous function with a small and compact set. There are several advantages 
to using fuzzy systems compared to other nonlinear models. These advantages include 
understanding the structure, empirical and statistical knowledge, and interpretability. 
This section presents a fuzzy dynamic model using the TAKAGI-SUGENO (TS) as a 
global function approximator. 

Figure 2 depicts the main structure of fuzzy systems. This structure comprises four 
segments; fuzzified, fuzzy rule base, fuzzy inference engine, and defuzzifire. The 
deterministic input is firstly fuzzified and normalized to fuzzy input sets. This stimulates 
and activates the fuzzy inference engine and fuzzy rule base, which outputs fuzzy sets. 
Finally, defuzzifiring these sets output deterministic output values. 

This fuzzy method is based on "if-then" fuzzy rules to map input vector 𝑋𝑋 =
[𝑥𝑥J, 𝑥𝑥Y, … , 𝑥𝑥N] to output 𝑔𝑔Ü(𝑥𝑥, 𝜃𝜃). A fuzzy rule base contains a set of "if-then" rules as 

below (Tokat, S., Eksin, I., & Güzelkaya, M., 2003): if is and …, then 𝑔𝑔Ü is ، 
Where 𝐹𝐹Qâ𝑖𝑖 = 1,… , 𝑛𝑛 are fuzzy variables based on fuzzy membership functions 

𝜇𝜇äÄã(𝑥𝑥Q). 𝜃𝜃å
â relates to fuzzy output values. Fuzzy system output can be expressed 

based on individual fuzzified, multiplication inference, and mean center defuzzifire as 
below: 

(23) 𝑔𝑔ÜåC𝑥𝑥, 𝜃𝜃åD =
∑ 𝜃𝜃Q

Hâ
HXJ ç∏ 𝜇𝜇äÄè

(𝑥𝑥Q)N
QXJ ê

∑ ç∏ 𝜇𝜇äÄ
è(𝑥𝑥Q)N

QXJ êâ
HXJ

= 𝜃𝜃å7𝜉𝜉å(𝑥𝑥) 

Where m is the total number of fuzzy rules and 𝜃𝜃å = í𝜃𝜃åJ, 𝜃𝜃åY, … , 𝜃𝜃åâì
7 is the tuning 

parameters' vector. 
𝜉𝜉å(𝑥𝑥) = [𝜉𝜉Jå(𝑥𝑥), 𝜉𝜉Yå(𝑥𝑥), … , 𝜉𝜉âå (𝑥𝑥)]7 is the fuzzy base function vector. 

(24) 𝜉𝜉Hå(𝑥𝑥) =
ç∏ 𝜇𝜇äÄè

(𝑥𝑥Q)N
QXJ ê

∑ ç∏ 𝜇𝜇äÄ
è(𝑥𝑥Q)N

QXJ êâ
HXJ

 

Optimized parameters' vector and fuzzy estimation error are defined as below: 

(25) 𝜃𝜃å∗ = arg
óò∈ô

min
∏ úÄò
Äùû

üsup
£∈ô

§𝑔𝑔åC𝑥𝑥D − 𝑔𝑔ÜåC𝑥𝑥, 𝜃𝜃QD§• 

Also, 𝑔𝑔Ü(𝑥𝑥) tunable parameters can be tuned online using Lyapunov method. 
 
6. Proposed Controller 
This section uses a classic sliding mode controller for the SEIR model. Then, using 

fuzzy logic and online parameters tuning, the switching gain of the control rule of the 
sliding mode controller is estimated. This compensates for the uncertainty of the 
system. In addition, a comparison is made between the performance and robustness 
of the proposed fuzzy sliding mode controller and an SEIR model with parametric 
uncertainties. 

 
6.1. Designing Fuzzy Sliding Mode Controller for SEIR Model 
Here we represent how to design a fuzzy sliding mode controller for the SEIR model 

based on the one proposed in [2]. 
First, the sliding level is defined as follows. Note that 𝜆𝜆 is the constant positive gain. 

(26) 𝜙𝜙(𝑡𝑡) = 𝑒𝑒(𝑡𝑡) + 𝜆𝜆¶ 𝑒𝑒(𝜏𝜏)𝑑𝑑𝑑𝑑
®

©
 

(27) 𝜙𝜙(𝑡𝑡) = 𝑒𝑒(𝑡𝑡) + 𝜆𝜆¶ 𝑒𝑒(𝜏𝜏)𝑑𝑑𝑑𝑑
®

©
= 0 

The reference signal used in this paper for theoretical analysis and simulation is an 
exponential one which is defined as below: 

(28) 𝑁𝑁>?@(𝑡𝑡) = (𝑅𝑅(0) − 𝑁𝑁(0))𝑒𝑒e™® + 𝑁𝑁(𝑡𝑡) 

It can be seen that satisfying equation 26 ensures achieving the control objective. 

(29) 

𝜙̇𝜙(𝑡𝑡) = 𝑒̇𝑒(𝑡𝑡) + 𝜆𝜆𝜆𝜆(𝑡𝑡) 
= 𝑅̇𝑅(𝑡𝑡) − 𝑁̇𝑁>?@(𝑡𝑡) + 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝜆𝜆>?@(𝑡𝑡) 

= −(𝜇𝜇 + 𝜔𝜔)𝑅𝑅(𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) − (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) 

											+𝜀𝜀𝑒𝑒e™® ¨𝑅𝑅(0) − 𝑁𝑁>?@(0)≠ + 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝑒𝑒e™® ¨𝑅𝑅(0) − 𝑁𝑁>?@(0)≠ 

For simplicity, it is assumed ε = λ. This removes parts with the initial value. 
(30) = −(𝜇𝜇 + 𝜔𝜔)𝑅𝑅(𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) − (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) + 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝑁𝑁(𝑡𝑡) = 0 

Equivalent control rule can be obtained from the above equation: 

(31) 𝑉𝑉?W(𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡)
[(𝜆𝜆 + 𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) + (𝜇𝜇 + 𝜔𝜔 − 𝜆𝜆)𝑅𝑅(𝑡𝑡) − 𝛾𝛾𝛾𝛾(𝑡𝑡)] 

Since θ includes systems' actual parameters and is unknown, we use nominal and 
estimated values instead and show them as θØ. To simplify the equations, we consider 
the below substitutions: 

1x m
1F m

lq

Fig. 2. Main structure of fuzzy systems
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(18) ∆e≤ ∆Q(𝑡𝑡) ≤ ∆I 

(19) 𝛾𝛾e ≤ 𝑑𝑑(𝑡𝑡) ≤ 𝛾𝛾I 
Control input that could satisfy the reach condition can be chosen as: 

(20) 

𝑢𝑢 = n−OO𝑎𝑎Q

W

QXJ

𝑓𝑓Q + 𝑥̇𝑥aN − 𝜆𝜆HC𝑥𝑥HIJ − 𝑥̇𝑥aH	D
NeJ

HXJ

o /𝑝𝑝
tuuuuuuuuuuuuuvuuuuuuuuuuuuuw

xyz

− {𝑘𝑘 +O|∆}Q𝑓𝑓Q|
W

QXJ

~ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)/𝑝𝑝
tuuuuuuuuvuuuuuuuuw

x�ÄÅ

 

A cautious choice for ∆ is: 
(21) ∆}= 𝑚𝑚𝑚𝑚𝑚𝑚{|∆e|, |∆I|} 

Considering the external disturbance, we can write the lower limit of K as: 
(22) 𝑘𝑘 > 𝜂𝜂 +𝑚𝑚𝑚𝑚𝑚𝑚(|𝛾𝛾e|, |𝛾𝛾I|) 

Where 𝑘𝑘 + ∑ |∆}Q𝑓𝑓Q|
W
QXJ  is the discontinuous control rule gain, this is a strictly positive 

actual function whose lower limit depends on systems' parameters' estimation and 
external disturbance. Control input in equation 20 comprises two parts. The first part 

is Ueq, a continuous term recognized as equivalent control based on systems' 
parameters. This term compensates for undesired dynamic estimation of the system. 
The second term is the sigmoid function of the discontinuous control rule. Udis needs 

unlimited switching at the cross-section of the error state track and sliding level for 
the control signal. Therefore, the track must constantly move toward the sliding level 

(Bartoszewicz, A.,1995). 
 
5. Fuzzy Controller 
In the past two decades, it has been shown that fuzzy systems and neural networks 

can be considered global function approximators and can correctly estimate almost 
any continuous function with a small and compact set. There are several advantages 
to using fuzzy systems compared to other nonlinear models. These advantages include 
understanding the structure, empirical and statistical knowledge, and interpretability. 
This section presents a fuzzy dynamic model using the TAKAGI-SUGENO (TS) as a 
global function approximator. 

Figure 2 depicts the main structure of fuzzy systems. This structure comprises four 
segments; fuzzified, fuzzy rule base, fuzzy inference engine, and defuzzifire. The 
deterministic input is firstly fuzzified and normalized to fuzzy input sets. This stimulates 
and activates the fuzzy inference engine and fuzzy rule base, which outputs fuzzy sets. 
Finally, defuzzifiring these sets output deterministic output values. 

This fuzzy method is based on "if-then" fuzzy rules to map input vector 𝑋𝑋 =
[𝑥𝑥J, 𝑥𝑥Y, … , 𝑥𝑥N] to output 𝑔𝑔Ü(𝑥𝑥, 𝜃𝜃). A fuzzy rule base contains a set of "if-then" rules as 

below (Tokat, S., Eksin, I., & Güzelkaya, M., 2003): if is and …, then 𝑔𝑔Ü is ، 
Where 𝐹𝐹Qâ𝑖𝑖 = 1,… , 𝑛𝑛 are fuzzy variables based on fuzzy membership functions 

𝜇𝜇äÄã(𝑥𝑥Q). 𝜃𝜃å
â relates to fuzzy output values. Fuzzy system output can be expressed 

based on individual fuzzified, multiplication inference, and mean center defuzzifire as 
below: 

(23) 𝑔𝑔ÜåC𝑥𝑥, 𝜃𝜃åD =
∑ 𝜃𝜃Q

Hâ
HXJ ç∏ 𝜇𝜇äÄè

(𝑥𝑥Q)N
QXJ ê

∑ ç∏ 𝜇𝜇äÄ
è(𝑥𝑥Q)N

QXJ êâ
HXJ

= 𝜃𝜃å7𝜉𝜉å(𝑥𝑥) 

Where m is the total number of fuzzy rules and 𝜃𝜃å = í𝜃𝜃åJ, 𝜃𝜃åY, … , 𝜃𝜃åâì
7 is the tuning 

parameters' vector. 
𝜉𝜉å(𝑥𝑥) = [𝜉𝜉Jå(𝑥𝑥), 𝜉𝜉Yå(𝑥𝑥), … , 𝜉𝜉âå (𝑥𝑥)]7 is the fuzzy base function vector. 

(24) 𝜉𝜉Hå(𝑥𝑥) =
ç∏ 𝜇𝜇äÄè

(𝑥𝑥Q)N
QXJ ê

∑ ç∏ 𝜇𝜇äÄ
è(𝑥𝑥Q)N

QXJ êâ
HXJ

 

Optimized parameters' vector and fuzzy estimation error are defined as below: 

(25) 𝜃𝜃å∗ = arg
óò∈ô

min
∏ úÄò
Äùû

üsup
£∈ô

§𝑔𝑔åC𝑥𝑥D − 𝑔𝑔ÜåC𝑥𝑥, 𝜃𝜃QD§• 

Also, 𝑔𝑔Ü(𝑥𝑥) tunable parameters can be tuned online using Lyapunov method. 
 
6. Proposed Controller 
This section uses a classic sliding mode controller for the SEIR model. Then, using 

fuzzy logic and online parameters tuning, the switching gain of the control rule of the 
sliding mode controller is estimated. This compensates for the uncertainty of the 
system. In addition, a comparison is made between the performance and robustness 
of the proposed fuzzy sliding mode controller and an SEIR model with parametric 
uncertainties. 

 
6.1. Designing Fuzzy Sliding Mode Controller for SEIR Model 
Here we represent how to design a fuzzy sliding mode controller for the SEIR model 

based on the one proposed in [2]. 
First, the sliding level is defined as follows. Note that 𝜆𝜆 is the constant positive gain. 

(26) 𝜙𝜙(𝑡𝑡) = 𝑒𝑒(𝑡𝑡) + 𝜆𝜆¶ 𝑒𝑒(𝜏𝜏)𝑑𝑑𝑑𝑑
®

©
 

(27) 𝜙𝜙(𝑡𝑡) = 𝑒𝑒(𝑡𝑡) + 𝜆𝜆¶ 𝑒𝑒(𝜏𝜏)𝑑𝑑𝑑𝑑
®

©
= 0 

The reference signal used in this paper for theoretical analysis and simulation is an 
exponential one which is defined as below: 

(28) 𝑁𝑁>?@(𝑡𝑡) = (𝑅𝑅(0) − 𝑁𝑁(0))𝑒𝑒e™® + 𝑁𝑁(𝑡𝑡) 

It can be seen that satisfying equation 26 ensures achieving the control objective. 

(29) 

𝜙̇𝜙(𝑡𝑡) = 𝑒̇𝑒(𝑡𝑡) + 𝜆𝜆𝜆𝜆(𝑡𝑡) 
= 𝑅̇𝑅(𝑡𝑡) − 𝑁̇𝑁>?@(𝑡𝑡) + 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝜆𝜆>?@(𝑡𝑡) 

= −(𝜇𝜇 + 𝜔𝜔)𝑅𝑅(𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) − (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) 

											+𝜀𝜀𝑒𝑒e™® ¨𝑅𝑅(0) − 𝑁𝑁>?@(0)≠ + 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝑒𝑒e™® ¨𝑅𝑅(0) − 𝑁𝑁>?@(0)≠ 

For simplicity, it is assumed ε = λ. This removes parts with the initial value. 
(30) = −(𝜇𝜇 + 𝜔𝜔)𝑅𝑅(𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) − (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) + 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝑁𝑁(𝑡𝑡) = 0 

Equivalent control rule can be obtained from the above equation: 

(31) 𝑉𝑉?W(𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡)
[(𝜆𝜆 + 𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) + (𝜇𝜇 + 𝜔𝜔 − 𝜆𝜆)𝑅𝑅(𝑡𝑡) − 𝛾𝛾𝛾𝛾(𝑡𝑡)] 

Since θ includes systems' actual parameters and is unknown, we use nominal and 
estimated values instead and show them as θØ. To simplify the equations, we consider 
the below substitutions: 

1x m
1F m

lq
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(18) ∆e≤ ∆Q(𝑡𝑡) ≤ ∆I 

(19) 𝛾𝛾e ≤ 𝑑𝑑(𝑡𝑡) ≤ 𝛾𝛾I 
Control input that could satisfy the reach condition can be chosen as: 

(20) 

𝑢𝑢 = n−OO𝑎𝑎Q

W

QXJ

𝑓𝑓Q + 𝑥̇𝑥aN − 𝜆𝜆HC𝑥𝑥HIJ − 𝑥̇𝑥aH	D
NeJ

HXJ

o /𝑝𝑝
tuuuuuuuuuuuuuvuuuuuuuuuuuuuw

xyz

− {𝑘𝑘 +O|∆}Q𝑓𝑓Q|
W

QXJ

~ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)/𝑝𝑝
tuuuuuuuuvuuuuuuuuw

x�ÄÅ

 

A cautious choice for ∆ is: 
(21) ∆}= 𝑚𝑚𝑚𝑚𝑚𝑚{|∆e|, |∆I|} 

Considering the external disturbance, we can write the lower limit of K as: 
(22) 𝑘𝑘 > 𝜂𝜂 +𝑚𝑚𝑚𝑚𝑚𝑚(|𝛾𝛾e|, |𝛾𝛾I|) 

Where 𝑘𝑘 + ∑ |∆}Q𝑓𝑓Q|
W
QXJ  is the discontinuous control rule gain, this is a strictly positive 

actual function whose lower limit depends on systems' parameters' estimation and 
external disturbance. Control input in equation 20 comprises two parts. The first part 

is Ueq, a continuous term recognized as equivalent control based on systems' 
parameters. This term compensates for undesired dynamic estimation of the system. 
The second term is the sigmoid function of the discontinuous control rule. Udis needs 

unlimited switching at the cross-section of the error state track and sliding level for 
the control signal. Therefore, the track must constantly move toward the sliding level 

(Bartoszewicz, A.,1995). 
 
5. Fuzzy Controller 
In the past two decades, it has been shown that fuzzy systems and neural networks 

can be considered global function approximators and can correctly estimate almost 
any continuous function with a small and compact set. There are several advantages 
to using fuzzy systems compared to other nonlinear models. These advantages include 
understanding the structure, empirical and statistical knowledge, and interpretability. 
This section presents a fuzzy dynamic model using the TAKAGI-SUGENO (TS) as a 
global function approximator. 

Figure 2 depicts the main structure of fuzzy systems. This structure comprises four 
segments; fuzzified, fuzzy rule base, fuzzy inference engine, and defuzzifire. The 
deterministic input is firstly fuzzified and normalized to fuzzy input sets. This stimulates 
and activates the fuzzy inference engine and fuzzy rule base, which outputs fuzzy sets. 
Finally, defuzzifiring these sets output deterministic output values. 

This fuzzy method is based on "if-then" fuzzy rules to map input vector 𝑋𝑋 =
[𝑥𝑥J, 𝑥𝑥Y, … , 𝑥𝑥N] to output 𝑔𝑔Ü(𝑥𝑥, 𝜃𝜃). A fuzzy rule base contains a set of "if-then" rules as 

below (Tokat, S., Eksin, I., & Güzelkaya, M., 2003): if is and …, then 𝑔𝑔Ü is ، 
Where 𝐹𝐹Qâ𝑖𝑖 = 1,… , 𝑛𝑛 are fuzzy variables based on fuzzy membership functions 

𝜇𝜇äÄã(𝑥𝑥Q). 𝜃𝜃å
â relates to fuzzy output values. Fuzzy system output can be expressed 

based on individual fuzzified, multiplication inference, and mean center defuzzifire as 
below: 

(23) 𝑔𝑔ÜåC𝑥𝑥, 𝜃𝜃åD =
∑ 𝜃𝜃Q

Hâ
HXJ ç∏ 𝜇𝜇äÄè

(𝑥𝑥Q)N
QXJ ê

∑ ç∏ 𝜇𝜇äÄ
è(𝑥𝑥Q)N

QXJ êâ
HXJ

= 𝜃𝜃å7𝜉𝜉å(𝑥𝑥) 

Where m is the total number of fuzzy rules and 𝜃𝜃å = í𝜃𝜃åJ, 𝜃𝜃åY, … , 𝜃𝜃åâì
7 is the tuning 

parameters' vector. 
𝜉𝜉å(𝑥𝑥) = [𝜉𝜉Jå(𝑥𝑥), 𝜉𝜉Yå(𝑥𝑥), … , 𝜉𝜉âå (𝑥𝑥)]7 is the fuzzy base function vector. 

(24) 𝜉𝜉Hå(𝑥𝑥) =
ç∏ 𝜇𝜇äÄè

(𝑥𝑥Q)N
QXJ ê

∑ ç∏ 𝜇𝜇äÄ
è(𝑥𝑥Q)N

QXJ êâ
HXJ

 

Optimized parameters' vector and fuzzy estimation error are defined as below: 

(25) 𝜃𝜃å∗ = arg
óò∈ô

min
∏ úÄò
Äùû

üsup
£∈ô

§𝑔𝑔åC𝑥𝑥D − 𝑔𝑔ÜåC𝑥𝑥, 𝜃𝜃QD§• 

Also, 𝑔𝑔Ü(𝑥𝑥) tunable parameters can be tuned online using Lyapunov method. 
 
6. Proposed Controller 
This section uses a classic sliding mode controller for the SEIR model. Then, using 

fuzzy logic and online parameters tuning, the switching gain of the control rule of the 
sliding mode controller is estimated. This compensates for the uncertainty of the 
system. In addition, a comparison is made between the performance and robustness 
of the proposed fuzzy sliding mode controller and an SEIR model with parametric 
uncertainties. 

 
6.1. Designing Fuzzy Sliding Mode Controller for SEIR Model 
Here we represent how to design a fuzzy sliding mode controller for the SEIR model 

based on the one proposed in [2]. 
First, the sliding level is defined as follows. Note that 𝜆𝜆 is the constant positive gain. 

(26) 𝜙𝜙(𝑡𝑡) = 𝑒𝑒(𝑡𝑡) + 𝜆𝜆¶ 𝑒𝑒(𝜏𝜏)𝑑𝑑𝑑𝑑
®

©
 

(27) 𝜙𝜙(𝑡𝑡) = 𝑒𝑒(𝑡𝑡) + 𝜆𝜆¶ 𝑒𝑒(𝜏𝜏)𝑑𝑑𝑑𝑑
®

©
= 0 

The reference signal used in this paper for theoretical analysis and simulation is an 
exponential one which is defined as below: 

(28) 𝑁𝑁>?@(𝑡𝑡) = (𝑅𝑅(0) − 𝑁𝑁(0))𝑒𝑒e™® + 𝑁𝑁(𝑡𝑡) 

It can be seen that satisfying equation 26 ensures achieving the control objective. 

(29) 

𝜙̇𝜙(𝑡𝑡) = 𝑒̇𝑒(𝑡𝑡) + 𝜆𝜆𝜆𝜆(𝑡𝑡) 
= 𝑅̇𝑅(𝑡𝑡) − 𝑁̇𝑁>?@(𝑡𝑡) + 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝜆𝜆>?@(𝑡𝑡) 

= −(𝜇𝜇 + 𝜔𝜔)𝑅𝑅(𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) − (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) 

											+𝜀𝜀𝑒𝑒e™® ¨𝑅𝑅(0) − 𝑁𝑁>?@(0)≠ + 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝑒𝑒e™® ¨𝑅𝑅(0) − 𝑁𝑁>?@(0)≠ 

For simplicity, it is assumed ε = λ. This removes parts with the initial value. 
(30) = −(𝜇𝜇 + 𝜔𝜔)𝑅𝑅(𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) − (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) + 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝑁𝑁(𝑡𝑡) = 0 

Equivalent control rule can be obtained from the above equation: 

(31) 𝑉𝑉?W(𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡)
[(𝜆𝜆 + 𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) + (𝜇𝜇 + 𝜔𝜔 − 𝜆𝜆)𝑅𝑅(𝑡𝑡) − 𝛾𝛾𝛾𝛾(𝑡𝑡)] 

Since θ includes systems' actual parameters and is unknown, we use nominal and 
estimated values instead and show them as θØ. To simplify the equations, we consider 
the below substitutions: 

1x m
1F m

lq

(32) 𝛿𝛿 = 𝜆𝜆 + 𝜈𝜈 − 𝜇𝜇								 → 						 𝛿𝛿± = 𝜆𝜆 + 𝜈̂𝜈 − 𝜇̂𝜇 
𝜌𝜌 = 𝜇𝜇 + 𝜔𝜔 − 𝜆𝜆								 → 						 𝜌𝜌Ü = 𝜇̂𝜇 + 𝜔𝜔¥ − 𝜆𝜆 

(33) 𝑉𝑉?W(𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡) í𝛿𝛿
±𝑁𝑁(𝑡𝑡) + 𝜌𝜌Ü𝑅𝑅(𝑡𝑡) − 𝛾𝛾Ü𝐼𝐼(𝑡𝑡)ì 

We have considered an additional part in the control segment to compensate for 
the discrepancies between nominal and actual values in equation 31. This led to 
equation 33: 

(34) 𝑉𝑉 = 𝑉𝑉?W(𝑡𝑡) −
𝑔𝑔(𝑥𝑥, 𝑡𝑡)
𝑁𝑁(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠C𝜙𝜙(𝑡𝑡)D 

Where g(t) represents the added switching's control gain, it is determined using 
uncertainties of the parameters. 

Assumption 1: there exists a function depending on the system's state b(x,t), which 
bounds the upper limit of the below equation. 

(35) §(𝜌𝜌Ü − 𝜌𝜌)𝑅𝑅(𝑡𝑡) + (𝛾𝛾 − 𝛾𝛾Ü)𝐼𝐼(𝑡𝑡) + C𝛿𝛿± − 𝛿𝛿D𝑁𝑁(𝑡𝑡)§ ≤ 𝑏𝑏(𝑥𝑥, 𝑡𝑡) 

Assumption 1 relates to maximum uncertainty caused by mis-coordination between 
parameters and their fundamental values. Note that b(x,t) always exists because a 
model is parametrized using determined values, although these parameters may not 
be known. In addition, this assumption incorporates an accurate epidemiologic 
interpretation. Equation 35 can be rewritten as follows: 

(36) 
	§𝛿𝛿±𝑁𝑁(𝑡𝑡) − 𝛿𝛿𝛿𝛿(𝑡𝑡) + 𝜌𝜌Ü	𝑅𝑅(𝑡𝑡) − 𝜌𝜌𝜌𝜌(𝑡𝑡) + 𝛾𝛾Ü𝐼𝐼(𝑡𝑡) − 𝛾𝛾𝛾𝛾(𝑡𝑡)§ 

= §𝑁𝑁(𝑡𝑡)𝑉𝑉?W(𝑡𝑡) − 𝑁𝑁(𝑡𝑡)𝑉𝑉?W.®>x?(𝑡𝑡)	§ → 𝑁𝑁(𝑡𝑡)§𝑉𝑉?W(𝑡𝑡) − 𝑉𝑉?W.®>x?(𝑡𝑡)	§ ≤ 𝑏𝑏(𝑥𝑥, 𝑡𝑡) 

Where 𝑉𝑉?W(𝑡𝑡) Is the equivalent control rule obtained from equation (34) and is 
expressed in terms of nominal values of 𝜃𝜃Ø. 𝑉𝑉?W.®>x?; however, if the equivalent control 
rule with actual values. This assumption states that the absolute value of exerted 
vaccination control function when the parameters are known and not known is bounded 
by a deterministic function. 

Assumption 2: upper limit of b(x,t) is known. 
As mentioned earlier, this assumption means that the limitation is effectively known. 

This is a common assumption in sliding mode control systems. However, this 
assumption does not limit the possibility of using the control process since the upper 
limit of (35) can be calculated from the lower and upper limits of system parameters. 

Assumption 3: switching gain g(x,t) is chosen as below. 
(37) 𝑔𝑔(𝑥𝑥, 𝑡𝑡) = 𝑏𝑏(𝑥𝑥, 𝑡𝑡) + 𝜂𝜂 

Where 𝜂𝜂 > 0 and is chosen arbitrarily by the designer. 
Assumption 4: 𝑏𝑏} is an unknown positive value such that: 

(38) 𝑏𝑏} ≥ 𝑏𝑏(𝑥𝑥, 𝑡𝑡) 

 
Since the exact value of g(x,t) is unknown, its value is fuzzily estimated in the control 

rule equation. 
(39) 

𝑉𝑉 = 𝑉𝑉?W(𝑡𝑡) −
𝑔𝑔Ü(𝑡𝑡)
𝑁𝑁(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠C𝜙𝜙

(𝑡𝑡)D 

𝑔𝑔∑(𝑡𝑡) = 𝑔𝑔Ü(𝑡𝑡) − 𝑔𝑔 is the difference between actual and estimated values of g. 
G is fuzzily estimated as follows: 

(40) 𝑔𝑔Ü(𝑋𝑋|𝜃𝜃) = 𝜃𝜃7𝜉𝜉(𝑋𝑋) 
And the optimized value of θ and ideal estimate of g is defined as follows: 

(41) 𝑔𝑔Ü(𝑋𝑋|𝜃𝜃∗) = 𝜃𝜃∗7𝜉𝜉(𝑋𝑋) 
Theorem: 
The Lyapunov function is considered, To achieve general stability and adaption rule 

as below. 
(42) 

𝐿𝐿(𝑡𝑡) =
1
2𝜙𝜙

(𝑡𝑡)Y +
1
2𝑧𝑧

(𝜃𝜃 − 𝜃𝜃∗)7(𝜃𝜃 − 𝜃𝜃∗) 

The time derivative of equation 40 can be calculated as: 
(43) 

𝐿̇𝐿(𝑡𝑡) = 𝜙𝜙(𝑡𝑡)𝜙̇𝜙(𝑡𝑡) +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

Noting equation 29, we can rewrite equation 43:    
(44) = 𝜙𝜙(𝑡𝑡)í(𝜌𝜌Ü − 𝜌𝜌)𝑅𝑅(𝑡𝑡) + (𝛾𝛾 − 𝛾𝛾Ü)𝐼𝐼(𝑡𝑡) + C𝛿𝛿± − 𝛿𝛿D𝑁𝑁(𝑡𝑡) − 𝑔𝑔Ü(𝑥𝑥, 𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)ì

+
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(45) 𝑔𝑔∑(𝑡𝑡) = (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋) + 𝜀𝜀@ 

(46) 𝜀𝜀@ = 𝑔𝑔 − 𝑔𝑔(𝜃𝜃∗|𝜉𝜉(𝑋𝑋)) 

In equation 45, 𝑔𝑔∑(𝑡𝑡) shows the estimation error. Also, 𝜀𝜀@ equation 46 represents the 
error between the optimum estimate and the actual value of g. 

There exists a positive value such that: 
 
 ∫

𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)
𝑎𝑎 − 𝑎𝑎ª

Y

≥ 0 

 𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
𝑎𝑎Y − 2𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) + 𝑎𝑎Y ≥ 0 

 
𝜀𝜀@𝑠𝑠𝑠𝑠𝑛𝑛(𝜙𝜙) ≤

1
2∫

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
𝑎𝑎Y + 𝑎𝑎Yª 

(47) 
𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) ≤

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
2𝑎𝑎Y +

𝑎𝑎Y

2  

Considering equation 47 and assumptions 1, 3, and 4, we have: 

(48) 
≤ 𝜙𝜙(𝑡𝑡)í𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)ì +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(49) 
≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(50) 
≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −

𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(51) = 𝑏𝑏(𝑥𝑥, 𝑡𝑡)𝜙𝜙(𝑡𝑡) + ü(𝜃𝜃 − 𝜃𝜃∗)7 ç−𝜉𝜉(𝑋𝑋)|𝜙𝜙| +
1
𝑧𝑧 𝜃̇𝜃

ê• −
𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}|𝜙𝜙| − 𝜂𝜂|𝜙𝜙| 
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(32) 𝛿𝛿 = 𝜆𝜆 + 𝜈𝜈 − 𝜇𝜇								 → 						 𝛿𝛿± = 𝜆𝜆 + 𝜈̂𝜈 − 𝜇̂𝜇 
𝜌𝜌 = 𝜇𝜇 + 𝜔𝜔 − 𝜆𝜆								 → 						 𝜌𝜌Ü = 𝜇̂𝜇 + 𝜔𝜔¥ − 𝜆𝜆 

(33) 𝑉𝑉?W(𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡) í𝛿𝛿
±𝑁𝑁(𝑡𝑡) + 𝜌𝜌Ü𝑅𝑅(𝑡𝑡) − 𝛾𝛾Ü𝐼𝐼(𝑡𝑡)ì 

We have considered an additional part in the control segment to compensate for 
the discrepancies between nominal and actual values in equation 31. This led to 
equation 33: 

(34) 𝑉𝑉 = 𝑉𝑉?W(𝑡𝑡) −
𝑔𝑔(𝑥𝑥, 𝑡𝑡)
𝑁𝑁(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠C𝜙𝜙(𝑡𝑡)D 

Where g(t) represents the added switching's control gain, it is determined using 
uncertainties of the parameters. 

Assumption 1: there exists a function depending on the system's state b(x,t), which 
bounds the upper limit of the below equation. 

(35) §(𝜌𝜌Ü − 𝜌𝜌)𝑅𝑅(𝑡𝑡) + (𝛾𝛾 − 𝛾𝛾Ü)𝐼𝐼(𝑡𝑡) + C𝛿𝛿± − 𝛿𝛿D𝑁𝑁(𝑡𝑡)§ ≤ 𝑏𝑏(𝑥𝑥, 𝑡𝑡) 

Assumption 1 relates to maximum uncertainty caused by mis-coordination between 
parameters and their fundamental values. Note that b(x,t) always exists because a 
model is parametrized using determined values, although these parameters may not 
be known. In addition, this assumption incorporates an accurate epidemiologic 
interpretation. Equation 35 can be rewritten as follows: 

(36) 
	§𝛿𝛿±𝑁𝑁(𝑡𝑡) − 𝛿𝛿𝛿𝛿(𝑡𝑡) + 𝜌𝜌Ü	𝑅𝑅(𝑡𝑡) − 𝜌𝜌𝜌𝜌(𝑡𝑡) + 𝛾𝛾Ü𝐼𝐼(𝑡𝑡) − 𝛾𝛾𝛾𝛾(𝑡𝑡)§ 

= §𝑁𝑁(𝑡𝑡)𝑉𝑉?W(𝑡𝑡) − 𝑁𝑁(𝑡𝑡)𝑉𝑉?W.®>x?(𝑡𝑡)	§ → 𝑁𝑁(𝑡𝑡)§𝑉𝑉?W(𝑡𝑡) − 𝑉𝑉?W.®>x?(𝑡𝑡)	§ ≤ 𝑏𝑏(𝑥𝑥, 𝑡𝑡) 

Where 𝑉𝑉?W(𝑡𝑡) Is the equivalent control rule obtained from equation (34) and is 
expressed in terms of nominal values of 𝜃𝜃Ø. 𝑉𝑉?W.®>x?; however, if the equivalent control 
rule with actual values. This assumption states that the absolute value of exerted 
vaccination control function when the parameters are known and not known is bounded 
by a deterministic function. 

Assumption 2: upper limit of b(x,t) is known. 
As mentioned earlier, this assumption means that the limitation is effectively known. 

This is a common assumption in sliding mode control systems. However, this 
assumption does not limit the possibility of using the control process since the upper 
limit of (35) can be calculated from the lower and upper limits of system parameters. 

Assumption 3: switching gain g(x,t) is chosen as below. 
(37) 𝑔𝑔(𝑥𝑥, 𝑡𝑡) = 𝑏𝑏(𝑥𝑥, 𝑡𝑡) + 𝜂𝜂 

Where 𝜂𝜂 > 0 and is chosen arbitrarily by the designer. 
Assumption 4: 𝑏𝑏} is an unknown positive value such that: 

(38) 𝑏𝑏} ≥ 𝑏𝑏(𝑥𝑥, 𝑡𝑡) 

 
Since the exact value of g(x,t) is unknown, its value is fuzzily estimated in the control 

rule equation. 
(39) 

𝑉𝑉 = 𝑉𝑉?W(𝑡𝑡) −
𝑔𝑔Ü(𝑡𝑡)
𝑁𝑁(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠C𝜙𝜙

(𝑡𝑡)D 

𝑔𝑔∑(𝑡𝑡) = 𝑔𝑔Ü(𝑡𝑡) − 𝑔𝑔 is the difference between actual and estimated values of g. 
G is fuzzily estimated as follows: 

(40) 𝑔𝑔Ü(𝑋𝑋|𝜃𝜃) = 𝜃𝜃7𝜉𝜉(𝑋𝑋) 
And the optimized value of θ and ideal estimate of g is defined as follows: 

(41) 𝑔𝑔Ü(𝑋𝑋|𝜃𝜃∗) = 𝜃𝜃∗7𝜉𝜉(𝑋𝑋) 
Theorem: 
The Lyapunov function is considered, To achieve general stability and adaption rule 

as below. 
(42) 

𝐿𝐿(𝑡𝑡) =
1
2𝜙𝜙

(𝑡𝑡)Y +
1
2𝑧𝑧

(𝜃𝜃 − 𝜃𝜃∗)7(𝜃𝜃 − 𝜃𝜃∗) 

The time derivative of equation 40 can be calculated as: 
(43) 

𝐿̇𝐿(𝑡𝑡) = 𝜙𝜙(𝑡𝑡)𝜙̇𝜙(𝑡𝑡) +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

Noting equation 29, we can rewrite equation 43:    
(44) = 𝜙𝜙(𝑡𝑡)í(𝜌𝜌Ü − 𝜌𝜌)𝑅𝑅(𝑡𝑡) + (𝛾𝛾 − 𝛾𝛾Ü)𝐼𝐼(𝑡𝑡) + C𝛿𝛿± − 𝛿𝛿D𝑁𝑁(𝑡𝑡) − 𝑔𝑔Ü(𝑥𝑥, 𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)ì

+
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(45) 𝑔𝑔∑(𝑡𝑡) = (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋) + 𝜀𝜀@ 

(46) 𝜀𝜀@ = 𝑔𝑔 − 𝑔𝑔(𝜃𝜃∗|𝜉𝜉(𝑋𝑋)) 

In equation 45, 𝑔𝑔∑(𝑡𝑡) shows the estimation error. Also, 𝜀𝜀@ equation 46 represents the 
error between the optimum estimate and the actual value of g. 

There exists a positive value such that: 
 
 ∫

𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)
𝑎𝑎 − 𝑎𝑎ª

Y

≥ 0 

 𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
𝑎𝑎Y − 2𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) + 𝑎𝑎Y ≥ 0 

 
𝜀𝜀@𝑠𝑠𝑠𝑠𝑛𝑛(𝜙𝜙) ≤

1
2∫

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
𝑎𝑎Y + 𝑎𝑎Yª 

(47) 
𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) ≤

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
2𝑎𝑎Y +

𝑎𝑎Y

2  

Considering equation 47 and assumptions 1, 3, and 4, we have: 

(48) 
≤ 𝜙𝜙(𝑡𝑡)í𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)ì +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(49) 
≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(50) 
≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −

𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(51) = 𝑏𝑏(𝑥𝑥, 𝑡𝑡)𝜙𝜙(𝑡𝑡) + ü(𝜃𝜃 − 𝜃𝜃∗)7 ç−𝜉𝜉(𝑋𝑋)|𝜙𝜙| +
1
𝑧𝑧 𝜃̇𝜃

ê• −
𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}|𝜙𝜙| − 𝜂𝜂|𝜙𝜙| 

Fig. 3. Adaptive Fuzzy Sliding Mode Controller block diagram

(32) 𝛿𝛿 = 𝜆𝜆 + 𝜈𝜈 − 𝜇𝜇								 → 						 𝛿𝛿± = 𝜆𝜆 + 𝜈̂𝜈 − 𝜇̂𝜇 
𝜌𝜌 = 𝜇𝜇 + 𝜔𝜔 − 𝜆𝜆								 → 						 𝜌𝜌Ü = 𝜇̂𝜇 + 𝜔𝜔¥ − 𝜆𝜆 

(33) 𝑉𝑉?W(𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡) í𝛿𝛿
±𝑁𝑁(𝑡𝑡) + 𝜌𝜌Ü𝑅𝑅(𝑡𝑡) − 𝛾𝛾Ü𝐼𝐼(𝑡𝑡)ì 

We have considered an additional part in the control segment to compensate for 
the discrepancies between nominal and actual values in equation 31. This led to 
equation 33: 

(34) 𝑉𝑉 = 𝑉𝑉?W(𝑡𝑡) −
𝑔𝑔(𝑥𝑥, 𝑡𝑡)
𝑁𝑁(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠C𝜙𝜙(𝑡𝑡)D 

Where g(t) represents the added switching's control gain, it is determined using 
uncertainties of the parameters. 

Assumption 1: there exists a function depending on the system's state b(x,t), which 
bounds the upper limit of the below equation. 

(35) §(𝜌𝜌Ü − 𝜌𝜌)𝑅𝑅(𝑡𝑡) + (𝛾𝛾 − 𝛾𝛾Ü)𝐼𝐼(𝑡𝑡) + C𝛿𝛿± − 𝛿𝛿D𝑁𝑁(𝑡𝑡)§ ≤ 𝑏𝑏(𝑥𝑥, 𝑡𝑡) 

Assumption 1 relates to maximum uncertainty caused by mis-coordination between 
parameters and their fundamental values. Note that b(x,t) always exists because a 
model is parametrized using determined values, although these parameters may not 
be known. In addition, this assumption incorporates an accurate epidemiologic 
interpretation. Equation 35 can be rewritten as follows: 

(36) 
	§𝛿𝛿±𝑁𝑁(𝑡𝑡) − 𝛿𝛿𝛿𝛿(𝑡𝑡) + 𝜌𝜌Ü	𝑅𝑅(𝑡𝑡) − 𝜌𝜌𝜌𝜌(𝑡𝑡) + 𝛾𝛾Ü𝐼𝐼(𝑡𝑡) − 𝛾𝛾𝛾𝛾(𝑡𝑡)§ 

= §𝑁𝑁(𝑡𝑡)𝑉𝑉?W(𝑡𝑡) − 𝑁𝑁(𝑡𝑡)𝑉𝑉?W.®>x?(𝑡𝑡)	§ → 𝑁𝑁(𝑡𝑡)§𝑉𝑉?W(𝑡𝑡) − 𝑉𝑉?W.®>x?(𝑡𝑡)	§ ≤ 𝑏𝑏(𝑥𝑥, 𝑡𝑡) 

Where 𝑉𝑉?W(𝑡𝑡) Is the equivalent control rule obtained from equation (34) and is 
expressed in terms of nominal values of 𝜃𝜃Ø. 𝑉𝑉?W.®>x?; however, if the equivalent control 
rule with actual values. This assumption states that the absolute value of exerted 
vaccination control function when the parameters are known and not known is bounded 
by a deterministic function. 

Assumption 2: upper limit of b(x,t) is known. 
As mentioned earlier, this assumption means that the limitation is effectively known. 

This is a common assumption in sliding mode control systems. However, this 
assumption does not limit the possibility of using the control process since the upper 
limit of (35) can be calculated from the lower and upper limits of system parameters. 

Assumption 3: switching gain g(x,t) is chosen as below. 
(37) 𝑔𝑔(𝑥𝑥, 𝑡𝑡) = 𝑏𝑏(𝑥𝑥, 𝑡𝑡) + 𝜂𝜂 

Where 𝜂𝜂 > 0 and is chosen arbitrarily by the designer. 
Assumption 4: 𝑏𝑏} is an unknown positive value such that: 

(38) 𝑏𝑏} ≥ 𝑏𝑏(𝑥𝑥, 𝑡𝑡) 

 
Since the exact value of g(x,t) is unknown, its value is fuzzily estimated in the control 

rule equation. 
(39) 

𝑉𝑉 = 𝑉𝑉?W(𝑡𝑡) −
𝑔𝑔Ü(𝑡𝑡)
𝑁𝑁(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠C𝜙𝜙

(𝑡𝑡)D 

𝑔𝑔∑(𝑡𝑡) = 𝑔𝑔Ü(𝑡𝑡) − 𝑔𝑔 is the difference between actual and estimated values of g. 
G is fuzzily estimated as follows: 

(40) 𝑔𝑔Ü(𝑋𝑋|𝜃𝜃) = 𝜃𝜃7𝜉𝜉(𝑋𝑋) 
And the optimized value of θ and ideal estimate of g is defined as follows: 

(41) 𝑔𝑔Ü(𝑋𝑋|𝜃𝜃∗) = 𝜃𝜃∗7𝜉𝜉(𝑋𝑋) 
Theorem: 
The Lyapunov function is considered, To achieve general stability and adaption rule 

as below. 
(42) 

𝐿𝐿(𝑡𝑡) =
1
2𝜙𝜙

(𝑡𝑡)Y +
1
2𝑧𝑧

(𝜃𝜃 − 𝜃𝜃∗)7(𝜃𝜃 − 𝜃𝜃∗) 

The time derivative of equation 40 can be calculated as: 
(43) 

𝐿̇𝐿(𝑡𝑡) = 𝜙𝜙(𝑡𝑡)𝜙̇𝜙(𝑡𝑡) +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

Noting equation 29, we can rewrite equation 43:    
(44) = 𝜙𝜙(𝑡𝑡)í(𝜌𝜌Ü − 𝜌𝜌)𝑅𝑅(𝑡𝑡) + (𝛾𝛾 − 𝛾𝛾Ü)𝐼𝐼(𝑡𝑡) + C𝛿𝛿± − 𝛿𝛿D𝑁𝑁(𝑡𝑡) − 𝑔𝑔Ü(𝑥𝑥, 𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)ì

+
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(45) 𝑔𝑔∑(𝑡𝑡) = (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋) + 𝜀𝜀@ 

(46) 𝜀𝜀@ = 𝑔𝑔 − 𝑔𝑔(𝜃𝜃∗|𝜉𝜉(𝑋𝑋)) 

In equation 45, 𝑔𝑔∑(𝑡𝑡) shows the estimation error. Also, 𝜀𝜀@ equation 46 represents the 
error between the optimum estimate and the actual value of g. 

There exists a positive value such that: 
 
 ∫

𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)
𝑎𝑎 − 𝑎𝑎ª

Y

≥ 0 

 𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
𝑎𝑎Y − 2𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) + 𝑎𝑎Y ≥ 0 

 
𝜀𝜀@𝑠𝑠𝑠𝑠𝑛𝑛(𝜙𝜙) ≤

1
2∫

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
𝑎𝑎Y + 𝑎𝑎Yª 

(47) 
𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) ≤

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
2𝑎𝑎Y +

𝑎𝑎Y

2  

Considering equation 47 and assumptions 1, 3, and 4, we have: 

(48) 
≤ 𝜙𝜙(𝑡𝑡)í𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)ì +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(49) 
≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(50) 
≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −

𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(51) = 𝑏𝑏(𝑥𝑥, 𝑡𝑡)𝜙𝜙(𝑡𝑡) + ü(𝜃𝜃 − 𝜃𝜃∗)7 ç−𝜉𝜉(𝑋𝑋)|𝜙𝜙| +
1
𝑧𝑧 𝜃̇𝜃

ê• −
𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}|𝜙𝜙| − 𝜂𝜂|𝜙𝜙| 
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(32) 𝛿𝛿 = 𝜆𝜆 + 𝜈𝜈 − 𝜇𝜇								 → 						 𝛿𝛿± = 𝜆𝜆 + 𝜈̂𝜈 − 𝜇̂𝜇 
𝜌𝜌 = 𝜇𝜇 + 𝜔𝜔 − 𝜆𝜆								 → 						 𝜌𝜌Ü = 𝜇̂𝜇 + 𝜔𝜔¥ − 𝜆𝜆 

(33) 𝑉𝑉?W(𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡) í𝛿𝛿
±𝑁𝑁(𝑡𝑡) + 𝜌𝜌Ü𝑅𝑅(𝑡𝑡) − 𝛾𝛾Ü𝐼𝐼(𝑡𝑡)ì 

We have considered an additional part in the control segment to compensate for 
the discrepancies between nominal and actual values in equation 31. This led to 
equation 33: 

(34) 𝑉𝑉 = 𝑉𝑉?W(𝑡𝑡) −
𝑔𝑔(𝑥𝑥, 𝑡𝑡)
𝑁𝑁(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠C𝜙𝜙(𝑡𝑡)D 

Where g(t) represents the added switching's control gain, it is determined using 
uncertainties of the parameters. 

Assumption 1: there exists a function depending on the system's state b(x,t), which 
bounds the upper limit of the below equation. 

(35) §(𝜌𝜌Ü − 𝜌𝜌)𝑅𝑅(𝑡𝑡) + (𝛾𝛾 − 𝛾𝛾Ü)𝐼𝐼(𝑡𝑡) + C𝛿𝛿± − 𝛿𝛿D𝑁𝑁(𝑡𝑡)§ ≤ 𝑏𝑏(𝑥𝑥, 𝑡𝑡) 

Assumption 1 relates to maximum uncertainty caused by mis-coordination between 
parameters and their fundamental values. Note that b(x,t) always exists because a 
model is parametrized using determined values, although these parameters may not 
be known. In addition, this assumption incorporates an accurate epidemiologic 
interpretation. Equation 35 can be rewritten as follows: 

(36) 
	§𝛿𝛿±𝑁𝑁(𝑡𝑡) − 𝛿𝛿𝛿𝛿(𝑡𝑡) + 𝜌𝜌Ü	𝑅𝑅(𝑡𝑡) − 𝜌𝜌𝜌𝜌(𝑡𝑡) + 𝛾𝛾Ü𝐼𝐼(𝑡𝑡) − 𝛾𝛾𝛾𝛾(𝑡𝑡)§ 

= §𝑁𝑁(𝑡𝑡)𝑉𝑉?W(𝑡𝑡) − 𝑁𝑁(𝑡𝑡)𝑉𝑉?W.®>x?(𝑡𝑡)	§ → 𝑁𝑁(𝑡𝑡)§𝑉𝑉?W(𝑡𝑡) − 𝑉𝑉?W.®>x?(𝑡𝑡)	§ ≤ 𝑏𝑏(𝑥𝑥, 𝑡𝑡) 

Where 𝑉𝑉?W(𝑡𝑡) Is the equivalent control rule obtained from equation (34) and is 
expressed in terms of nominal values of 𝜃𝜃Ø. 𝑉𝑉?W.®>x?; however, if the equivalent control 
rule with actual values. This assumption states that the absolute value of exerted 
vaccination control function when the parameters are known and not known is bounded 
by a deterministic function. 

Assumption 2: upper limit of b(x,t) is known. 
As mentioned earlier, this assumption means that the limitation is effectively known. 

This is a common assumption in sliding mode control systems. However, this 
assumption does not limit the possibility of using the control process since the upper 
limit of (35) can be calculated from the lower and upper limits of system parameters. 

Assumption 3: switching gain g(x,t) is chosen as below. 
(37) 𝑔𝑔(𝑥𝑥, 𝑡𝑡) = 𝑏𝑏(𝑥𝑥, 𝑡𝑡) + 𝜂𝜂 

Where 𝜂𝜂 > 0 and is chosen arbitrarily by the designer. 
Assumption 4: 𝑏𝑏} is an unknown positive value such that: 

(38) 𝑏𝑏} ≥ 𝑏𝑏(𝑥𝑥, 𝑡𝑡) 

 
Since the exact value of g(x,t) is unknown, its value is fuzzily estimated in the control 

rule equation. 
(39) 

𝑉𝑉 = 𝑉𝑉?W(𝑡𝑡) −
𝑔𝑔Ü(𝑡𝑡)
𝑁𝑁(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠C𝜙𝜙

(𝑡𝑡)D 

𝑔𝑔∑(𝑡𝑡) = 𝑔𝑔Ü(𝑡𝑡) − 𝑔𝑔 is the difference between actual and estimated values of g. 
G is fuzzily estimated as follows: 

(40) 𝑔𝑔Ü(𝑋𝑋|𝜃𝜃) = 𝜃𝜃7𝜉𝜉(𝑋𝑋) 
And the optimized value of θ and ideal estimate of g is defined as follows: 

(41) 𝑔𝑔Ü(𝑋𝑋|𝜃𝜃∗) = 𝜃𝜃∗7𝜉𝜉(𝑋𝑋) 
Theorem: 
The Lyapunov function is considered, To achieve general stability and adaption rule 

as below. 
(42) 

𝐿𝐿(𝑡𝑡) =
1
2𝜙𝜙

(𝑡𝑡)Y +
1
2𝑧𝑧

(𝜃𝜃 − 𝜃𝜃∗)7(𝜃𝜃 − 𝜃𝜃∗) 

The time derivative of equation 40 can be calculated as: 
(43) 

𝐿̇𝐿(𝑡𝑡) = 𝜙𝜙(𝑡𝑡)𝜙̇𝜙(𝑡𝑡) +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

Noting equation 29, we can rewrite equation 43:    
(44) = 𝜙𝜙(𝑡𝑡)í(𝜌𝜌Ü − 𝜌𝜌)𝑅𝑅(𝑡𝑡) + (𝛾𝛾 − 𝛾𝛾Ü)𝐼𝐼(𝑡𝑡) + C𝛿𝛿± − 𝛿𝛿D𝑁𝑁(𝑡𝑡) − 𝑔𝑔Ü(𝑥𝑥, 𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)ì

+
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(45) 𝑔𝑔∑(𝑡𝑡) = (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋) + 𝜀𝜀@ 

(46) 𝜀𝜀@ = 𝑔𝑔 − 𝑔𝑔(𝜃𝜃∗|𝜉𝜉(𝑋𝑋)) 

In equation 45, 𝑔𝑔∑(𝑡𝑡) shows the estimation error. Also, 𝜀𝜀@ equation 46 represents the 
error between the optimum estimate and the actual value of g. 

There exists a positive value such that: 
 
 ∫

𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)
𝑎𝑎 − 𝑎𝑎ª

Y

≥ 0 

 𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
𝑎𝑎Y − 2𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) + 𝑎𝑎Y ≥ 0 

 
𝜀𝜀@𝑠𝑠𝑠𝑠𝑛𝑛(𝜙𝜙) ≤

1
2∫

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
𝑎𝑎Y + 𝑎𝑎Yª 

(47) 
𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) ≤

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
2𝑎𝑎Y +

𝑎𝑎Y

2  

Considering equation 47 and assumptions 1, 3, and 4, we have: 

(48) 
≤ 𝜙𝜙(𝑡𝑡)í𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)ì +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(49) 
≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(50) 
≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −

𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(51) = 𝑏𝑏(𝑥𝑥, 𝑡𝑡)𝜙𝜙(𝑡𝑡) + ü(𝜃𝜃 − 𝜃𝜃∗)7 ç−𝜉𝜉(𝑋𝑋)|𝜙𝜙| +
1
𝑧𝑧 𝜃̇𝜃

ê• −
𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}|𝜙𝜙| − 𝜂𝜂|𝜙𝜙| 
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(32) 𝛿𝛿 = 𝜆𝜆 + 𝜈𝜈 − 𝜇𝜇								 → 						 𝛿𝛿± = 𝜆𝜆 + 𝜈̂𝜈 − 𝜇̂𝜇 
𝜌𝜌 = 𝜇𝜇 + 𝜔𝜔 − 𝜆𝜆								 → 						 𝜌𝜌Ü = 𝜇̂𝜇 + 𝜔𝜔¥ − 𝜆𝜆 

(33) 𝑉𝑉?W(𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡) í𝛿𝛿
±𝑁𝑁(𝑡𝑡) + 𝜌𝜌Ü𝑅𝑅(𝑡𝑡) − 𝛾𝛾Ü𝐼𝐼(𝑡𝑡)ì 

We have considered an additional part in the control segment to compensate for 
the discrepancies between nominal and actual values in equation 31. This led to 
equation 33: 

(34) 𝑉𝑉 = 𝑉𝑉?W(𝑡𝑡) −
𝑔𝑔(𝑥𝑥, 𝑡𝑡)
𝑁𝑁(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠C𝜙𝜙(𝑡𝑡)D 

Where g(t) represents the added switching's control gain, it is determined using 
uncertainties of the parameters. 

Assumption 1: there exists a function depending on the system's state b(x,t), which 
bounds the upper limit of the below equation. 

(35) §(𝜌𝜌Ü − 𝜌𝜌)𝑅𝑅(𝑡𝑡) + (𝛾𝛾 − 𝛾𝛾Ü)𝐼𝐼(𝑡𝑡) + C𝛿𝛿± − 𝛿𝛿D𝑁𝑁(𝑡𝑡)§ ≤ 𝑏𝑏(𝑥𝑥, 𝑡𝑡) 

Assumption 1 relates to maximum uncertainty caused by mis-coordination between 
parameters and their fundamental values. Note that b(x,t) always exists because a 
model is parametrized using determined values, although these parameters may not 
be known. In addition, this assumption incorporates an accurate epidemiologic 
interpretation. Equation 35 can be rewritten as follows: 

(36) 
	§𝛿𝛿±𝑁𝑁(𝑡𝑡) − 𝛿𝛿𝛿𝛿(𝑡𝑡) + 𝜌𝜌Ü	𝑅𝑅(𝑡𝑡) − 𝜌𝜌𝜌𝜌(𝑡𝑡) + 𝛾𝛾Ü𝐼𝐼(𝑡𝑡) − 𝛾𝛾𝛾𝛾(𝑡𝑡)§ 

= §𝑁𝑁(𝑡𝑡)𝑉𝑉?W(𝑡𝑡) − 𝑁𝑁(𝑡𝑡)𝑉𝑉?W.®>x?(𝑡𝑡)	§ → 𝑁𝑁(𝑡𝑡)§𝑉𝑉?W(𝑡𝑡) − 𝑉𝑉?W.®>x?(𝑡𝑡)	§ ≤ 𝑏𝑏(𝑥𝑥, 𝑡𝑡) 

Where 𝑉𝑉?W(𝑡𝑡) Is the equivalent control rule obtained from equation (34) and is 
expressed in terms of nominal values of 𝜃𝜃Ø. 𝑉𝑉?W.®>x?; however, if the equivalent control 
rule with actual values. This assumption states that the absolute value of exerted 
vaccination control function when the parameters are known and not known is bounded 
by a deterministic function. 

Assumption 2: upper limit of b(x,t) is known. 
As mentioned earlier, this assumption means that the limitation is effectively known. 

This is a common assumption in sliding mode control systems. However, this 
assumption does not limit the possibility of using the control process since the upper 
limit of (35) can be calculated from the lower and upper limits of system parameters. 

Assumption 3: switching gain g(x,t) is chosen as below. 
(37) 𝑔𝑔(𝑥𝑥, 𝑡𝑡) = 𝑏𝑏(𝑥𝑥, 𝑡𝑡) + 𝜂𝜂 

Where 𝜂𝜂 > 0 and is chosen arbitrarily by the designer. 
Assumption 4: 𝑏𝑏} is an unknown positive value such that: 

(38) 𝑏𝑏} ≥ 𝑏𝑏(𝑥𝑥, 𝑡𝑡) 

 
Since the exact value of g(x,t) is unknown, its value is fuzzily estimated in the control 

rule equation. 
(39) 

𝑉𝑉 = 𝑉𝑉?W(𝑡𝑡) −
𝑔𝑔Ü(𝑡𝑡)
𝑁𝑁(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠C𝜙𝜙

(𝑡𝑡)D 

𝑔𝑔∑(𝑡𝑡) = 𝑔𝑔Ü(𝑡𝑡) − 𝑔𝑔 is the difference between actual and estimated values of g. 
G is fuzzily estimated as follows: 

(40) 𝑔𝑔Ü(𝑋𝑋|𝜃𝜃) = 𝜃𝜃7𝜉𝜉(𝑋𝑋) 
And the optimized value of θ and ideal estimate of g is defined as follows: 

(41) 𝑔𝑔Ü(𝑋𝑋|𝜃𝜃∗) = 𝜃𝜃∗7𝜉𝜉(𝑋𝑋) 
Theorem: 
The Lyapunov function is considered, To achieve general stability and adaption rule 

as below. 
(42) 

𝐿𝐿(𝑡𝑡) =
1
2𝜙𝜙

(𝑡𝑡)Y +
1
2𝑧𝑧

(𝜃𝜃 − 𝜃𝜃∗)7(𝜃𝜃 − 𝜃𝜃∗) 

The time derivative of equation 40 can be calculated as: 
(43) 

𝐿̇𝐿(𝑡𝑡) = 𝜙𝜙(𝑡𝑡)𝜙̇𝜙(𝑡𝑡) +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

Noting equation 29, we can rewrite equation 43:    
(44) = 𝜙𝜙(𝑡𝑡)í(𝜌𝜌Ü − 𝜌𝜌)𝑅𝑅(𝑡𝑡) + (𝛾𝛾 − 𝛾𝛾Ü)𝐼𝐼(𝑡𝑡) + C𝛿𝛿± − 𝛿𝛿D𝑁𝑁(𝑡𝑡) − 𝑔𝑔Ü(𝑥𝑥, 𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)ì

+
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(45) 𝑔𝑔∑(𝑡𝑡) = (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋) + 𝜀𝜀@ 

(46) 𝜀𝜀@ = 𝑔𝑔 − 𝑔𝑔(𝜃𝜃∗|𝜉𝜉(𝑋𝑋)) 

In equation 45, 𝑔𝑔∑(𝑡𝑡) shows the estimation error. Also, 𝜀𝜀@ equation 46 represents the 
error between the optimum estimate and the actual value of g. 

There exists a positive value such that: 
 
 ∫

𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)
𝑎𝑎 − 𝑎𝑎ª

Y

≥ 0 

 𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
𝑎𝑎Y − 2𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) + 𝑎𝑎Y ≥ 0 

 
𝜀𝜀@𝑠𝑠𝑠𝑠𝑛𝑛(𝜙𝜙) ≤

1
2∫

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
𝑎𝑎Y + 𝑎𝑎Yª 

(47) 
𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) ≤

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
2𝑎𝑎Y +

𝑎𝑎Y

2  

Considering equation 47 and assumptions 1, 3, and 4, we have: 

(48) 
≤ 𝜙𝜙(𝑡𝑡)í𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)ì +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(49) 
≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(50) 
≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −

𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(51) = 𝑏𝑏(𝑥𝑥, 𝑡𝑡)𝜙𝜙(𝑡𝑡) + ü(𝜃𝜃 − 𝜃𝜃∗)7 ç−𝜉𝜉(𝑋𝑋)|𝜙𝜙| +
1
𝑧𝑧 𝜃̇𝜃

ê• −
𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}|𝜙𝜙| − 𝜂𝜂|𝜙𝜙| 

(52) 𝜃̇𝜃 = 𝑧𝑧𝜉𝜉(𝑋𝑋)|𝜙𝜙| 

(53) ≤ −𝜂𝜂|𝜙𝜙| ≤ 0 

(54) 
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑 𝜙𝜙(𝑡𝑡)

Y =
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑
|𝜙𝜙(𝑡𝑡)Y| ≤ −𝜂𝜂|𝜙𝜙(𝑡𝑡)|,				𝜙𝜙(0) ≠ 0 

Based on equation 51, we can obtain the adaption rule as 𝜃̇𝜃 = 𝑧𝑧𝜉𝜉(𝑋𝑋)|𝜙𝜙|. 
 
6.2. Examining the Proposed Controller with Uncertainties in the SEIR Model 
In this section, we devise a sliding mode controller for the SEIR model in the 

presence of uncertainties. The equations needed for this design are mentioned in 
(Ibeas, A., Shafi, M., Ishfaq, M., & Ali, M., 2017): 

(55) 𝑆̇𝑆(𝑡𝑡) = −𝜇𝜇𝜇𝜇(𝑡𝑡) + 𝜔𝜔𝜔𝜔(𝑡𝑡) − 𝜑𝜑(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) + 𝜈𝜈𝜈𝜈(𝑡𝑡) − 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) + 𝑑𝑑J 

(56) 𝐸̇𝐸(𝑡𝑡) = 	𝜑𝜑(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) − (𝜇𝜇 + 𝜎𝜎)𝐸𝐸(𝑡𝑡) + 𝑑𝑑Y 

(57) 𝐼𝐼̇(𝑡𝑡) = −(𝜇𝜇 + 𝛾𝛾)𝐼𝐼(𝑡𝑡) + 𝜎𝜎𝜎𝜎(𝑡𝑡) + 𝑑𝑑æ 

(58) 𝑅̇𝑅(𝑡𝑡) = −(𝜇𝜇 + 𝜔𝜔)𝑅𝑅(𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) + 𝑑𝑑ø 

Where 𝑑𝑑J to 𝑑𝑑ø are systems' uncertainties and are defined as follows (note that ∆ 
represents parameter uncertainty), other parameter definitions are the same as those 
shown in equations 1 to 4. 

(59) 

⎩
⎨

⎧
𝑑𝑑J = −∆𝜇𝜇	𝑆𝑆(𝑡𝑡) + ∆𝑤𝑤	𝑅𝑅(𝑡𝑡) + ∆𝑣𝑣	𝑁𝑁(𝑡𝑡)
𝑑𝑑Y = (−∆𝜇𝜇 − ∆𝜎𝜎)𝐸𝐸(𝑡𝑡)																												
𝑑𝑑æ = (−∆𝜇𝜇 − ∆𝛾𝛾)𝐼𝐼(𝑡𝑡) + ∆𝜎𝜎	𝐸𝐸(𝑡𝑡)									
𝑑𝑑ø = (−∆𝜇𝜇 − ∆𝑤𝑤)𝑅𝑅(𝑡𝑡) + ∆𝛾𝛾	𝐼𝐼(𝑡𝑡)								

 

The uncertainty of the system is limited such that 

(60) 

𝑑𝑑J ∈ 	ΩJ(∆𝜇𝜇, ∆𝑣𝑣, ∆𝑤𝑤) 				 ∶ {𝑑𝑑J𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑑𝑑J ≤ 𝑑𝑑J𝑚𝑚𝑚𝑚𝑚𝑚} 
𝑑𝑑Y ∈ 	ΩY(∆𝜇𝜇, ∆𝜎𝜎) 											 ∶ {𝑑𝑑Y𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑑𝑑Y ≤ 𝑑𝑑Y𝑚𝑚𝑚𝑚𝑚𝑚} 
𝑑𝑑æ ∈ 	Ωæ(∆𝜇𝜇, ∆𝜎𝜎, ∆𝛾𝛾) 				 ∶ {𝑑𝑑æ𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑑𝑑æ ≤ 𝑑𝑑æ𝑚𝑚𝑚𝑚𝑚𝑚} 
𝑑𝑑ø ∈ 	Ωø(∆𝜇𝜇, ∆𝛾𝛾, ∆𝑤𝑤) 			 ∶ {𝑑𝑑ø𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑑𝑑ø ≤ 𝑑𝑑ø𝑚𝑚𝑚𝑚𝑚𝑚} 

𝑑𝑑J to 𝑑𝑑ø uncertainty terms are time functions (e.g., days, months, and years). In 
addition, these terms depend on 𝜇𝜇: mortality rate resulting from natural causes, 𝑣𝑣: birth 
rate, and 𝑤𝑤: loss of health rate. Therefore, these three terms depending on 𝜇𝜇 ، 𝑣𝑣  𝑤𝑤 can و 
not be greater than the population at all times. The whole population is known at all 
times. Thus, the upper limit of the population is assumed to be known at any given 
time. Consequently, we can assume that the upper limits of 𝑑𝑑J to 𝑑𝑑ø uncertainties are 
known. Another assumption is that the lower limits of these uncertainties are near zero, 
which is trivial to proving the control system's stability. In assumption 5, 𝑑𝑑Q𝑚𝑚𝑚𝑚𝑚𝑚	and 
𝑑𝑑Q𝑚𝑚𝑚𝑚𝑚𝑚 show the lower and upper limits of uncertainties, respectively. New dynamic 
changes become, adding equations 55 to 58 as follows: 

 
(61) 𝑁̇𝑁(𝑡𝑡) = (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) + 𝑑𝑑J + 𝑑𝑑Y + 𝑑𝑑æ + 𝑑𝑑ø 

Substituting equation 59 in 61, we can rewrite the dynamic population change as 
below:  

(62) 𝑁̇𝑁(𝑡𝑡) = (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) + (∆𝜈𝜈 − ∆𝜇𝜇)𝑁𝑁(𝑡𝑡) 
Therefore, the sum of uncertainties can be expressed as 𝑑𝑑J + 𝑑𝑑Y + 𝑑𝑑æ + 𝑑𝑑ø = 𝐷𝐷 =

(∆𝜈𝜈 − ∆𝜇𝜇)𝑁𝑁(𝑡𝑡). 
Now we prove the fuzzy sliding mode controller stability with uncertainties in the 

SEIR model.  

(63) 

𝜙̇𝜙(𝑡𝑡) = 𝑒̇𝑒(𝑡𝑡) + 𝜆𝜆𝜆𝜆(𝑡𝑡) 
= 𝑅̇𝑅(𝑡𝑡) − 𝑁̇𝑁>?@(𝑡𝑡) + 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝜆𝜆>?@(𝑡𝑡) 

= −(𝜇𝜇 + 𝜔𝜔)𝑅𝑅(𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) + 𝑑𝑑4 − (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) − 𝑑𝑑J − 𝑑𝑑Y − 𝑑𝑑æ 
											−𝑑𝑑4 + 𝜀𝜀𝑒𝑒e™®C𝑅𝑅(0) − 𝑁𝑁(0)D + 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝑒𝑒e™®C𝑅𝑅(0) − 𝑁𝑁(0)D 
For simplicity, we assume ε = λ, which removes parts with initial values. 

(64) = −(𝜇𝜇 + 𝜔𝜔)𝑅𝑅(𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) − (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) − 𝑑𝑑J − 𝑑𝑑Y − 𝑑𝑑æ
+ 𝜆𝜆𝑅𝑅(𝑡𝑡) − 𝜆𝜆𝜆𝜆(𝑡𝑡) = 0 

From the above equation, the new equivalent control rule for the SEIR model with 
uncertainties is calculated as below: 

(65) 𝑉𝑉?W.N?…(𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡)
[(𝜆𝜆 + 𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) + (𝜇𝜇 + 𝜔𝜔 − 𝜆𝜆)𝑅𝑅(𝑡𝑡) − 𝛾𝛾𝛾𝛾(𝑡𝑡) + (𝑑𝑑J + 𝑑𝑑Y

+ 𝑑𝑑æ)] 

(66) 𝑉𝑉?W.N?… = 𝑉𝑉?W(𝑡𝑡) +
1

𝑁𝑁(𝑡𝑡) (𝑑𝑑J + 𝑑𝑑Y + 𝑑𝑑æ) 

Using equations 32 and 33, we can rewrite equation 66 as follows: 

(67) 𝑉𝑉?W.N?…(𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡) í𝛿𝛿
±𝑁𝑁(𝑡𝑡) + 𝜌𝜌Ü𝑅𝑅(𝑡𝑡) − 𝛾𝛾Ü𝐼𝐼(𝑡𝑡) + (𝑑𝑑J + 𝑑𝑑Y + 𝑑𝑑æ)ì 

Assumption 6: we can define the parameter 𝐷𝐷@ such that 𝐷𝐷@ ≅ 𝑑𝑑J + 𝑑𝑑Y + 𝑑𝑑æ and 
 𝑑𝑑J𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑑𝑑Y𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑑𝑑æ𝑚𝑚𝑚𝑚𝑚𝑚	 ≤ 𝐷𝐷@ ≤ 	𝑑𝑑J𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑑𝑑Y𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑑𝑑æ𝑚𝑚𝑚𝑚𝑚𝑚 

Assumption 7: considering assumption 3, we can chose g(x,t) as: 

(68) 𝑔𝑔a(𝑥𝑥, 𝑡𝑡) = 𝑔𝑔(𝑥𝑥, 𝑡𝑡) − (
𝐷𝐷@

𝑠𝑠𝑠𝑠𝑛𝑛C𝜙𝜙(𝑡𝑡)D
)									 

Such that 𝜂𝜂 is a positive value chosen by the designer and 𝜂𝜂 > 𝐷𝐷@. 
Putting equations 67 and 34 together, we write the general control rules as follows: 

(69) 𝑉𝑉N?… = 𝑉𝑉?W(𝑡𝑡) −
𝑔𝑔a(𝑥𝑥, 𝑡𝑡)
𝑁𝑁(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠C𝜙𝜙(𝑡𝑡)D 

Finally, such as equation 39, we can consider the fuzzy sliding mode control rule 
as follows: 

(70) 𝑉𝑉N?… = 𝑉𝑉?W(𝑡𝑡) −
𝑔𝑔Üa(𝑥𝑥, 𝑡𝑡)
𝑁𝑁(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠C𝜙𝜙(𝑡𝑡)D 

From equation 69, we can rewrite equation 43 as: 

(71) 
= 𝜙𝜙(𝑡𝑡)í(𝜌𝜌Ü − 𝜌𝜌)𝑅𝑅(𝑡𝑡) + (𝛾𝛾 − 𝛾𝛾Ü)𝐼𝐼(𝑡𝑡) + C𝛿𝛿± − 𝛿𝛿D𝑁𝑁(𝑡𝑡) − 𝑔𝑔Üa(𝑥𝑥, 𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)ì

+
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(72) 𝑔𝑔∑(𝑡𝑡) = (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋) + 𝜀𝜀@ 
(73) 𝜀𝜀@ = 𝑔𝑔 − 𝑔𝑔(𝜃𝜃∗|𝜉𝜉(𝑋𝑋)) 

There exist a positive value 𝑎𝑎 such that 
 
 ∫

𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)
𝑎𝑎 − 𝑎𝑎ª

Y

≥ 0 

 𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
𝑎𝑎Y − 2𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) + 𝑎𝑎Y ≥ 0 
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(52) 𝜃̇𝜃 = 𝑧𝑧𝜉𝜉(𝑋𝑋)|𝜙𝜙| 

(53) ≤ −𝜂𝜂|𝜙𝜙| ≤ 0 

(54) 
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑 𝜙𝜙(𝑡𝑡)

Y =
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑
|𝜙𝜙(𝑡𝑡)Y| ≤ −𝜂𝜂|𝜙𝜙(𝑡𝑡)|,				𝜙𝜙(0) ≠ 0 

Based on equation 51, we can obtain the adaption rule as 𝜃̇𝜃 = 𝑧𝑧𝜉𝜉(𝑋𝑋)|𝜙𝜙|. 
 
6.2. Examining the Proposed Controller with Uncertainties in the SEIR Model 
In this section, we devise a sliding mode controller for the SEIR model in the 

presence of uncertainties. The equations needed for this design are mentioned in 
(Ibeas, A., Shafi, M., Ishfaq, M., & Ali, M., 2017): 

(55) 𝑆̇𝑆(𝑡𝑡) = −𝜇𝜇𝜇𝜇(𝑡𝑡) + 𝜔𝜔𝜔𝜔(𝑡𝑡) − 𝜑𝜑(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) + 𝜈𝜈𝜈𝜈(𝑡𝑡) − 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) + 𝑑𝑑J 

(56) 𝐸̇𝐸(𝑡𝑡) = 	𝜑𝜑(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) − (𝜇𝜇 + 𝜎𝜎)𝐸𝐸(𝑡𝑡) + 𝑑𝑑Y 

(57) 𝐼𝐼̇(𝑡𝑡) = −(𝜇𝜇 + 𝛾𝛾)𝐼𝐼(𝑡𝑡) + 𝜎𝜎𝜎𝜎(𝑡𝑡) + 𝑑𝑑æ 

(58) 𝑅̇𝑅(𝑡𝑡) = −(𝜇𝜇 + 𝜔𝜔)𝑅𝑅(𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) + 𝑑𝑑ø 

Where 𝑑𝑑J to 𝑑𝑑ø are systems' uncertainties and are defined as follows (note that ∆ 
represents parameter uncertainty), other parameter definitions are the same as those 
shown in equations 1 to 4. 

(59) 

⎩
⎨

⎧
𝑑𝑑J = −∆𝜇𝜇	𝑆𝑆(𝑡𝑡) + ∆𝑤𝑤	𝑅𝑅(𝑡𝑡) + ∆𝑣𝑣	𝑁𝑁(𝑡𝑡)
𝑑𝑑Y = (−∆𝜇𝜇 − ∆𝜎𝜎)𝐸𝐸(𝑡𝑡)																												
𝑑𝑑æ = (−∆𝜇𝜇 − ∆𝛾𝛾)𝐼𝐼(𝑡𝑡) + ∆𝜎𝜎	𝐸𝐸(𝑡𝑡)									
𝑑𝑑ø = (−∆𝜇𝜇 − ∆𝑤𝑤)𝑅𝑅(𝑡𝑡) + ∆𝛾𝛾	𝐼𝐼(𝑡𝑡)								

 

The uncertainty of the system is limited such that 

(60) 

𝑑𝑑J ∈ 	ΩJ(∆𝜇𝜇, ∆𝑣𝑣, ∆𝑤𝑤) 				 ∶ {𝑑𝑑J𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑑𝑑J ≤ 𝑑𝑑J𝑚𝑚𝑚𝑚𝑚𝑚} 
𝑑𝑑Y ∈ 	ΩY(∆𝜇𝜇, ∆𝜎𝜎) 											 ∶ {𝑑𝑑Y𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑑𝑑Y ≤ 𝑑𝑑Y𝑚𝑚𝑚𝑚𝑚𝑚} 
𝑑𝑑æ ∈ 	Ωæ(∆𝜇𝜇, ∆𝜎𝜎, ∆𝛾𝛾) 				 ∶ {𝑑𝑑æ𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑑𝑑æ ≤ 𝑑𝑑æ𝑚𝑚𝑚𝑚𝑚𝑚} 
𝑑𝑑ø ∈ 	Ωø(∆𝜇𝜇, ∆𝛾𝛾, ∆𝑤𝑤) 			 ∶ {𝑑𝑑ø𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑑𝑑ø ≤ 𝑑𝑑ø𝑚𝑚𝑚𝑚𝑚𝑚} 

𝑑𝑑J to 𝑑𝑑ø uncertainty terms are time functions (e.g., days, months, and years). In 
addition, these terms depend on 𝜇𝜇: mortality rate resulting from natural causes, 𝑣𝑣: birth 
rate, and 𝑤𝑤: loss of health rate. Therefore, these three terms depending on 𝜇𝜇 ، 𝑣𝑣  𝑤𝑤 can و 
not be greater than the population at all times. The whole population is known at all 
times. Thus, the upper limit of the population is assumed to be known at any given 
time. Consequently, we can assume that the upper limits of 𝑑𝑑J to 𝑑𝑑ø uncertainties are 
known. Another assumption is that the lower limits of these uncertainties are near zero, 
which is trivial to proving the control system's stability. In assumption 5, 𝑑𝑑Q𝑚𝑚𝑚𝑚𝑚𝑚	and 
𝑑𝑑Q𝑚𝑚𝑚𝑚𝑚𝑚 show the lower and upper limits of uncertainties, respectively. New dynamic 
changes become, adding equations 55 to 58 as follows: 

 
(61) 𝑁̇𝑁(𝑡𝑡) = (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) + 𝑑𝑑J + 𝑑𝑑Y + 𝑑𝑑æ + 𝑑𝑑ø 

Substituting equation 59 in 61, we can rewrite the dynamic population change as 
below:  

(62) 𝑁̇𝑁(𝑡𝑡) = (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) + (∆𝜈𝜈 − ∆𝜇𝜇)𝑁𝑁(𝑡𝑡) 
Therefore, the sum of uncertainties can be expressed as 𝑑𝑑J + 𝑑𝑑Y + 𝑑𝑑æ + 𝑑𝑑ø = 𝐷𝐷 =

(∆𝜈𝜈 − ∆𝜇𝜇)𝑁𝑁(𝑡𝑡). 
Now we prove the fuzzy sliding mode controller stability with uncertainties in the 

SEIR model.  

(63) 

𝜙̇𝜙(𝑡𝑡) = 𝑒̇𝑒(𝑡𝑡) + 𝜆𝜆𝜆𝜆(𝑡𝑡) 
= 𝑅̇𝑅(𝑡𝑡) − 𝑁̇𝑁>?@(𝑡𝑡) + 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝜆𝜆>?@(𝑡𝑡) 

= −(𝜇𝜇 + 𝜔𝜔)𝑅𝑅(𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) + 𝑑𝑑4 − (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) − 𝑑𝑑J − 𝑑𝑑Y − 𝑑𝑑æ 
											−𝑑𝑑4 + 𝜀𝜀𝑒𝑒e™®C𝑅𝑅(0) − 𝑁𝑁(0)D + 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝑒𝑒e™®C𝑅𝑅(0) − 𝑁𝑁(0)D 
For simplicity, we assume ε = λ, which removes parts with initial values. 

(64) = −(𝜇𝜇 + 𝜔𝜔)𝑅𝑅(𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) − (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) − 𝑑𝑑J − 𝑑𝑑Y − 𝑑𝑑æ
+ 𝜆𝜆𝑅𝑅(𝑡𝑡) − 𝜆𝜆𝜆𝜆(𝑡𝑡) = 0 

From the above equation, the new equivalent control rule for the SEIR model with 
uncertainties is calculated as below: 

(65) 𝑉𝑉?W.N?…(𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡)
[(𝜆𝜆 + 𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) + (𝜇𝜇 + 𝜔𝜔 − 𝜆𝜆)𝑅𝑅(𝑡𝑡) − 𝛾𝛾𝛾𝛾(𝑡𝑡) + (𝑑𝑑J + 𝑑𝑑Y

+ 𝑑𝑑æ)] 

(66) 𝑉𝑉?W.N?… = 𝑉𝑉?W(𝑡𝑡) +
1

𝑁𝑁(𝑡𝑡) (𝑑𝑑J + 𝑑𝑑Y + 𝑑𝑑æ) 

Using equations 32 and 33, we can rewrite equation 66 as follows: 

(67) 𝑉𝑉?W.N?…(𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡) í𝛿𝛿
±𝑁𝑁(𝑡𝑡) + 𝜌𝜌Ü𝑅𝑅(𝑡𝑡) − 𝛾𝛾Ü𝐼𝐼(𝑡𝑡) + (𝑑𝑑J + 𝑑𝑑Y + 𝑑𝑑æ)ì 

Assumption 6: we can define the parameter 𝐷𝐷@ such that 𝐷𝐷@ ≅ 𝑑𝑑J + 𝑑𝑑Y + 𝑑𝑑æ and 
 𝑑𝑑J𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑑𝑑Y𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑑𝑑æ𝑚𝑚𝑚𝑚𝑚𝑚	 ≤ 𝐷𝐷@ ≤ 	𝑑𝑑J𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑑𝑑Y𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑑𝑑æ𝑚𝑚𝑚𝑚𝑚𝑚 

Assumption 7: considering assumption 3, we can chose g(x,t) as: 

(68) 𝑔𝑔a(𝑥𝑥, 𝑡𝑡) = 𝑔𝑔(𝑥𝑥, 𝑡𝑡) − (
𝐷𝐷@

𝑠𝑠𝑠𝑠𝑛𝑛C𝜙𝜙(𝑡𝑡)D
)									 

Such that 𝜂𝜂 is a positive value chosen by the designer and 𝜂𝜂 > 𝐷𝐷@. 
Putting equations 67 and 34 together, we write the general control rules as follows: 

(69) 𝑉𝑉N?… = 𝑉𝑉?W(𝑡𝑡) −
𝑔𝑔a(𝑥𝑥, 𝑡𝑡)
𝑁𝑁(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠C𝜙𝜙(𝑡𝑡)D 

Finally, such as equation 39, we can consider the fuzzy sliding mode control rule 
as follows: 

(70) 𝑉𝑉N?… = 𝑉𝑉?W(𝑡𝑡) −
𝑔𝑔Üa(𝑥𝑥, 𝑡𝑡)
𝑁𝑁(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠C𝜙𝜙(𝑡𝑡)D 

From equation 69, we can rewrite equation 43 as: 

(71) 
= 𝜙𝜙(𝑡𝑡)í(𝜌𝜌Ü − 𝜌𝜌)𝑅𝑅(𝑡𝑡) + (𝛾𝛾 − 𝛾𝛾Ü)𝐼𝐼(𝑡𝑡) + C𝛿𝛿± − 𝛿𝛿D𝑁𝑁(𝑡𝑡) − 𝑔𝑔Üa(𝑥𝑥, 𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)ì

+
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(72) 𝑔𝑔∑(𝑡𝑡) = (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋) + 𝜀𝜀@ 
(73) 𝜀𝜀@ = 𝑔𝑔 − 𝑔𝑔(𝜃𝜃∗|𝜉𝜉(𝑋𝑋)) 

There exist a positive value 𝑎𝑎 such that 
 
 ∫

𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)
𝑎𝑎 − 𝑎𝑎ª

Y

≥ 0 

 𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
𝑎𝑎Y − 2𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) + 𝑎𝑎Y ≥ 0 
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(52) 𝜃̇𝜃 = 𝑧𝑧𝜉𝜉(𝑋𝑋)|𝜙𝜙| 

(53) ≤ −𝜂𝜂|𝜙𝜙| ≤ 0 

(54) 
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑 𝜙𝜙(𝑡𝑡)

Y =
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑
|𝜙𝜙(𝑡𝑡)Y| ≤ −𝜂𝜂|𝜙𝜙(𝑡𝑡)|,				𝜙𝜙(0) ≠ 0 

Based on equation 51, we can obtain the adaption rule as 𝜃̇𝜃 = 𝑧𝑧𝜉𝜉(𝑋𝑋)|𝜙𝜙|. 
 
6.2. Examining the Proposed Controller with Uncertainties in the SEIR Model 
In this section, we devise a sliding mode controller for the SEIR model in the 

presence of uncertainties. The equations needed for this design are mentioned in 
(Ibeas, A., Shafi, M., Ishfaq, M., & Ali, M., 2017): 

(55) 𝑆̇𝑆(𝑡𝑡) = −𝜇𝜇𝜇𝜇(𝑡𝑡) + 𝜔𝜔𝜔𝜔(𝑡𝑡) − 𝜑𝜑(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) + 𝜈𝜈𝜈𝜈(𝑡𝑡) − 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) + 𝑑𝑑J 

(56) 𝐸̇𝐸(𝑡𝑡) = 	𝜑𝜑(𝑆𝑆, 𝐸𝐸, 𝐼𝐼, 𝑅𝑅) − (𝜇𝜇 + 𝜎𝜎)𝐸𝐸(𝑡𝑡) + 𝑑𝑑Y 

(57) 𝐼𝐼̇(𝑡𝑡) = −(𝜇𝜇 + 𝛾𝛾)𝐼𝐼(𝑡𝑡) + 𝜎𝜎𝜎𝜎(𝑡𝑡) + 𝑑𝑑æ 

(58) 𝑅̇𝑅(𝑡𝑡) = −(𝜇𝜇 + 𝜔𝜔)𝑅𝑅(𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) + 𝑑𝑑ø 

Where 𝑑𝑑J to 𝑑𝑑ø are systems' uncertainties and are defined as follows (note that ∆ 
represents parameter uncertainty), other parameter definitions are the same as those 
shown in equations 1 to 4. 

(59) 

⎩
⎨

⎧
𝑑𝑑J = −∆𝜇𝜇	𝑆𝑆(𝑡𝑡) + ∆𝑤𝑤	𝑅𝑅(𝑡𝑡) + ∆𝑣𝑣	𝑁𝑁(𝑡𝑡)
𝑑𝑑Y = (−∆𝜇𝜇 − ∆𝜎𝜎)𝐸𝐸(𝑡𝑡)																												
𝑑𝑑æ = (−∆𝜇𝜇 − ∆𝛾𝛾)𝐼𝐼(𝑡𝑡) + ∆𝜎𝜎	𝐸𝐸(𝑡𝑡)									
𝑑𝑑ø = (−∆𝜇𝜇 − ∆𝑤𝑤)𝑅𝑅(𝑡𝑡) + ∆𝛾𝛾	𝐼𝐼(𝑡𝑡)								

 

The uncertainty of the system is limited such that 

(60) 

𝑑𝑑J ∈ 	ΩJ(∆𝜇𝜇, ∆𝑣𝑣, ∆𝑤𝑤) 				 ∶ {𝑑𝑑J𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑑𝑑J ≤ 𝑑𝑑J𝑚𝑚𝑚𝑚𝑚𝑚} 
𝑑𝑑Y ∈ 	ΩY(∆𝜇𝜇, ∆𝜎𝜎) 											 ∶ {𝑑𝑑Y𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑑𝑑Y ≤ 𝑑𝑑Y𝑚𝑚𝑚𝑚𝑚𝑚} 
𝑑𝑑æ ∈ 	Ωæ(∆𝜇𝜇, ∆𝜎𝜎, ∆𝛾𝛾) 				 ∶ {𝑑𝑑æ𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑑𝑑æ ≤ 𝑑𝑑æ𝑚𝑚𝑚𝑚𝑚𝑚} 
𝑑𝑑ø ∈ 	Ωø(∆𝜇𝜇, ∆𝛾𝛾, ∆𝑤𝑤) 			 ∶ {𝑑𝑑ø𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑑𝑑ø ≤ 𝑑𝑑ø𝑚𝑚𝑚𝑚𝑚𝑚} 

𝑑𝑑J to 𝑑𝑑ø uncertainty terms are time functions (e.g., days, months, and years). In 
addition, these terms depend on 𝜇𝜇: mortality rate resulting from natural causes, 𝑣𝑣: birth 
rate, and 𝑤𝑤: loss of health rate. Therefore, these three terms depending on 𝜇𝜇 ، 𝑣𝑣  𝑤𝑤 can و 
not be greater than the population at all times. The whole population is known at all 
times. Thus, the upper limit of the population is assumed to be known at any given 
time. Consequently, we can assume that the upper limits of 𝑑𝑑J to 𝑑𝑑ø uncertainties are 
known. Another assumption is that the lower limits of these uncertainties are near zero, 
which is trivial to proving the control system's stability. In assumption 5, 𝑑𝑑Q𝑚𝑚𝑚𝑚𝑚𝑚	and 
𝑑𝑑Q𝑚𝑚𝑚𝑚𝑚𝑚 show the lower and upper limits of uncertainties, respectively. New dynamic 
changes become, adding equations 55 to 58 as follows: 

 
(61) 𝑁̇𝑁(𝑡𝑡) = (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) + 𝑑𝑑J + 𝑑𝑑Y + 𝑑𝑑æ + 𝑑𝑑ø 

Substituting equation 59 in 61, we can rewrite the dynamic population change as 
below:  

(62) 𝑁̇𝑁(𝑡𝑡) = (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) + (∆𝜈𝜈 − ∆𝜇𝜇)𝑁𝑁(𝑡𝑡) 
Therefore, the sum of uncertainties can be expressed as 𝑑𝑑J + 𝑑𝑑Y + 𝑑𝑑æ + 𝑑𝑑ø = 𝐷𝐷 =

(∆𝜈𝜈 − ∆𝜇𝜇)𝑁𝑁(𝑡𝑡). 
Now we prove the fuzzy sliding mode controller stability with uncertainties in the 

SEIR model.  

(63) 

𝜙̇𝜙(𝑡𝑡) = 𝑒̇𝑒(𝑡𝑡) + 𝜆𝜆𝜆𝜆(𝑡𝑡) 
= 𝑅̇𝑅(𝑡𝑡) − 𝑁̇𝑁>?@(𝑡𝑡) + 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝜆𝜆>?@(𝑡𝑡) 

= −(𝜇𝜇 + 𝜔𝜔)𝑅𝑅(𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) + 𝑑𝑑4 − (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) − 𝑑𝑑J − 𝑑𝑑Y − 𝑑𝑑æ 
											−𝑑𝑑4 + 𝜀𝜀𝑒𝑒e™®C𝑅𝑅(0) − 𝑁𝑁(0)D + 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝜆𝜆(𝑡𝑡) − 𝜆𝜆𝑒𝑒e™®C𝑅𝑅(0) − 𝑁𝑁(0)D 
For simplicity, we assume ε = λ, which removes parts with initial values. 

(64) = −(𝜇𝜇 + 𝜔𝜔)𝑅𝑅(𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)𝑉𝑉(𝑡𝑡) − (𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) − 𝑑𝑑J − 𝑑𝑑Y − 𝑑𝑑æ
+ 𝜆𝜆𝑅𝑅(𝑡𝑡) − 𝜆𝜆𝜆𝜆(𝑡𝑡) = 0 

From the above equation, the new equivalent control rule for the SEIR model with 
uncertainties is calculated as below: 

(65) 𝑉𝑉?W.N?…(𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡)
[(𝜆𝜆 + 𝜈𝜈 − 𝜇𝜇)𝑁𝑁(𝑡𝑡) + (𝜇𝜇 + 𝜔𝜔 − 𝜆𝜆)𝑅𝑅(𝑡𝑡) − 𝛾𝛾𝛾𝛾(𝑡𝑡) + (𝑑𝑑J + 𝑑𝑑Y

+ 𝑑𝑑æ)] 

(66) 𝑉𝑉?W.N?… = 𝑉𝑉?W(𝑡𝑡) +
1

𝑁𝑁(𝑡𝑡) (𝑑𝑑J + 𝑑𝑑Y + 𝑑𝑑æ) 

Using equations 32 and 33, we can rewrite equation 66 as follows: 

(67) 𝑉𝑉?W.N?…(𝑡𝑡) =
1

𝑁𝑁(𝑡𝑡) í𝛿𝛿
±𝑁𝑁(𝑡𝑡) + 𝜌𝜌Ü𝑅𝑅(𝑡𝑡) − 𝛾𝛾Ü𝐼𝐼(𝑡𝑡) + (𝑑𝑑J + 𝑑𝑑Y + 𝑑𝑑æ)ì 

Assumption 6: we can define the parameter 𝐷𝐷@ such that 𝐷𝐷@ ≅ 𝑑𝑑J + 𝑑𝑑Y + 𝑑𝑑æ and 
 𝑑𝑑J𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑑𝑑Y𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑑𝑑æ𝑚𝑚𝑚𝑚𝑚𝑚	 ≤ 𝐷𝐷@ ≤ 	𝑑𝑑J𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑑𝑑Y𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑑𝑑æ𝑚𝑚𝑚𝑚𝑚𝑚 

Assumption 7: considering assumption 3, we can chose g(x,t) as: 

(68) 𝑔𝑔a(𝑥𝑥, 𝑡𝑡) = 𝑔𝑔(𝑥𝑥, 𝑡𝑡) − (
𝐷𝐷@

𝑠𝑠𝑠𝑠𝑛𝑛C𝜙𝜙(𝑡𝑡)D
)									 

Such that 𝜂𝜂 is a positive value chosen by the designer and 𝜂𝜂 > 𝐷𝐷@. 
Putting equations 67 and 34 together, we write the general control rules as follows: 

(69) 𝑉𝑉N?… = 𝑉𝑉?W(𝑡𝑡) −
𝑔𝑔a(𝑥𝑥, 𝑡𝑡)
𝑁𝑁(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠C𝜙𝜙(𝑡𝑡)D 

Finally, such as equation 39, we can consider the fuzzy sliding mode control rule 
as follows: 

(70) 𝑉𝑉N?… = 𝑉𝑉?W(𝑡𝑡) −
𝑔𝑔Üa(𝑥𝑥, 𝑡𝑡)
𝑁𝑁(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠C𝜙𝜙(𝑡𝑡)D 

From equation 69, we can rewrite equation 43 as: 

(71) 
= 𝜙𝜙(𝑡𝑡)í(𝜌𝜌Ü − 𝜌𝜌)𝑅𝑅(𝑡𝑡) + (𝛾𝛾 − 𝛾𝛾Ü)𝐼𝐼(𝑡𝑡) + C𝛿𝛿± − 𝛿𝛿D𝑁𝑁(𝑡𝑡) − 𝑔𝑔Üa(𝑥𝑥, 𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)ì

+
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(72) 𝑔𝑔∑(𝑡𝑡) = (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋) + 𝜀𝜀@ 
(73) 𝜀𝜀@ = 𝑔𝑔 − 𝑔𝑔(𝜃𝜃∗|𝜉𝜉(𝑋𝑋)) 

There exist a positive value 𝑎𝑎 such that 
 
 ∫

𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)
𝑎𝑎 − 𝑎𝑎ª

Y

≥ 0 

 𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
𝑎𝑎Y − 2𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) + 𝑎𝑎Y ≥ 0 

 
𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) ≤

1
2∫

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
𝑎𝑎Y + 𝑎𝑎Yª 

(74) 𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) ≤
𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)

2𝑎𝑎Y +
𝑎𝑎Y

2  

Based on equation 74 and considering assumptions 1, 3, 4, and 7, we have: 

(75) 
≤ 𝜙𝜙(𝑡𝑡)í𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) + 𝐷𝐷@	ì +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(76) 

≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −
𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Y

2𝑎𝑎Y −
𝑎𝑎Y

2 + 𝐷𝐷@

− 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝜂𝜂	𝑠𝑠𝑔𝑔𝑛𝑛(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(77) 
≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −

𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(78) = 𝑏𝑏(𝑥𝑥, 𝑡𝑡)𝜙𝜙(𝑡𝑡) + ü(𝜃𝜃 − 𝜃𝜃∗)7 ç−𝜉𝜉(𝑋𝑋)|𝜙𝜙| +
1
𝑧𝑧 𝜃̇𝜃

ê• −
𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 + 𝐷𝐷@ − 𝑏𝑏}|𝜙𝜙|

− 𝜂𝜂|𝜙𝜙| 
(79) 𝜃̇𝜃 = 𝑧𝑧𝑧𝑧(𝑋𝑋)|𝜙𝜙| 
(80) ≤ −𝜂𝜂|𝜙𝜙| ≤ 0 

(81) 
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑 𝜙𝜙(𝑡𝑡)

Y =
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑
|𝜙𝜙(𝑡𝑡)|Y ≤ −𝜂𝜂|𝜙𝜙(𝑡𝑡)|,				𝜙𝜙(0) ≠ 0 

As can be seen from the above equations, the derivative of the Lyapunov function 
is negative. Thus, based on Lyapunov theory, the system has reached stability. Also, 
the adaption rule is obtained as 𝜃̇𝜃 = 𝑧𝑧𝜉𝜉(𝑋𝑋)|𝜙𝜙|, based on equation 78. 

 
7. Simulation 
Some simulation results are provided in this section to clarify the capabilities of the 

proposed controller. After that, a comparison is made between the results of the 
proposed controller and those proposed in [2]. This comparison entails two parts; one 
with uncertainties in the SEIR model and one without uncertainties in the SEIR model. 

 
7.1. SEIR Epidemic Model Fuzzy Sliding Mode Controller without Uncertainties 
This subsection compares the results from fuzzy sliding mode controller simulations 

to those of classic sliding mode controllers. No uncertainty is included. The simulation 
parameters are derived from [2]. 

The actual parameters of the system are as follows: 

(82) 
𝜔𝜔eJ = 12	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 σeJ = 1.2	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 µeJ = 255	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝛾𝛾 = 𝜎𝜎 𝛽𝛽 = 1.66	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑eJ 𝜈𝜈eJ = 115	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Nominal parameters are considered as follows: 

(83) 
𝜔𝜔¥eJ = 12	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 σ¥eJ = 1.2	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 µÜeJ = 255	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝛾𝛾Ü = 𝜎𝜎Ü 𝛽𝛽± = 1.66	𝑑𝑑𝑑𝑑𝑦𝑦𝑠𝑠eJ 𝜈̂𝜈eJ = 115	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Also, controlling parameters are as below: 

(84) 𝜆𝜆 = 𝜀𝜀 =
1
2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

eJ 

The fuzzy system uses individual fuzzified, multiplication inference, and centers' 
mean defuzzifire. The membership functions are defined to be Gaussian. 

Figures 4 and 5 show the closed loop output of the proposed controller and the 
classic sliding mode one, respectively. In these figures, as stated earlier, the R-curve 
expresses the subpopulation recovered from or is immune to the epidemic disease. 
Accordingly, S denotes the susceptible subpopulation, E is the exposed 
subpopulation, and I the infectious subpopulation. As seen, susceptible, exposed, and 
infectious populations vanish entirely in less than 10 days. The recovered and immune 
population, however, increases with population dynamic change. As it is apparent from 
these figures, the two controllers can eliminate the epidemic disease. However, the 
proposed controller performance is improved to some extent. 

The vaccination control signal is shown in figures 6 and 7. As seen in figure 6, the 
vaccination control signal for the fuzzy sliding mode controller is smoother. It has fewer 
fluctuations than the classic sliding mode controller, which means that the proposed 
controller is more optimal than the classic one in the vaccination plan.  

Tracking error for both proposed and classic sliding mode is shown in figures 8 and 
9, respectively. As was mentioned earlier, N shows the total population, and 𝑁𝑁>?@ 
expresses the desired trend for the immune population, or in other words, the reference 
signal. As stated in (8), tracking error (𝑒𝑒(𝑡𝑡)) is the difference between recovered 
people, 𝑅𝑅(𝑡𝑡), and 𝑁𝑁>?@. 

Figures 10 to 13 show tracking error magnification in different time intervals. It can 
be seen from figure 10 that while the disease is not eradicated, the proposed controller 
includes fewer tracking errors. Moreover, observed from figures 12 and 13, we can 
conclude that when the disease is eradicated, the proposed controller performs better 
tracking with fewer ripples compared to the classic sliding mode controller. As can be 
seen, there is no chattering because of applying fuzzy logic to the sliding mode control 
law. 

 
7.2. SEIR Epidemic Model Fuzzy Sliding Mode Controller with Uncertainties 
In this subsection, the simulation results of both fuzzy sliding mode and classic 

sliding mode controllers are provided for the SEIR model in the presence of the 
uncertainty sentence, expressed in (Ibeas, A., Shafi, M., Ishfaq, M., & Ali, M., 2017), 
and the results are compared. 

The model parameters are similar to the ones from the previous subsection. Other 
parameters relating to uncertainty are taken from (Ibeas, A., Shafi, M., Ishfaq, M., & Ali, 
M., 2017) as in the following: 

Figures 14 and 15 depict the closed-loop output of the system for classic and 
proposed sliding mode controllers with the presence of uncertainty in the SEIR model, 
respectively. It can be seen that susceptible, exposed, and infectious populations 
vanish in less than 10 days. The recuperated and immune population increases 
concerning changes in population dynamics. 

It is also apparent that the added uncertainty affects the performance of the classic 
sliding mode controller, resulting in worsened output compared to other states. Also, 
the proposed controller is more robust in the presence of uncertainty compared to the 
classic controller. 

(85) ∆𝜎𝜎eJ = ∆𝛾𝛾eJ

= 1	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 
∆𝑣𝑣eJ

= 15	𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 
∆𝑤𝑤eJ

= 2.5	days 
∆𝜇𝜇eJ

= 20	days 
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𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) ≤

1
2∫

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
𝑎𝑎Y + 𝑎𝑎Yª 

(74) 𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) ≤
𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)

2𝑎𝑎Y +
𝑎𝑎Y

2  

Based on equation 74 and considering assumptions 1, 3, 4, and 7, we have: 

(75) 
≤ 𝜙𝜙(𝑡𝑡)í𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) + 𝐷𝐷@	ì +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(76) 

≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −
𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Y

2𝑎𝑎Y −
𝑎𝑎Y

2 + 𝐷𝐷@

− 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝜂𝜂	𝑠𝑠𝑔𝑔𝑛𝑛(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(77) 
≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −

𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(78) = 𝑏𝑏(𝑥𝑥, 𝑡𝑡)𝜙𝜙(𝑡𝑡) + ü(𝜃𝜃 − 𝜃𝜃∗)7 ç−𝜉𝜉(𝑋𝑋)|𝜙𝜙| +
1
𝑧𝑧 𝜃̇𝜃

ê• −
𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 + 𝐷𝐷@ − 𝑏𝑏}|𝜙𝜙|

− 𝜂𝜂|𝜙𝜙| 
(79) 𝜃̇𝜃 = 𝑧𝑧𝑧𝑧(𝑋𝑋)|𝜙𝜙| 
(80) ≤ −𝜂𝜂|𝜙𝜙| ≤ 0 

(81) 
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑 𝜙𝜙(𝑡𝑡)

Y =
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑
|𝜙𝜙(𝑡𝑡)|Y ≤ −𝜂𝜂|𝜙𝜙(𝑡𝑡)|,				𝜙𝜙(0) ≠ 0 

As can be seen from the above equations, the derivative of the Lyapunov function 
is negative. Thus, based on Lyapunov theory, the system has reached stability. Also, 
the adaption rule is obtained as 𝜃̇𝜃 = 𝑧𝑧𝜉𝜉(𝑋𝑋)|𝜙𝜙|, based on equation 78. 

 
7. Simulation 
Some simulation results are provided in this section to clarify the capabilities of the 

proposed controller. After that, a comparison is made between the results of the 
proposed controller and those proposed in [2]. This comparison entails two parts; one 
with uncertainties in the SEIR model and one without uncertainties in the SEIR model. 

 
7.1. SEIR Epidemic Model Fuzzy Sliding Mode Controller without Uncertainties 
This subsection compares the results from fuzzy sliding mode controller simulations 

to those of classic sliding mode controllers. No uncertainty is included. The simulation 
parameters are derived from [2]. 

The actual parameters of the system are as follows: 

(82) 
𝜔𝜔eJ = 12	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 σeJ = 1.2	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 µeJ = 255	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝛾𝛾 = 𝜎𝜎 𝛽𝛽 = 1.66	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑eJ 𝜈𝜈eJ = 115	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Nominal parameters are considered as follows: 

(83) 
𝜔𝜔¥eJ = 12	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 σ¥eJ = 1.2	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 µÜeJ = 255	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝛾𝛾Ü = 𝜎𝜎Ü 𝛽𝛽± = 1.66	𝑑𝑑𝑑𝑑𝑦𝑦𝑠𝑠eJ 𝜈̂𝜈eJ = 115	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Also, controlling parameters are as below: 

(84) 𝜆𝜆 = 𝜀𝜀 =
1
2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

eJ 

The fuzzy system uses individual fuzzified, multiplication inference, and centers' 
mean defuzzifire. The membership functions are defined to be Gaussian. 

Figures 4 and 5 show the closed loop output of the proposed controller and the 
classic sliding mode one, respectively. In these figures, as stated earlier, the R-curve 
expresses the subpopulation recovered from or is immune to the epidemic disease. 
Accordingly, S denotes the susceptible subpopulation, E is the exposed 
subpopulation, and I the infectious subpopulation. As seen, susceptible, exposed, and 
infectious populations vanish entirely in less than 10 days. The recovered and immune 
population, however, increases with population dynamic change. As it is apparent from 
these figures, the two controllers can eliminate the epidemic disease. However, the 
proposed controller performance is improved to some extent. 

The vaccination control signal is shown in figures 6 and 7. As seen in figure 6, the 
vaccination control signal for the fuzzy sliding mode controller is smoother. It has fewer 
fluctuations than the classic sliding mode controller, which means that the proposed 
controller is more optimal than the classic one in the vaccination plan.  

Tracking error for both proposed and classic sliding mode is shown in figures 8 and 
9, respectively. As was mentioned earlier, N shows the total population, and 𝑁𝑁>?@ 
expresses the desired trend for the immune population, or in other words, the reference 
signal. As stated in (8), tracking error (𝑒𝑒(𝑡𝑡)) is the difference between recovered 
people, 𝑅𝑅(𝑡𝑡), and 𝑁𝑁>?@. 

Figures 10 to 13 show tracking error magnification in different time intervals. It can 
be seen from figure 10 that while the disease is not eradicated, the proposed controller 
includes fewer tracking errors. Moreover, observed from figures 12 and 13, we can 
conclude that when the disease is eradicated, the proposed controller performs better 
tracking with fewer ripples compared to the classic sliding mode controller. As can be 
seen, there is no chattering because of applying fuzzy logic to the sliding mode control 
law. 

 
7.2. SEIR Epidemic Model Fuzzy Sliding Mode Controller with Uncertainties 
In this subsection, the simulation results of both fuzzy sliding mode and classic 

sliding mode controllers are provided for the SEIR model in the presence of the 
uncertainty sentence, expressed in (Ibeas, A., Shafi, M., Ishfaq, M., & Ali, M., 2017), 
and the results are compared. 

The model parameters are similar to the ones from the previous subsection. Other 
parameters relating to uncertainty are taken from (Ibeas, A., Shafi, M., Ishfaq, M., & Ali, 
M., 2017) as in the following: 

Figures 14 and 15 depict the closed-loop output of the system for classic and 
proposed sliding mode controllers with the presence of uncertainty in the SEIR model, 
respectively. It can be seen that susceptible, exposed, and infectious populations 
vanish in less than 10 days. The recuperated and immune population increases 
concerning changes in population dynamics. 

It is also apparent that the added uncertainty affects the performance of the classic 
sliding mode controller, resulting in worsened output compared to other states. Also, 
the proposed controller is more robust in the presence of uncertainty compared to the 
classic controller. 

(85) ∆𝜎𝜎eJ = ∆𝛾𝛾eJ

= 1	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 
∆𝑣𝑣eJ

= 15	𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 
∆𝑤𝑤eJ

= 2.5	days 
∆𝜇𝜇eJ

= 20	days 
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𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) ≤

1
2∫

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
𝑎𝑎Y + 𝑎𝑎Yª 

(74) 𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) ≤
𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)

2𝑎𝑎Y +
𝑎𝑎Y

2  

Based on equation 74 and considering assumptions 1, 3, 4, and 7, we have: 

(75) 
≤ 𝜙𝜙(𝑡𝑡)í𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) + 𝐷𝐷@	ì +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(76) 

≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −
𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Y

2𝑎𝑎Y −
𝑎𝑎Y

2 + 𝐷𝐷@

− 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝜂𝜂	𝑠𝑠𝑔𝑔𝑛𝑛(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(77) 
≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −

𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(78) = 𝑏𝑏(𝑥𝑥, 𝑡𝑡)𝜙𝜙(𝑡𝑡) + ü(𝜃𝜃 − 𝜃𝜃∗)7 ç−𝜉𝜉(𝑋𝑋)|𝜙𝜙| +
1
𝑧𝑧 𝜃̇𝜃

ê• −
𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 + 𝐷𝐷@ − 𝑏𝑏}|𝜙𝜙|

− 𝜂𝜂|𝜙𝜙| 
(79) 𝜃̇𝜃 = 𝑧𝑧𝑧𝑧(𝑋𝑋)|𝜙𝜙| 
(80) ≤ −𝜂𝜂|𝜙𝜙| ≤ 0 

(81) 
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑 𝜙𝜙(𝑡𝑡)

Y =
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑
|𝜙𝜙(𝑡𝑡)|Y ≤ −𝜂𝜂|𝜙𝜙(𝑡𝑡)|,				𝜙𝜙(0) ≠ 0 

As can be seen from the above equations, the derivative of the Lyapunov function 
is negative. Thus, based on Lyapunov theory, the system has reached stability. Also, 
the adaption rule is obtained as 𝜃̇𝜃 = 𝑧𝑧𝜉𝜉(𝑋𝑋)|𝜙𝜙|, based on equation 78. 

 
7. Simulation 
Some simulation results are provided in this section to clarify the capabilities of the 

proposed controller. After that, a comparison is made between the results of the 
proposed controller and those proposed in [2]. This comparison entails two parts; one 
with uncertainties in the SEIR model and one without uncertainties in the SEIR model. 

 
7.1. SEIR Epidemic Model Fuzzy Sliding Mode Controller without Uncertainties 
This subsection compares the results from fuzzy sliding mode controller simulations 

to those of classic sliding mode controllers. No uncertainty is included. The simulation 
parameters are derived from [2]. 

The actual parameters of the system are as follows: 

(82) 
𝜔𝜔eJ = 12	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 σeJ = 1.2	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 µeJ = 255	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝛾𝛾 = 𝜎𝜎 𝛽𝛽 = 1.66	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑eJ 𝜈𝜈eJ = 115	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Nominal parameters are considered as follows: 

(83) 
𝜔𝜔¥eJ = 12	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 σ¥eJ = 1.2	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 µÜeJ = 255	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝛾𝛾Ü = 𝜎𝜎Ü 𝛽𝛽± = 1.66	𝑑𝑑𝑑𝑑𝑦𝑦𝑠𝑠eJ 𝜈̂𝜈eJ = 115	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Also, controlling parameters are as below: 

(84) 𝜆𝜆 = 𝜀𝜀 =
1
2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

eJ 

The fuzzy system uses individual fuzzified, multiplication inference, and centers' 
mean defuzzifire. The membership functions are defined to be Gaussian. 

Figures 4 and 5 show the closed loop output of the proposed controller and the 
classic sliding mode one, respectively. In these figures, as stated earlier, the R-curve 
expresses the subpopulation recovered from or is immune to the epidemic disease. 
Accordingly, S denotes the susceptible subpopulation, E is the exposed 
subpopulation, and I the infectious subpopulation. As seen, susceptible, exposed, and 
infectious populations vanish entirely in less than 10 days. The recovered and immune 
population, however, increases with population dynamic change. As it is apparent from 
these figures, the two controllers can eliminate the epidemic disease. However, the 
proposed controller performance is improved to some extent. 

The vaccination control signal is shown in figures 6 and 7. As seen in figure 6, the 
vaccination control signal for the fuzzy sliding mode controller is smoother. It has fewer 
fluctuations than the classic sliding mode controller, which means that the proposed 
controller is more optimal than the classic one in the vaccination plan.  

Tracking error for both proposed and classic sliding mode is shown in figures 8 and 
9, respectively. As was mentioned earlier, N shows the total population, and 𝑁𝑁>?@ 
expresses the desired trend for the immune population, or in other words, the reference 
signal. As stated in (8), tracking error (𝑒𝑒(𝑡𝑡)) is the difference between recovered 
people, 𝑅𝑅(𝑡𝑡), and 𝑁𝑁>?@. 

Figures 10 to 13 show tracking error magnification in different time intervals. It can 
be seen from figure 10 that while the disease is not eradicated, the proposed controller 
includes fewer tracking errors. Moreover, observed from figures 12 and 13, we can 
conclude that when the disease is eradicated, the proposed controller performs better 
tracking with fewer ripples compared to the classic sliding mode controller. As can be 
seen, there is no chattering because of applying fuzzy logic to the sliding mode control 
law. 

 
7.2. SEIR Epidemic Model Fuzzy Sliding Mode Controller with Uncertainties 
In this subsection, the simulation results of both fuzzy sliding mode and classic 

sliding mode controllers are provided for the SEIR model in the presence of the 
uncertainty sentence, expressed in (Ibeas, A., Shafi, M., Ishfaq, M., & Ali, M., 2017), 
and the results are compared. 

The model parameters are similar to the ones from the previous subsection. Other 
parameters relating to uncertainty are taken from (Ibeas, A., Shafi, M., Ishfaq, M., & Ali, 
M., 2017) as in the following: 

Figures 14 and 15 depict the closed-loop output of the system for classic and 
proposed sliding mode controllers with the presence of uncertainty in the SEIR model, 
respectively. It can be seen that susceptible, exposed, and infectious populations 
vanish in less than 10 days. The recuperated and immune population increases 
concerning changes in population dynamics. 

It is also apparent that the added uncertainty affects the performance of the classic 
sliding mode controller, resulting in worsened output compared to other states. Also, 
the proposed controller is more robust in the presence of uncertainty compared to the 
classic controller. 

(85) ∆𝜎𝜎eJ = ∆𝛾𝛾eJ

= 1	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 
∆𝑣𝑣eJ

= 15	𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 
∆𝑤𝑤eJ

= 2.5	days 
∆𝜇𝜇eJ

= 20	days 

 
𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) ≤

1
2∫

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
𝑎𝑎Y + 𝑎𝑎Yª 

(74) 𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) ≤
𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)

2𝑎𝑎Y +
𝑎𝑎Y

2  

Based on equation 74 and considering assumptions 1, 3, 4, and 7, we have: 

(75) 
≤ 𝜙𝜙(𝑡𝑡)í𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) + 𝐷𝐷@	ì +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(76) 

≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −
𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Y

2𝑎𝑎Y −
𝑎𝑎Y

2 + 𝐷𝐷@

− 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝜂𝜂	𝑠𝑠𝑔𝑔𝑛𝑛(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(77) 
≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −

𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(78) = 𝑏𝑏(𝑥𝑥, 𝑡𝑡)𝜙𝜙(𝑡𝑡) + ü(𝜃𝜃 − 𝜃𝜃∗)7 ç−𝜉𝜉(𝑋𝑋)|𝜙𝜙| +
1
𝑧𝑧 𝜃̇𝜃

ê• −
𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 + 𝐷𝐷@ − 𝑏𝑏}|𝜙𝜙|

− 𝜂𝜂|𝜙𝜙| 
(79) 𝜃̇𝜃 = 𝑧𝑧𝑧𝑧(𝑋𝑋)|𝜙𝜙| 
(80) ≤ −𝜂𝜂|𝜙𝜙| ≤ 0 

(81) 
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑 𝜙𝜙(𝑡𝑡)

Y =
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑
|𝜙𝜙(𝑡𝑡)|Y ≤ −𝜂𝜂|𝜙𝜙(𝑡𝑡)|,				𝜙𝜙(0) ≠ 0 

As can be seen from the above equations, the derivative of the Lyapunov function 
is negative. Thus, based on Lyapunov theory, the system has reached stability. Also, 
the adaption rule is obtained as 𝜃̇𝜃 = 𝑧𝑧𝜉𝜉(𝑋𝑋)|𝜙𝜙|, based on equation 78. 

 
7. Simulation 
Some simulation results are provided in this section to clarify the capabilities of the 

proposed controller. After that, a comparison is made between the results of the 
proposed controller and those proposed in [2]. This comparison entails two parts; one 
with uncertainties in the SEIR model and one without uncertainties in the SEIR model. 

 
7.1. SEIR Epidemic Model Fuzzy Sliding Mode Controller without Uncertainties 
This subsection compares the results from fuzzy sliding mode controller simulations 

to those of classic sliding mode controllers. No uncertainty is included. The simulation 
parameters are derived from [2]. 

The actual parameters of the system are as follows: 

(82) 
𝜔𝜔eJ = 12	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 σeJ = 1.2	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 µeJ = 255	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝛾𝛾 = 𝜎𝜎 𝛽𝛽 = 1.66	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑eJ 𝜈𝜈eJ = 115	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Nominal parameters are considered as follows: 

(83) 
𝜔𝜔¥eJ = 12	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 σ¥eJ = 1.2	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 µÜeJ = 255	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝛾𝛾Ü = 𝜎𝜎Ü 𝛽𝛽± = 1.66	𝑑𝑑𝑑𝑑𝑦𝑦𝑠𝑠eJ 𝜈̂𝜈eJ = 115	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Also, controlling parameters are as below: 

(84) 𝜆𝜆 = 𝜀𝜀 =
1
2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

eJ 

The fuzzy system uses individual fuzzified, multiplication inference, and centers' 
mean defuzzifire. The membership functions are defined to be Gaussian. 

Figures 4 and 5 show the closed loop output of the proposed controller and the 
classic sliding mode one, respectively. In these figures, as stated earlier, the R-curve 
expresses the subpopulation recovered from or is immune to the epidemic disease. 
Accordingly, S denotes the susceptible subpopulation, E is the exposed 
subpopulation, and I the infectious subpopulation. As seen, susceptible, exposed, and 
infectious populations vanish entirely in less than 10 days. The recovered and immune 
population, however, increases with population dynamic change. As it is apparent from 
these figures, the two controllers can eliminate the epidemic disease. However, the 
proposed controller performance is improved to some extent. 

The vaccination control signal is shown in figures 6 and 7. As seen in figure 6, the 
vaccination control signal for the fuzzy sliding mode controller is smoother. It has fewer 
fluctuations than the classic sliding mode controller, which means that the proposed 
controller is more optimal than the classic one in the vaccination plan.  

Tracking error for both proposed and classic sliding mode is shown in figures 8 and 
9, respectively. As was mentioned earlier, N shows the total population, and 𝑁𝑁>?@ 
expresses the desired trend for the immune population, or in other words, the reference 
signal. As stated in (8), tracking error (𝑒𝑒(𝑡𝑡)) is the difference between recovered 
people, 𝑅𝑅(𝑡𝑡), and 𝑁𝑁>?@. 

Figures 10 to 13 show tracking error magnification in different time intervals. It can 
be seen from figure 10 that while the disease is not eradicated, the proposed controller 
includes fewer tracking errors. Moreover, observed from figures 12 and 13, we can 
conclude that when the disease is eradicated, the proposed controller performs better 
tracking with fewer ripples compared to the classic sliding mode controller. As can be 
seen, there is no chattering because of applying fuzzy logic to the sliding mode control 
law. 

 
7.2. SEIR Epidemic Model Fuzzy Sliding Mode Controller with Uncertainties 
In this subsection, the simulation results of both fuzzy sliding mode and classic 

sliding mode controllers are provided for the SEIR model in the presence of the 
uncertainty sentence, expressed in (Ibeas, A., Shafi, M., Ishfaq, M., & Ali, M., 2017), 
and the results are compared. 

The model parameters are similar to the ones from the previous subsection. Other 
parameters relating to uncertainty are taken from (Ibeas, A., Shafi, M., Ishfaq, M., & Ali, 
M., 2017) as in the following: 

Figures 14 and 15 depict the closed-loop output of the system for classic and 
proposed sliding mode controllers with the presence of uncertainty in the SEIR model, 
respectively. It can be seen that susceptible, exposed, and infectious populations 
vanish in less than 10 days. The recuperated and immune population increases 
concerning changes in population dynamics. 

It is also apparent that the added uncertainty affects the performance of the classic 
sliding mode controller, resulting in worsened output compared to other states. Also, 
the proposed controller is more robust in the presence of uncertainty compared to the 
classic controller. 

(85) ∆𝜎𝜎eJ = ∆𝛾𝛾eJ

= 1	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 
∆𝑣𝑣eJ

= 15	𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 
∆𝑤𝑤eJ

= 2.5	days 
∆𝜇𝜇eJ

= 20	days 

Fig. 4. closed loop output for fuzzy 
sliding mode controller

Fig. 6. Vaccination control signal for 
fuzzy SMC

Fig. 5. closed loop output for classic 
SMC

Fig. 7. Vaccination control signal for 
classic SMC
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𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) ≤

1
2∫

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
𝑎𝑎Y + 𝑎𝑎Yª 

(74) 𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) ≤
𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)

2𝑎𝑎Y +
𝑎𝑎Y

2  

Based on equation 74 and considering assumptions 1, 3, 4, and 7, we have: 

(75) 
≤ 𝜙𝜙(𝑡𝑡)í𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) + 𝐷𝐷@	ì +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(76) 

≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −
𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Y

2𝑎𝑎Y −
𝑎𝑎Y

2 + 𝐷𝐷@

− 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝜂𝜂	𝑠𝑠𝑔𝑔𝑛𝑛(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(77) 
≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −

𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(78) = 𝑏𝑏(𝑥𝑥, 𝑡𝑡)𝜙𝜙(𝑡𝑡) + ü(𝜃𝜃 − 𝜃𝜃∗)7 ç−𝜉𝜉(𝑋𝑋)|𝜙𝜙| +
1
𝑧𝑧 𝜃̇𝜃

ê• −
𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 + 𝐷𝐷@ − 𝑏𝑏}|𝜙𝜙|

− 𝜂𝜂|𝜙𝜙| 
(79) 𝜃̇𝜃 = 𝑧𝑧𝑧𝑧(𝑋𝑋)|𝜙𝜙| 
(80) ≤ −𝜂𝜂|𝜙𝜙| ≤ 0 

(81) 
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑 𝜙𝜙(𝑡𝑡)

Y =
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑
|𝜙𝜙(𝑡𝑡)|Y ≤ −𝜂𝜂|𝜙𝜙(𝑡𝑡)|,				𝜙𝜙(0) ≠ 0 

As can be seen from the above equations, the derivative of the Lyapunov function 
is negative. Thus, based on Lyapunov theory, the system has reached stability. Also, 
the adaption rule is obtained as 𝜃̇𝜃 = 𝑧𝑧𝜉𝜉(𝑋𝑋)|𝜙𝜙|, based on equation 78. 

 
7. Simulation 
Some simulation results are provided in this section to clarify the capabilities of the 

proposed controller. After that, a comparison is made between the results of the 
proposed controller and those proposed in [2]. This comparison entails two parts; one 
with uncertainties in the SEIR model and one without uncertainties in the SEIR model. 

 
7.1. SEIR Epidemic Model Fuzzy Sliding Mode Controller without Uncertainties 
This subsection compares the results from fuzzy sliding mode controller simulations 

to those of classic sliding mode controllers. No uncertainty is included. The simulation 
parameters are derived from [2]. 

The actual parameters of the system are as follows: 

(82) 
𝜔𝜔eJ = 12	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 σeJ = 1.2	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 µeJ = 255	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝛾𝛾 = 𝜎𝜎 𝛽𝛽 = 1.66	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑eJ 𝜈𝜈eJ = 115	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Nominal parameters are considered as follows: 

(83) 
𝜔𝜔¥eJ = 12	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 σ¥eJ = 1.2	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 µÜeJ = 255	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝛾𝛾Ü = 𝜎𝜎Ü 𝛽𝛽± = 1.66	𝑑𝑑𝑑𝑑𝑦𝑦𝑠𝑠eJ 𝜈̂𝜈eJ = 115	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Also, controlling parameters are as below: 

(84) 𝜆𝜆 = 𝜀𝜀 =
1
2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

eJ 

The fuzzy system uses individual fuzzified, multiplication inference, and centers' 
mean defuzzifire. The membership functions are defined to be Gaussian. 

Figures 4 and 5 show the closed loop output of the proposed controller and the 
classic sliding mode one, respectively. In these figures, as stated earlier, the R-curve 
expresses the subpopulation recovered from or is immune to the epidemic disease. 
Accordingly, S denotes the susceptible subpopulation, E is the exposed 
subpopulation, and I the infectious subpopulation. As seen, susceptible, exposed, and 
infectious populations vanish entirely in less than 10 days. The recovered and immune 
population, however, increases with population dynamic change. As it is apparent from 
these figures, the two controllers can eliminate the epidemic disease. However, the 
proposed controller performance is improved to some extent. 

The vaccination control signal is shown in figures 6 and 7. As seen in figure 6, the 
vaccination control signal for the fuzzy sliding mode controller is smoother. It has fewer 
fluctuations than the classic sliding mode controller, which means that the proposed 
controller is more optimal than the classic one in the vaccination plan.  

Tracking error for both proposed and classic sliding mode is shown in figures 8 and 
9, respectively. As was mentioned earlier, N shows the total population, and 𝑁𝑁>?@ 
expresses the desired trend for the immune population, or in other words, the reference 
signal. As stated in (8), tracking error (𝑒𝑒(𝑡𝑡)) is the difference between recovered 
people, 𝑅𝑅(𝑡𝑡), and 𝑁𝑁>?@. 

Figures 10 to 13 show tracking error magnification in different time intervals. It can 
be seen from figure 10 that while the disease is not eradicated, the proposed controller 
includes fewer tracking errors. Moreover, observed from figures 12 and 13, we can 
conclude that when the disease is eradicated, the proposed controller performs better 
tracking with fewer ripples compared to the classic sliding mode controller. As can be 
seen, there is no chattering because of applying fuzzy logic to the sliding mode control 
law. 

 
7.2. SEIR Epidemic Model Fuzzy Sliding Mode Controller with Uncertainties 
In this subsection, the simulation results of both fuzzy sliding mode and classic 

sliding mode controllers are provided for the SEIR model in the presence of the 
uncertainty sentence, expressed in (Ibeas, A., Shafi, M., Ishfaq, M., & Ali, M., 2017), 
and the results are compared. 

The model parameters are similar to the ones from the previous subsection. Other 
parameters relating to uncertainty are taken from (Ibeas, A., Shafi, M., Ishfaq, M., & Ali, 
M., 2017) as in the following: 

Figures 14 and 15 depict the closed-loop output of the system for classic and 
proposed sliding mode controllers with the presence of uncertainty in the SEIR model, 
respectively. It can be seen that susceptible, exposed, and infectious populations 
vanish in less than 10 days. The recuperated and immune population increases 
concerning changes in population dynamics. 

It is also apparent that the added uncertainty affects the performance of the classic 
sliding mode controller, resulting in worsened output compared to other states. Also, 
the proposed controller is more robust in the presence of uncertainty compared to the 
classic controller. 

(85) ∆𝜎𝜎eJ = ∆𝛾𝛾eJ

= 1	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 
∆𝑣𝑣eJ

= 15	𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 
∆𝑤𝑤eJ

= 2.5	days 
∆𝜇𝜇eJ

= 20	days 

 
𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) ≤

1
2∫

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
𝑎𝑎Y + 𝑎𝑎Yª 

(74) 𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) ≤
𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)

2𝑎𝑎Y +
𝑎𝑎Y

2  

Based on equation 74 and considering assumptions 1, 3, 4, and 7, we have: 

(75) 
≤ 𝜙𝜙(𝑡𝑡)í𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) + 𝐷𝐷@	ì +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(76) 

≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −
𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Y

2𝑎𝑎Y −
𝑎𝑎Y

2 + 𝐷𝐷@

− 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝜂𝜂	𝑠𝑠𝑔𝑔𝑛𝑛(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(77) 
≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −

𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(78) = 𝑏𝑏(𝑥𝑥, 𝑡𝑡)𝜙𝜙(𝑡𝑡) + ü(𝜃𝜃 − 𝜃𝜃∗)7 ç−𝜉𝜉(𝑋𝑋)|𝜙𝜙| +
1
𝑧𝑧 𝜃̇𝜃

ê• −
𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 + 𝐷𝐷@ − 𝑏𝑏}|𝜙𝜙|

− 𝜂𝜂|𝜙𝜙| 
(79) 𝜃̇𝜃 = 𝑧𝑧𝑧𝑧(𝑋𝑋)|𝜙𝜙| 
(80) ≤ −𝜂𝜂|𝜙𝜙| ≤ 0 

(81) 
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑 𝜙𝜙(𝑡𝑡)

Y =
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑
|𝜙𝜙(𝑡𝑡)|Y ≤ −𝜂𝜂|𝜙𝜙(𝑡𝑡)|,				𝜙𝜙(0) ≠ 0 

As can be seen from the above equations, the derivative of the Lyapunov function 
is negative. Thus, based on Lyapunov theory, the system has reached stability. Also, 
the adaption rule is obtained as 𝜃̇𝜃 = 𝑧𝑧𝜉𝜉(𝑋𝑋)|𝜙𝜙|, based on equation 78. 

 
7. Simulation 
Some simulation results are provided in this section to clarify the capabilities of the 

proposed controller. After that, a comparison is made between the results of the 
proposed controller and those proposed in [2]. This comparison entails two parts; one 
with uncertainties in the SEIR model and one without uncertainties in the SEIR model. 

 
7.1. SEIR Epidemic Model Fuzzy Sliding Mode Controller without Uncertainties 
This subsection compares the results from fuzzy sliding mode controller simulations 

to those of classic sliding mode controllers. No uncertainty is included. The simulation 
parameters are derived from [2]. 

The actual parameters of the system are as follows: 

(82) 
𝜔𝜔eJ = 12	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 σeJ = 1.2	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 µeJ = 255	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝛾𝛾 = 𝜎𝜎 𝛽𝛽 = 1.66	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑eJ 𝜈𝜈eJ = 115	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Nominal parameters are considered as follows: 

(83) 
𝜔𝜔¥eJ = 12	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 σ¥eJ = 1.2	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 µÜeJ = 255	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝛾𝛾Ü = 𝜎𝜎Ü 𝛽𝛽± = 1.66	𝑑𝑑𝑑𝑑𝑦𝑦𝑠𝑠eJ 𝜈̂𝜈eJ = 115	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Also, controlling parameters are as below: 

(84) 𝜆𝜆 = 𝜀𝜀 =
1
2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

eJ 

The fuzzy system uses individual fuzzified, multiplication inference, and centers' 
mean defuzzifire. The membership functions are defined to be Gaussian. 

Figures 4 and 5 show the closed loop output of the proposed controller and the 
classic sliding mode one, respectively. In these figures, as stated earlier, the R-curve 
expresses the subpopulation recovered from or is immune to the epidemic disease. 
Accordingly, S denotes the susceptible subpopulation, E is the exposed 
subpopulation, and I the infectious subpopulation. As seen, susceptible, exposed, and 
infectious populations vanish entirely in less than 10 days. The recovered and immune 
population, however, increases with population dynamic change. As it is apparent from 
these figures, the two controllers can eliminate the epidemic disease. However, the 
proposed controller performance is improved to some extent. 

The vaccination control signal is shown in figures 6 and 7. As seen in figure 6, the 
vaccination control signal for the fuzzy sliding mode controller is smoother. It has fewer 
fluctuations than the classic sliding mode controller, which means that the proposed 
controller is more optimal than the classic one in the vaccination plan.  

Tracking error for both proposed and classic sliding mode is shown in figures 8 and 
9, respectively. As was mentioned earlier, N shows the total population, and 𝑁𝑁>?@ 
expresses the desired trend for the immune population, or in other words, the reference 
signal. As stated in (8), tracking error (𝑒𝑒(𝑡𝑡)) is the difference between recovered 
people, 𝑅𝑅(𝑡𝑡), and 𝑁𝑁>?@. 

Figures 10 to 13 show tracking error magnification in different time intervals. It can 
be seen from figure 10 that while the disease is not eradicated, the proposed controller 
includes fewer tracking errors. Moreover, observed from figures 12 and 13, we can 
conclude that when the disease is eradicated, the proposed controller performs better 
tracking with fewer ripples compared to the classic sliding mode controller. As can be 
seen, there is no chattering because of applying fuzzy logic to the sliding mode control 
law. 

 
7.2. SEIR Epidemic Model Fuzzy Sliding Mode Controller with Uncertainties 
In this subsection, the simulation results of both fuzzy sliding mode and classic 

sliding mode controllers are provided for the SEIR model in the presence of the 
uncertainty sentence, expressed in (Ibeas, A., Shafi, M., Ishfaq, M., & Ali, M., 2017), 
and the results are compared. 

The model parameters are similar to the ones from the previous subsection. Other 
parameters relating to uncertainty are taken from (Ibeas, A., Shafi, M., Ishfaq, M., & Ali, 
M., 2017) as in the following: 

Figures 14 and 15 depict the closed-loop output of the system for classic and 
proposed sliding mode controllers with the presence of uncertainty in the SEIR model, 
respectively. It can be seen that susceptible, exposed, and infectious populations 
vanish in less than 10 days. The recuperated and immune population increases 
concerning changes in population dynamics. 

It is also apparent that the added uncertainty affects the performance of the classic 
sliding mode controller, resulting in worsened output compared to other states. Also, 
the proposed controller is more robust in the presence of uncertainty compared to the 
classic controller. 

(85) ∆𝜎𝜎eJ = ∆𝛾𝛾eJ

= 1	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 
∆𝑣𝑣eJ

= 15	𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 
∆𝑤𝑤eJ

= 2.5	days 
∆𝜇𝜇eJ

= 20	days 

Fig. 8. Tracking error for fuzzy SMC Fig. 9. Tracking error for classic SMC

Fig. 10. Fuzzy SMC tracking error 
magnification (before eradication)

Fig. 11. Classic SMC tracking error 
magnification (before eradication)
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𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) ≤

1
2∫

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
𝑎𝑎Y + 𝑎𝑎Yª 

(74) 𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) ≤
𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)

2𝑎𝑎Y +
𝑎𝑎Y

2  

Based on equation 74 and considering assumptions 1, 3, 4, and 7, we have: 

(75) 
≤ 𝜙𝜙(𝑡𝑡)í𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) + 𝐷𝐷@	ì +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(76) 

≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −
𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Y

2𝑎𝑎Y −
𝑎𝑎Y

2 + 𝐷𝐷@

− 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝜂𝜂	𝑠𝑠𝑔𝑔𝑛𝑛(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(77) 
≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −

𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(78) = 𝑏𝑏(𝑥𝑥, 𝑡𝑡)𝜙𝜙(𝑡𝑡) + ü(𝜃𝜃 − 𝜃𝜃∗)7 ç−𝜉𝜉(𝑋𝑋)|𝜙𝜙| +
1
𝑧𝑧 𝜃̇𝜃

ê• −
𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 + 𝐷𝐷@ − 𝑏𝑏}|𝜙𝜙|

− 𝜂𝜂|𝜙𝜙| 
(79) 𝜃̇𝜃 = 𝑧𝑧𝑧𝑧(𝑋𝑋)|𝜙𝜙| 
(80) ≤ −𝜂𝜂|𝜙𝜙| ≤ 0 

(81) 
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑 𝜙𝜙(𝑡𝑡)

Y =
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑
|𝜙𝜙(𝑡𝑡)|Y ≤ −𝜂𝜂|𝜙𝜙(𝑡𝑡)|,				𝜙𝜙(0) ≠ 0 

As can be seen from the above equations, the derivative of the Lyapunov function 
is negative. Thus, based on Lyapunov theory, the system has reached stability. Also, 
the adaption rule is obtained as 𝜃̇𝜃 = 𝑧𝑧𝜉𝜉(𝑋𝑋)|𝜙𝜙|, based on equation 78. 

 
7. Simulation 
Some simulation results are provided in this section to clarify the capabilities of the 

proposed controller. After that, a comparison is made between the results of the 
proposed controller and those proposed in [2]. This comparison entails two parts; one 
with uncertainties in the SEIR model and one without uncertainties in the SEIR model. 

 
7.1. SEIR Epidemic Model Fuzzy Sliding Mode Controller without Uncertainties 
This subsection compares the results from fuzzy sliding mode controller simulations 

to those of classic sliding mode controllers. No uncertainty is included. The simulation 
parameters are derived from [2]. 

The actual parameters of the system are as follows: 

(82) 
𝜔𝜔eJ = 12	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 σeJ = 1.2	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 µeJ = 255	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝛾𝛾 = 𝜎𝜎 𝛽𝛽 = 1.66	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑eJ 𝜈𝜈eJ = 115	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Nominal parameters are considered as follows: 

(83) 
𝜔𝜔¥eJ = 12	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 σ¥eJ = 1.2	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 µÜeJ = 255	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝛾𝛾Ü = 𝜎𝜎Ü 𝛽𝛽± = 1.66	𝑑𝑑𝑑𝑑𝑦𝑦𝑠𝑠eJ 𝜈̂𝜈eJ = 115	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Also, controlling parameters are as below: 

(84) 𝜆𝜆 = 𝜀𝜀 =
1
2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

eJ 

The fuzzy system uses individual fuzzified, multiplication inference, and centers' 
mean defuzzifire. The membership functions are defined to be Gaussian. 

Figures 4 and 5 show the closed loop output of the proposed controller and the 
classic sliding mode one, respectively. In these figures, as stated earlier, the R-curve 
expresses the subpopulation recovered from or is immune to the epidemic disease. 
Accordingly, S denotes the susceptible subpopulation, E is the exposed 
subpopulation, and I the infectious subpopulation. As seen, susceptible, exposed, and 
infectious populations vanish entirely in less than 10 days. The recovered and immune 
population, however, increases with population dynamic change. As it is apparent from 
these figures, the two controllers can eliminate the epidemic disease. However, the 
proposed controller performance is improved to some extent. 

The vaccination control signal is shown in figures 6 and 7. As seen in figure 6, the 
vaccination control signal for the fuzzy sliding mode controller is smoother. It has fewer 
fluctuations than the classic sliding mode controller, which means that the proposed 
controller is more optimal than the classic one in the vaccination plan.  

Tracking error for both proposed and classic sliding mode is shown in figures 8 and 
9, respectively. As was mentioned earlier, N shows the total population, and 𝑁𝑁>?@ 
expresses the desired trend for the immune population, or in other words, the reference 
signal. As stated in (8), tracking error (𝑒𝑒(𝑡𝑡)) is the difference between recovered 
people, 𝑅𝑅(𝑡𝑡), and 𝑁𝑁>?@. 

Figures 10 to 13 show tracking error magnification in different time intervals. It can 
be seen from figure 10 that while the disease is not eradicated, the proposed controller 
includes fewer tracking errors. Moreover, observed from figures 12 and 13, we can 
conclude that when the disease is eradicated, the proposed controller performs better 
tracking with fewer ripples compared to the classic sliding mode controller. As can be 
seen, there is no chattering because of applying fuzzy logic to the sliding mode control 
law. 

 
7.2. SEIR Epidemic Model Fuzzy Sliding Mode Controller with Uncertainties 
In this subsection, the simulation results of both fuzzy sliding mode and classic 

sliding mode controllers are provided for the SEIR model in the presence of the 
uncertainty sentence, expressed in (Ibeas, A., Shafi, M., Ishfaq, M., & Ali, M., 2017), 
and the results are compared. 

The model parameters are similar to the ones from the previous subsection. Other 
parameters relating to uncertainty are taken from (Ibeas, A., Shafi, M., Ishfaq, M., & Ali, 
M., 2017) as in the following: 

Figures 14 and 15 depict the closed-loop output of the system for classic and 
proposed sliding mode controllers with the presence of uncertainty in the SEIR model, 
respectively. It can be seen that susceptible, exposed, and infectious populations 
vanish in less than 10 days. The recuperated and immune population increases 
concerning changes in population dynamics. 

It is also apparent that the added uncertainty affects the performance of the classic 
sliding mode controller, resulting in worsened output compared to other states. Also, 
the proposed controller is more robust in the presence of uncertainty compared to the 
classic controller. 

(85) ∆𝜎𝜎eJ = ∆𝛾𝛾eJ

= 1	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 
∆𝑣𝑣eJ

= 15	𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 
∆𝑤𝑤eJ

= 2.5	days 
∆𝜇𝜇eJ

= 20	days 

Fig. 12. Fuzzy SMC tracking error 
magnification (after eradication)

Fig. 14. Closed-loop output for fuzzy 
SMC in the presence of uncertainty in 

the model

Fig. 13. Classic SMC tracking error 
magnification (after eradication)

Fig. 15. Closed-loop output for classic 
SMC with the presence of uncertainty in 

the model
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𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) ≤

1
2∫

𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)
𝑎𝑎Y + 𝑎𝑎Yª 

(74) 𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) ≤
𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠Y(𝜙𝜙)

2𝑎𝑎Y +
𝑎𝑎Y

2  

Based on equation 74 and considering assumptions 1, 3, 4, and 7, we have: 

(75) 
≤ 𝜙𝜙(𝑡𝑡)í𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝜀𝜀@𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) + 𝐷𝐷@	ì +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(76) 

≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −
𝜀𝜀@Y𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Y

2𝑎𝑎Y −
𝑎𝑎Y

2 + 𝐷𝐷@

− 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) − 𝜂𝜂	𝑠𝑠𝑔𝑔𝑛𝑛(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(77) 
≤ 𝜙𝜙(𝑡𝑡) º𝑏𝑏(𝑥𝑥, 𝑡𝑡) − (𝜃𝜃 − 𝜃𝜃∗)7𝜉𝜉(𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙) −

𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 − 𝑏𝑏}	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

− 𝜂𝜂	𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)Ω +
1
𝑧𝑧 (𝜃𝜃 − 𝜃𝜃∗)7𝜃̇𝜃 

(78) = 𝑏𝑏(𝑥𝑥, 𝑡𝑡)𝜙𝜙(𝑡𝑡) + ü(𝜃𝜃 − 𝜃𝜃∗)7 ç−𝜉𝜉(𝑋𝑋)|𝜙𝜙| +
1
𝑧𝑧 𝜃̇𝜃

ê• −
𝜀𝜀@Y

2𝑎𝑎Y −
𝑎𝑎Y

2 + 𝐷𝐷@ − 𝑏𝑏}|𝜙𝜙|

− 𝜂𝜂|𝜙𝜙| 
(79) 𝜃̇𝜃 = 𝑧𝑧𝑧𝑧(𝑋𝑋)|𝜙𝜙| 
(80) ≤ −𝜂𝜂|𝜙𝜙| ≤ 0 

(81) 
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑 𝜙𝜙(𝑡𝑡)

Y =
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑
|𝜙𝜙(𝑡𝑡)|Y ≤ −𝜂𝜂|𝜙𝜙(𝑡𝑡)|,				𝜙𝜙(0) ≠ 0 

As can be seen from the above equations, the derivative of the Lyapunov function 
is negative. Thus, based on Lyapunov theory, the system has reached stability. Also, 
the adaption rule is obtained as 𝜃̇𝜃 = 𝑧𝑧𝜉𝜉(𝑋𝑋)|𝜙𝜙|, based on equation 78. 

 
7. Simulation 
Some simulation results are provided in this section to clarify the capabilities of the 

proposed controller. After that, a comparison is made between the results of the 
proposed controller and those proposed in [2]. This comparison entails two parts; one 
with uncertainties in the SEIR model and one without uncertainties in the SEIR model. 

 
7.1. SEIR Epidemic Model Fuzzy Sliding Mode Controller without Uncertainties 
This subsection compares the results from fuzzy sliding mode controller simulations 

to those of classic sliding mode controllers. No uncertainty is included. The simulation 
parameters are derived from [2]. 

The actual parameters of the system are as follows: 

(82) 
𝜔𝜔eJ = 12	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 σeJ = 1.2	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 µeJ = 255	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝛾𝛾 = 𝜎𝜎 𝛽𝛽 = 1.66	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑eJ 𝜈𝜈eJ = 115	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Nominal parameters are considered as follows: 

(83) 
𝜔𝜔¥eJ = 12	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 σ¥eJ = 1.2	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 µÜeJ = 255	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝛾𝛾Ü = 𝜎𝜎Ü 𝛽𝛽± = 1.66	𝑑𝑑𝑑𝑑𝑦𝑦𝑠𝑠eJ 𝜈̂𝜈eJ = 115	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Also, controlling parameters are as below: 

(84) 𝜆𝜆 = 𝜀𝜀 =
1
2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

eJ 

The fuzzy system uses individual fuzzified, multiplication inference, and centers' 
mean defuzzifire. The membership functions are defined to be Gaussian. 

Figures 4 and 5 show the closed loop output of the proposed controller and the 
classic sliding mode one, respectively. In these figures, as stated earlier, the R-curve 
expresses the subpopulation recovered from or is immune to the epidemic disease. 
Accordingly, S denotes the susceptible subpopulation, E is the exposed 
subpopulation, and I the infectious subpopulation. As seen, susceptible, exposed, and 
infectious populations vanish entirely in less than 10 days. The recovered and immune 
population, however, increases with population dynamic change. As it is apparent from 
these figures, the two controllers can eliminate the epidemic disease. However, the 
proposed controller performance is improved to some extent. 

The vaccination control signal is shown in figures 6 and 7. As seen in figure 6, the 
vaccination control signal for the fuzzy sliding mode controller is smoother. It has fewer 
fluctuations than the classic sliding mode controller, which means that the proposed 
controller is more optimal than the classic one in the vaccination plan.  

Tracking error for both proposed and classic sliding mode is shown in figures 8 and 
9, respectively. As was mentioned earlier, N shows the total population, and 𝑁𝑁>?@ 
expresses the desired trend for the immune population, or in other words, the reference 
signal. As stated in (8), tracking error (𝑒𝑒(𝑡𝑡)) is the difference between recovered 
people, 𝑅𝑅(𝑡𝑡), and 𝑁𝑁>?@. 

Figures 10 to 13 show tracking error magnification in different time intervals. It can 
be seen from figure 10 that while the disease is not eradicated, the proposed controller 
includes fewer tracking errors. Moreover, observed from figures 12 and 13, we can 
conclude that when the disease is eradicated, the proposed controller performs better 
tracking with fewer ripples compared to the classic sliding mode controller. As can be 
seen, there is no chattering because of applying fuzzy logic to the sliding mode control 
law. 

 
7.2. SEIR Epidemic Model Fuzzy Sliding Mode Controller with Uncertainties 
In this subsection, the simulation results of both fuzzy sliding mode and classic 

sliding mode controllers are provided for the SEIR model in the presence of the 
uncertainty sentence, expressed in (Ibeas, A., Shafi, M., Ishfaq, M., & Ali, M., 2017), 
and the results are compared. 

The model parameters are similar to the ones from the previous subsection. Other 
parameters relating to uncertainty are taken from (Ibeas, A., Shafi, M., Ishfaq, M., & Ali, 
M., 2017) as in the following: 

Figures 14 and 15 depict the closed-loop output of the system for classic and 
proposed sliding mode controllers with the presence of uncertainty in the SEIR model, 
respectively. It can be seen that susceptible, exposed, and infectious populations 
vanish in less than 10 days. The recuperated and immune population increases 
concerning changes in population dynamics. 

It is also apparent that the added uncertainty affects the performance of the classic 
sliding mode controller, resulting in worsened output compared to other states. Also, 
the proposed controller is more robust in the presence of uncertainty compared to the 
classic controller. 

(85) ∆𝜎𝜎eJ = ∆𝛾𝛾eJ

= 1	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	 
∆𝑣𝑣eJ

= 15	𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 
∆𝑤𝑤eJ

= 2.5	days 
∆𝜇𝜇eJ

= 20	days 

Fig. 16. Tracking error signal for 
the fuzzy SMC in the presence of 

uncertainty in the model

Fig. 17. Tracking error signal for 
the classic SMC in the presence of 

uncertainty in the model
Recuperated individuals' signals and the reference signal for the classic sliding 

mode controller are graphed in figure 16. This figure also shows the tracking error in 
different time intervals. Also, compared to the classic sliding mode controller without 
uncertainty, the tracking error at the beginning is more significant. Figure 17 illustrates 
the tracking error for fuzzy SMC in the presence of uncertainty. Proper tracking of the 
reference signal emphasizes the efficiency and robustness of the controller. 

The vaccination control signal for the classic SMC in the presence of uncertainty is 
shown in figure 18. Based on the graph shown in figure 19, the fuzzy SMC has fewer 
ripples and chattering compared to the classic SMC and reaches stability  

The tracking error can be considered as a quantity to evaluate controller 
performance. Table 1 shows the difference between the maximum absolute error and 
the mean squared error in the classic sliding mode controller and fuzzy sliding mode 
controller, both in the presence and absence of the uncertainty sentence in the SEIR 
epidemic model. 
 

8. Conclusion 
This paper proposed a fuzzy sliding mode controller for epidemic diseases based 

on the SEIR model. Various types of vaccination rules based on control theory have 
been proposed and can be found in Classic sliding mode control can achieve the 
control objective and is capable of eradicating epidemic disease. However, all these 
works consider some parameters to determine infectious diseases. These parameters 
include birth, mortality, and prevalence rates. This situation is relatively unrealistic 
since estimating such parameters based on nominal and empirical data might result in 
incorrect values. Therefore, the vaccination rule is miscalculated, and its usage in the 
natural system might preclude the desired eradication of the disease. Moreover, the 
chattering phenomenon in the control signal of the classic sliding mode controller 
makes the implementation of the existing system impossible. 

Utilizing a fuzzy sliding mode controller and online parameter tuning by adaption 
rule reduces the tracking error. Compared to the classic sliding mode controller, it 
eliminates the chattering phenomenon in the control signal. This makes it possible to 
reach the control objective without having to account for parametric uncertainty. 
Afterward, and by exerting the parametric uncertainty terms to the SEIR epidemic 
model, it was shown that the proposed fuzzy SMC has better performance, less 
tracking error, and more robustness than the classic SMC. Also, the Lyapunov theory 
was used to ensure the system's stability. As an affirmation, the simulation results 
illustrated the eradication of the epidemic disease by showing susceptible, exposed, 
and diseased populations' convergence towards zero. The type-2 fuzzy controller can 
be used in the future to obtain a better approximation. The proposed controller can 
also be extended to be applied to COVID-19 or delayed SEIR models. 

Fig. 18. Vaccination control signal 
for the fuzzy SMC in the presence of 

uncertainty

Fig. 19. Vaccination control signal for 
the classic SMC in the presence of 

uncertainty
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Recuperated individuals' signals and the reference signal for the classic sliding 
mode controller are graphed in figure 16. This figure also shows the tracking error in 
different time intervals. Also, compared to the classic sliding mode controller without 
uncertainty, the tracking error at the beginning is more significant. Figure 17 illustrates 
the tracking error for fuzzy SMC in the presence of uncertainty. Proper tracking of the 
reference signal emphasizes the efficiency and robustness of the controller. 

The vaccination control signal for the classic SMC in the presence of uncertainty is 
shown in figure 18. Based on the graph shown in figure 19, the fuzzy SMC has fewer 
ripples and chattering compared to the classic SMC and reaches stability  

The tracking error can be considered as a quantity to evaluate controller 
performance. Table 1 shows the difference between the maximum absolute error and 
the mean squared error in the classic sliding mode controller and fuzzy sliding mode 
controller, both in the presence and absence of the uncertainty sentence in the SEIR 
epidemic model. 
 

8. Conclusion 
This paper proposed a fuzzy sliding mode controller for epidemic diseases based 

on the SEIR model. Various types of vaccination rules based on control theory have 
been proposed and can be found in Classic sliding mode control can achieve the 
control objective and is capable of eradicating epidemic disease. However, all these 
works consider some parameters to determine infectious diseases. These parameters 
include birth, mortality, and prevalence rates. This situation is relatively unrealistic 
since estimating such parameters based on nominal and empirical data might result in 
incorrect values. Therefore, the vaccination rule is miscalculated, and its usage in the 
natural system might preclude the desired eradication of the disease. Moreover, the 
chattering phenomenon in the control signal of the classic sliding mode controller 
makes the implementation of the existing system impossible. 

Utilizing a fuzzy sliding mode controller and online parameter tuning by adaption 
rule reduces the tracking error. Compared to the classic sliding mode controller, it 
eliminates the chattering phenomenon in the control signal. This makes it possible to 
reach the control objective without having to account for parametric uncertainty. 
Afterward, and by exerting the parametric uncertainty terms to the SEIR epidemic 
model, it was shown that the proposed fuzzy SMC has better performance, less 
tracking error, and more robustness than the classic SMC. Also, the Lyapunov theory 
was used to ensure the system's stability. As an affirmation, the simulation results 
illustrated the eradication of the epidemic disease by showing susceptible, exposed, 
and diseased populations' convergence towards zero. The type-2 fuzzy controller can 
be used in the future to obtain a better approximation. The proposed controller can 
also be extended to be applied to COVID-19 or delayed SEIR models. 

Recuperated individuals' signals and the reference signal for the classic sliding 
mode controller are graphed in figure 16. This figure also shows the tracking error in 
different time intervals. Also, compared to the classic sliding mode controller without 
uncertainty, the tracking error at the beginning is more significant. Figure 17 illustrates 
the tracking error for fuzzy SMC in the presence of uncertainty. Proper tracking of the 
reference signal emphasizes the efficiency and robustness of the controller. 

The vaccination control signal for the classic SMC in the presence of uncertainty is 
shown in figure 18. Based on the graph shown in figure 19, the fuzzy SMC has fewer 
ripples and chattering compared to the classic SMC and reaches stability  

The tracking error can be considered as a quantity to evaluate controller 
performance. Table 1 shows the difference between the maximum absolute error and 
the mean squared error in the classic sliding mode controller and fuzzy sliding mode 
controller, both in the presence and absence of the uncertainty sentence in the SEIR 
epidemic model. 
 

8. Conclusion 
This paper proposed a fuzzy sliding mode controller for epidemic diseases based 

on the SEIR model. Various types of vaccination rules based on control theory have 
been proposed and can be found in Classic sliding mode control can achieve the 
control objective and is capable of eradicating epidemic disease. However, all these 
works consider some parameters to determine infectious diseases. These parameters 
include birth, mortality, and prevalence rates. This situation is relatively unrealistic 
since estimating such parameters based on nominal and empirical data might result in 
incorrect values. Therefore, the vaccination rule is miscalculated, and its usage in the 
natural system might preclude the desired eradication of the disease. Moreover, the 
chattering phenomenon in the control signal of the classic sliding mode controller 
makes the implementation of the existing system impossible. 

Utilizing a fuzzy sliding mode controller and online parameter tuning by adaption 
rule reduces the tracking error. Compared to the classic sliding mode controller, it 
eliminates the chattering phenomenon in the control signal. This makes it possible to 
reach the control objective without having to account for parametric uncertainty. 
Afterward, and by exerting the parametric uncertainty terms to the SEIR epidemic 
model, it was shown that the proposed fuzzy SMC has better performance, less 
tracking error, and more robustness than the classic SMC. Also, the Lyapunov theory 
was used to ensure the system's stability. As an affirmation, the simulation results 
illustrated the eradication of the epidemic disease by showing susceptible, exposed, 
and diseased populations' convergence towards zero. The type-2 fuzzy controller can 
be used in the future to obtain a better approximation. The proposed controller can 
also be extended to be applied to COVID-19 or delayed SEIR models. 

Table 1: Error difference between fuzzy SMC and classic SMC
Maximum 
absolute 

error in the 
absence of 
uncertainty 
sentence

Maximum ab-
solute error in 
the presence 
of uncertainty 

sentence

mean 
squared 

error in the 
absence of 
uncertainty 
sentence

mean squared 
error in the 
presence of 
uncertainty 
sentence

The classic slid-
ing mode con-

troller
32.05 162.38 30.93 1359.8

The fuzzy sliding 
mode controller 11.47 36.48 1.05 24.03

Mohammad Azimnezhad, et al.



163

References
Alonso-Quesada, S., De la Sen, M., Agarwal, R. P., & Ibeas, A. (2012). An 

observer-based vaccination control law for an SEIR epidemic model based on 
feedback linearization techniques for nonlinear systems.  Advances in Difference 
Equations, 2012(1), 1-32.

Bai, Z., & Zhou, Y. (2012). Global dynamics of an SEIRS epidemic model with 
periodic vaccination and seasonal contact rate.  Nonlinear Analysis: Real World 
Applications, 13(3), 1060-1068.

Bartoszewicz, A. (1995). A comment on ‘A time-varying sliding surface for fast and 
robust tracking control of second-order uncertain systems’. Automatica, 31(12), 1893-
1895.

Cheng, Y., Pan, Q., & He, M. (2013). Disease control of delay SEIR model with 
nonlinear incidence rate and vertical transmission. Computational and Mathematical 
Methods in Medicine, 2013.

Di Giamberardino, P., & Iacoviello, D. (2017). Optimal control of SIR epidemic 
model with state dependent switching cost index. Biomedical signal processing and 
control, 31, 377-380.

Dong, N. P., Long, H. V., & Khastan, A. (2020). Optimal control of a fractional order 
model for granular SEIR epidemic with uncertainty.  Communications in nonlinear 
science and numerical simulation, 88, 105312.

Edwards, C., & Spurgeon, S. (1998). Sliding mode control: theory and applications. 
Crc Press.

G. Drakopoulos, P. Mylonas and S. Sioutas (2019). A Case of Adaptive Nonlinear 
System Identification with Third Order Tensors in TensorFlow.  In IEEE International 
Symposium on INnovations in Intelligent SysTems and Applications (INISTA), 1-6.

Hung, J. Y., Gao, W., & Hung, J. C. (1993). Variable structure control: A survey. IEEE 
transactions on industrial electronics, 40(1), 2-22.

Ibeas, A., De La Sen, M., & Alonso-Quesada, S. (2014). Robust sliding control of 
SEIR epidemic models. Mathematical Problems in Engineering, 2014.

Ibeas, A., de la Sen, M., & Alonso-Quesada, S. (2014, December). Adaptive control 
of SEIR discrete-time epidemic models. In AIP Conference Proceedings  (Vol. 1637, 
No. 1, pp. 37-46). American Institute of Physics.

Ibeas, A., de la Sen, M., Alonso-Quesada, S., & Nistal, R. (2015, May). Partial 
stability-based vaccination control of SEIR epidemic models. In  2015 10th Asian 
Control Conference (ASCC) (pp. 1-6). IEEE.

Ibeas, A., Shafi, M., Ishfaq, M., & Ali, M. (2017). Vaccination controllers for SEIR 
epidemic models based on fractional order dynamics. Biomedical Signal Processing 
and Control, 38, 136-142.

Jang, J. S. (1992, March). Fuzzy controller design without domain experts. In [1992 
Proceedings] IEEE International Conference on Fuzzy Systems (pp. 289-296). IEEE.

Jiao, H., & Shen, Q. (2020). Dynamics analysis and vaccination-based sliding mode 

Azerbaijan Journal of High Performance Computing, 5 (1), 2022



164

control of a more generalized SEIR epidemic model. IEEE Access, 8, 174507-174515.
Lee, H., Kim, E., Kang, H. J., & Park, M. (1998). Design of a sliding mode controller 

with fuzzy sliding surfaces. IEE Proceedings-Control Theory and Applications, 145(5), 
411-418.

Lee, H. J. (2022). Robust static output-feedback vaccination policy design for 
an uncertain SIR epidemic model with disturbances: Positive Takagi–Sugeno model 
approach. Biomedical Signal Processing and Control, 72, 103273. 

Manthouri, M., Aghajari, Z., & Safary, S. (2022). Computational Intelligence Method 
for Detection of White Blood Cells Using Hybrid of Convolutional Deep Learning and 
SIFT. Computational and Mathematical Methods in Medicine, 2022. 

Mattsson, P., Zachariah, D., & Stoica, P. (2018). Recursive nonlinear-system 
identification using latent variables. Automatica, 93, 343-351.

McCluskey, C. C. (2010). Complete global stability for an SIR epidemic model with 
delay—distributed or discrete. Nonlinear Analysis: Real World Applications, 11(1), 55-
59.

Ohtake, H., Tanaka, K., & Wang, H. O. (2006). Switching fuzzy controller design 
based on switching Lyapunov function for a class of nonlinear systems.  IEEE 
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 36(1), 13-23.

Schoukens, J., & Ljung, L. (2019). Nonlinear system identification: A user-oriented 
road map. IEEE Control Systems Magazine, 39(6), 28-99.

Tokat, S., Eksin, I., & Güzelkaya, M. (2003). New approaches for on-line tuning of 
the linear sliding surface slope in sliding mode controllers. Turkish Journal of Electrical 
Engineering and Computer Sciences, 11(1), 45-60.

Wu, S. J., & Lin, C. T. (2000). Optimal fuzzy controller design: local concept 
approach. IEEE Transactions on Fuzzy Systems, 8(2), 171-185. 

Yang, F., Liu, H., Qi, H., & Liu, X. (2016, December). SEIR evolutionary simulation 
model of the infectious disease emergency. In  2016 International Conference on 
Industrial Informatics-Computing Technology, Intelligent Technology, Industrial 
Information Integration (ICIICII) (pp. 315-318). IEEE. 

Yi, N., Zhang, Q., Mao, K., Yang, D., & Li, Q. (2009). Analysis and control of an 
SEIR epidemic system with nonlinear transmission rate. Mathematical and computer 
modelling, 50(9-10), 1498-1513.

Submitted: 28.01.2022
Accepted: 24.05.2022

Mohammad Azimnezhad, et al.


