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Abstract
The paper is devoted to the analysis of techniques and algo-
rithms of controlling computational process of solution to com-
plex optimization problems with the use of multiprocessor and/
or multicore computer systems. We have developed automatic 
and dialog systems of control of an optimization process. The 
paper contains the protocols and results of computer-based 
experiments for the class of unconstrained optimization prob-
lems on the basis of the developed software package.
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1.   Introduction 
It is known that in spite of a large number of methods for numerical solution to 

various classes of problems, the choice of the most efficient method for solving a 
particular problem under specific values of its parameters requires a large number of 
comparative experiments. As a rule, the end users tend to have difficulty both in 
carrying out such experiments, which requires the knowledge of the domain of 
applicability of various numerical methods, and in proper conducting of the 
comparative analysis of the results, which is quite time consuming. 

In the paper, for the class of problems of multivariate unconstrained optimization, 
we propose two approaches for facilitating the use of available applied software 
packages using modern multi-processor (multicore) computer systems. One of the 
approaches involves active work of the user with the optimization program package in 
a dialogue mode. The other approach involves the packet control by means of a 
specially developed control program in automatic mode. 

Let’s note that beginning from the 70s of the last century, in different schools, they 
have been carrying out works on creating intellectual algorithms for controlling 
software packages. For example, Yu.G.Evtushenko’s school have developed 
controlling dialog systems of unconstrained optimization (“DISO”) and of optimal 
control (“DISOPT”) [1,2]. In the works [3,4], they developed controlling systems of 
solving vector optimization problems (“DIVO”) and global optimization problems 
(“GLOPT”). These systems are constantly improved and modified in connection with 
the development of information, computer, and software technologies. The results of 
the given paper are direct development of ideas employed in the above-mentioned 
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systems, taking into account new possibilities provided by modern computing 
technologies. 

Drawing on the existing experience in the development of systems of this type, we 
formulated some basic requirements for the dialog optimization system being 
developed: 

•   the ability to specify initial values and variants of initial configurations in various 
ways, as well as to change flexibly the parameters of steps, criteria, etc.; 

•   the possibility of manual management of configuration, dynamic change of the 
problem dimension in the optimization process; 

•   the use of visual aids to represent the results in the form of mapping the 
optimization trajectory; 

•   step-by-step fixing of results; display of optimization results with the ability to 
change configuration parameters at any step; storing a configuration tree with the 
ability to roll back to any step. 

•   the possibility of development; creation of a system with the ability to easily 
implement new algorithms, rules, criteria, new types of tasks, etc.; 

•   software implementation; the system ought to be developed taking into 
account modern requirements for algorithmic software, opportunities for further 
development, for example, creating a module to display graphically the result of 
optimization, to integrate with office applications to facilitate the procedure for data 
entry and output of reporting data. The main way to implement the dialog system is 
object-oriented programming. 

 
2.   Problem Statement 
Let P = p$ x : i ∈ N  be the class of optimization problems (tasks). Here N is a given 

set defining individual problems of the class; x ∈ D$ ⊂ R- are the arguments of each 
individual problem, which can take on values from some given admissible set D$, 
defined by each specific optimization problem individually. It is assumed that for every 
problem p$ x  there exists a goal subset of extrema D$

∗ ⊂ D$ such that D$
∗ ≠ ∅. The 

problem p$ x  consists in finding at least one point x∗ ∈ D$
∗. The set D$

∗ is called a set 
of solutions to the problem p$ x . 

To solve all the problems of the class P, there is usually a corresponding family of 
methods M = M2: j ∈ J , each of which solves the problems p$ x  of the given class, 
i.e. they find a point x∗ ∈ D$. Moreover, each method M2, j ∈ J, has different efficiency 
(in terms of time used, the accuracy of the solution, etc.) when solving the problem 
p$ x . 

As the optimization techniques we use methods of direct search (zero-order 
methods), gradient-based methods (first-order methods), and Newton-type methods 
(second-order methods) [5-9]. These methods have a large number of options 
settings, thus providing the ability to adapt the system to any process quickly. 
Furthermore, the combination of direct search methods, gradient-based methods, and 
Newton-type methods allow us to find an optimal solution for a smaller number of steps 
and/or calculations of the objective function, which is important in terms of the cost of 
optimization process. 

The paper sets out the possible principles of management of optimization software 
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package when solving a particular applied problem p$(x) ∈ P, allowing us to increase 
the overall efficiency of solving the problem by combining the optimization methods in 
the process of solving the problem with the use of a multiprocessor (multicore) 
computer system. 

 
2.1. The principle of sequential  implementation on a single-core architecture 
This principle is of important significance in its own right, and can be considered 

as the basic unit for the implementation on multiprocessor or multicore architectures. 
Let us describe one of the principles of the possible schemes of implementation of the 
algorithm for solving optimization problems on such architectures. 

Let M7,M9, … ,M; be a list of optimization methods, composed of algorithms in the 
software package of unconstrained optimization. It is reasonable to include in the list 
diverse methods, if the structure of the objective function is, generally speaking, not 
known. 

The process for solving the problem is carried on in stages, each of which consists 
of training and working steps. The first of these steps is intended to identify the locally 
efficient algorithm from the available list of algorithms. After that, the working step is 
carried out, which consists in solving the problem using only the algorithm that has 
proven to be the most efficient in the first step. Both the training and working steps are 
carried out within a certain time slice. One can use two variants of the training step: 

1.   To determine the local efficiency of the methods, the optimization process 
starts from the same point x<. In this case there is somewhat wasteful consumption of 
machine time, and the training step is only used to identify a locally efficient algorithm; 

2.   The training step is used not only to find an efficient algorithm, but also to 
advance to an extreme point, because instead of the original point we use the current 
point to train each of the following algorithm. 

At the training step all the algorithms of the initial list M7,M9, … ,M; have the 
opportunity to work within the given initial time slice (quantum) τ, with the exception of 
only those methods that have been the least efficient for two consecutive training 
steps. These methods are not allocated any time slice and are temporarily excluded 
from the list. 

The value of the initial time quantum depends on the type of function being 
minimized, more precisely, on the time spent by the computing system on one 
computation of the objective function, and on the number of its variables, i.e. τ =
τ n, χ , where χ is the time spent on one computation of the function (in milliseconds). 
For example, the time quantum can be defined by the formula τ = 5n n + 1 + 20 χ. 
Here the number of computations of the function on one iteration by the Powell’s 
conjugate directions method is assumed as a basis of determining the coefficient of χ. 
Powell’s method requires n n + 1 /2 one-dimensional minimizations (minimizations in 
given directions), each of which uses on average 10 function computations. 

As a result, the most effective algorithm is identified at the learning stage, which 
then is used during the working step. The duration of the working step T$ = T$ n, χ, τ  is 
selected as follows: 

T< = ατ,  T$ = δ$T$I7 + T<,  α > 1.                                         (1) 
The quantity α depends on the complexity and dimension of the objective function, 
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and is chosen arbitrarily. It is desirable to carry out tests at different values of α. The 
quantity δ$ is taken equal to 1 if the same method turned out to be the most effective 
at two consecutive stages. Otherwise, we take δ$ = 0, i.e. the duration of the working 
step may increase if any method turned out to be the most effective at several 
successive stages. This means that in order to minimize the given objective function, 
we have found out the method that reaches an optimum point within a minimum time, 
and therefore for this case (in general, ideal) it makes no sense to conduct further 
training. 

To calculate the values of the local efficiencies of the methods, we make use of the 
following formula: 

𝐸𝐸L =
𝑓𝑓 𝑥𝑥OP7 − 𝑓𝑓 𝑥𝑥O

𝑓𝑓 𝑥𝑥O + 𝜀𝜀
+

𝑥𝑥OP7 − 𝑥𝑥O

𝑥𝑥O + 𝜀𝜀
. 

Here E$ is the local efficiency of the  ith algorithm; x;P7, x; are the final and initial 
points obtained using the  ith algorithm; f x;P7 , f x;  are the values of the objective 
function at these points; .  is the Euclidean norm; ε is a small positive number. 

If the value of the function within the time quantum does not decrease, the local 
efficiency of such an algorithm is considered equal to 0. If, at the training stage, all the 
methods from the list have displayed zero efficiency, further search stops and the 
procedure terminates. This situation is possible when the list of methods is not focused 
on solving the given problem (for example, the function is ravine-like, and the list 
consists of only coordinate-wise descent and gradient methods). Thus, the inclusion 
of different methods in the list will help to avoid such situations. 

Note that the local zero efficiency of the method can appear in the method also in 
the case when an arithmetic interrupt occurs during its operation. Implementing 
exception handling in the software of the system, in this case it is necessary to provide 
a transition from the ith method to the following, i + 1 th method from the list. And the 
ith method does not fully work for the time quantum allocated to it and obtains the value 
of local efficiency E$ = 0. 

The cycle criterion of the proposed procedure is the fulfillment of the exit criteria for 
all methods. In conclusion, the user receives the accumulated information on the 
search process, which includes the optimal chain of methods that worked at the 
working steps; the total time of search for solutions; the values of the objective function, 
of the coordinates, and of local efficiencies of the methods obtained during the training 
step. 

The schematic block diagram of the proposed procedure for solving the 
optimization problem on a single-core system is shown in figure 1. 

 
2.2. The principle of parallel implementation on a multicore architecture 
The simplest implementation of a multi-threaded version of the solution to the given 

optimization problem seems to be an approach that involves several threads 
independently performing operations of the sequential algorithm described above. 

The solution to an unconstrained optimization problem is carried out in stages. At 
each stage, the following steps are implemented: 

1.   At the initial step, from the list of all available algorithms M7,M9, … ,M; of 
unconstrained optimization, we randomly select several algorithms MWX,MWY, … ,MWZ, the 
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number l of which is equal to the number of CPU cores in the computer system (we 
can also take l  as a multiple of the number of CPU cores installed in the system, e.g. 
2N, 3N, etc.). 

2.   At the working step, we identify the most efficient algorithms. The duration T$ 
of the working step may increase if any method has proven to be the most efficient for 
several consecutive stages. 

3.   The current values of the local efficiencies E$ of the methods are calculated. 
From the list of working algorithms, we exclude a half of those who have exhibited the 
lowest efficiency. 

4.   To the list of working algorithms we then add as many other algorithms as were 
excluded in the previous step, and repeat steps 2 through 4 again. 

In the procedure described above, all methods from the list are forcibly interrupted 
after the specified time slice; while for any method(s) the next started iteration might 
not complete until the end. A possible modification of this procedure is to enable all 
the methods to complete the iterations that have been started or to perform a whole 
number of iterations in the neighborhood of the given time interval. In the latter case, it 
becomes necessary to slightly change the formula for calculating the local efficiencies 
of methods. 

The schematic block diagram of the proposed procedure for solving the 
optimization problem on a multicore system is shown in figure 2. 

 
2.3.  The principle of parallel implementation in a distributed computing environment 

Unlike parallel systems, distributed systems have a hierarchical organization: they 
consist of heterogeneous nodes, each of which can, in turn, be a parallel system, i.e. 
one of the systems discussed above. It is natural to assume that the maximum 
efficiency is achieved when the computational process is organized in accordance 
with this hierarchy. With this approach, at each node, the computations are carried out 
according to the scheme most suitable for the given node. In fact, each node of the 
distributed system runs a separate application – a “solver”, performing the operations 
of the selected optimization algorithm. Interaction between several applications 
(nodes) is organized at the next level of the hierarchy through a dedicated central 
control process – a “supervisor”. 

The first stage of solving an optimization problem in a distributed computing 
environment is the synthesis of the computational space that is formed by instances of 
solvers. With a large number of nodes, running applications manually can be quite 
time-consuming. Therefore, it is necessary to provide the ability to automate launching 
solvers by the supervisor. In this case, remote task launching tools can be used, which 
are provided by a specific system, e.g. SSH, grid services, etc. 

The created computing space can be used to solve the problem. In the solution 
process, it is necessary to distribute the computations between solvers in order to 
maximize the performance of the application in a distributed environment. Data 
exchange between the solvers and supervisor can be implemented by means 
provided for interaction with a particular node. If it is possible to establish a direct 
network connection, the exchange methods based on TCP / IP protocols, such as the 
socket interface, are used. In some cases, data exchange with applications is possible 
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only through the transfer of files using the middleware “grid”. Load balancing occurs 
at two levels: at the upper level, the supervisor distributes the computational load 
between the solvers, and at the lower level (within a computing node), the solver 
distributes the work between methods designed for a particular type of computing 
node. 

Both approaches of the search algorithm proposed above enable automatic 
selection of an efficient fast-acting optimization method from the existing list to solve a 
particular problem due to self-learning of the methods used. 

When working with the automatic and dialogue systems, the user, in accordance 
with the standard requirements, formulates an optimization problem in any 
programming language in the form of a module (dynamic link library), and then enters 
it into the system by specifying the full path to the created library file; using the 
directives (instructions), the user runs the most appropriate (in his/her opinion) 
algorithms of the library of modules, and tunes their various settings. The control 
program will then organize the interaction of the modules from the package; manages 
the input of the initial and current information; interpret the user's directives 
(instructions); load optimization modules into the computer memory dynamically; 
output the results of computations on the display (at the same time you can get results 
on a printer) in a prescribed form. 

Analyzing the results of the computations, the user decides on the further 
calculations, thus obtaining the possibility to monitor the progress of solving the 
problem, to intervene promptly in the computation process, to choose the working 
methods, and to adjust, if necessary, their parameters. The user determines how often 
and in what form the results should be displayed on the screen, and then, using a 
predefined set of directives carries out calculations. 

The developed optimization systems were created on a modular basis, taking into 
account the further expansion of their capabilities. The developed systems are 
equipped with an extensive library of optimization programs; the interactive service 
provided in the dialog system enables the user to manage the process of solving 
problems on a computer system, and depending on the current calculation results, to 
choose the most rational sequence of methods used (correcting the parameters of 
methods, if necessary), as well as to make changes in the formulation of the problems 
to be solved. 

During the operation of the system, the user and system activity modes alternate. 
At the time of interruption of computations, the user performs any of the following: 

•   analysis and correction of the current state; 
•   computation of the values of the objective function, constraints, their gradients 

at the current point; 
•   the choice of solution method(s); 
•   adjustment of control parameters of the method(s), specification of stopping 

criteria and information delivery forms; 
•   launching method(s); 
•   fixing the current state in text (or binary) files. 
When working with the automatic and dialog systems, the user, in accordance with 

standard requirements, prepares the optimization task in any programming language 
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in the form of a module (library file with the .dll extension); enters it into the system by 
specifying the full path to the file of the created library; with the help of special 
directives (commands) calls from the library of modules the most suitable (from his 
point of view) algorithms and selects their parameters. The control program organizes 
the interaction of modules from the package, manages the input of the source and 
current information, interprets the user directives, dynamically loads optimization 
modules into the memory of the computer system, prints the results of computations 
in a user-specified form on the display screen (he can simultaneously output results to 
a disk file). Analyzing the results of computations, the user makes decisions on further 
computations, thus getting the opportunity to follow the progress of the problem 
solution, to promptly intervene in the computation process, to select methods, and to 
correct their parameters if necessary. The dialog system is a system with a directive 
input language. The user determines how often and in what form the results should be 
printed on the display screen, and then, using a predetermined set of directives, 
conducts computations. 

 
3.   Numerical Results 

The results of computations depend to a great extent on the values of the control 
parameters; by carefully selecting them, one can significantly affect the course of 
computations and obtain some “record” results. Below we present the results of 
computation records implemented in the dialog mode. Computations were mainly 
conducted using the parameters of the methods provided for the “default” operation 
mode; only in a few cases we conducted two or three additional computations with 
other parameters and the best result is presented in the table. The data given in the 
tables are thus far from being “record”. To simplify the description of numerical 
experiments, the simplest test problems were taken. Therefore, the results of 
computations say little about the effectiveness of the methods used. 

Comparative analysis of the methods should be carried out on the basis of solution 
to various and more complex problems. In order to bring the computations closer to 
reality to some extent, numerical differentiation of the functions to be optimized is used 
everywhere. The complexity of computations is determined basically by the number 
N, equal to the number of calls to the function (the calls necessary for the computation 
of derivatives are also taken into account). 

Test 1. Consider the minimization of the function 
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from different initial points. When minimizing this objective function, the following 
values of the optimization parameters were used: the accuracy of solution to the 
multidimensional minimization problem is ε = 10I]; the accuracy of solution to the one-
dimensional minimization problem is δ = 10Ia; 0.5 seconds were allocated for the work 
of each algorithm in the list; to calculate the gradient and Hessian of the objective 
functional, we used a finite-difference formula with the approximation step Δ = 10Ia. 

When the function (2) is minimized from the initial point x< = (x$< = 10.0, i =
1,2, … ,50) (the initial value of the function is f x< ≈ 396903969), we obtained the 
minimization process protocol given in Table 1, where all the implemented optimization 
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algorithms were used. 
 
TABLE 1. 

Cycle 
 

Method 
Function Value; Function Evaluation Count; Function Argument 

1 

Conjugate Gradient Polak-Ribiere (first-order method) 
0.605243133940574; 3901; 
( 1.0002 $_7,7i; 0.9999 $_7],i]; 1.0007; 1.0018; 1.0011; 1.0014; 
1.0017; 1.0017; 1.0031; 1.0049; 1.0084; 1.0169; 1.0332; 1.0672; 
1.1376; 1.2895; 1.6638; 2.7669) 

2 Newton Modification (second-order method) 
1.66582504899541×10I7l; 80027; ( 1.0000 $_7,9,…,a<) 

3 Newton (second-order method) 
2.51745236378655×10I9m; 10006; ( 1.0000 $_7,9,…,a<) 

When the function (2) is minimized from the initial point x< = (x$< = −26.0 + i, i =
1,2, … ,50) (the initial value of the function is f x< ≈ 3633898996) we obtained the 
minimization process protocol given in Table 2, where all the implemented optimization 
algorithms were used. 

 
TABLE 2. 

Cycle 
Method 
Function Value; Function Evaluation Count; Function Argument 

1 

Conjugate Gradient Polak-Ribiere (first-order method) 
44.5426166226669; 4633; 
(0.9390; 0.8786; 0.7714; 0.5892; 0.3408; 0.1087; 0.0132; 0.0013; 
≈ 0.0010 $_^,]^; 0.0000) 

2 

Quasi-Newton Powell (second-order method) 
32.0565470941584; 6411; 
( ≈ 1.0000 $_7,7<; 0.9897; 0.9790; 0.9560; 0.9127; 0.8329; 0.6892; 
0.4703; 0.2174; 0.0427; 0.0020; 0.0013;	
   ≈ 0.0000 $_99,a<) 

3 

Parallel Tangents (first-order method) 
26.3052568352726; 6468; 
( ≈ 1.0000 $_7,7n; 0.9859; 0.9712; 0.9423; 0.8867; 0.7847; 0.6139; 
0.3748; 0.1387; 0.0180;	
   ≈ 0.0000 $_9n,a<) 

4 

Powell (zero-order method) 
17.588626941515; 66370; 
( ≈ 1.0000 $_7,9a; 0.9832; 0.9671; 0.9366; 0.8751; 0.7685; 0.5883; 
0.3477; 0.1145; 0.0018;	
   ≈ 0.0010 $_ia,a<) 

Result of algorithms used for optimization for function 1

Result of algorithms used for optimization for function 2
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5 

Parallel Tangents (first-order method) 
7.61196779857186; 8500; 
( ≈ 1.0000 $_7,i]; 0.9894; 0.9805; 0.9632; 0.9295; 0.8654; 0.7497; 
0.5611; 0.3119; 0.0930; 0.0072;	
   ≈ 0.0010 $_]a,]^; 0.0000) 

6 
Newton Modification (second-order method) 
0.00817103023157141; 220064; ( ≈ 1.0000 $_7,]n; 0.9799; 0.9603; 
0.9221; 0.8503) 

7 Newton (second-order method) 
1.7558039070914×10I7a; 40015; ( ≈ 1.0000 $_7,a<) 

 
Test 2. Consider the minimization of the function 

𝐹𝐹 𝑥𝑥 = 𝑒𝑒L 𝑥𝑥LP7 − 𝑥𝑥L9 9 + 1 − 𝑥𝑥L 9
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  (3) 

from different initial points. When minimizing this objective function, the following 
values of the optimization parameters were used: the accuracy of solution to the 
multidimensional minimization problem is ε = 10I^; the accuracy of solution to the one-
dimensional minimization problem is δ = 10I7<; 6 seconds were allocated for the work 
of each algorithm in the list; to calculate the gradient and Hessian of the objective 
functional, we used a finite-difference formula with the approximation step Δ = 10Ia. 

When the function (3) is minimized from the initial point x< = (x$< = 10.0, i =
1,2, … ,30) (the initial value of the function is f x< ≈ 5.03×107n) we obtained the 
minimization process protocol given in Table 3, where all the implemented optimization 
algorithms were used. 

 
TABLE 3. 

Cycle 
Method 
Function Value; Function Evaluation Count; Function Argument 

1 

Hooke-Jeeves (zero-order method) 
10.4011697177792; 17181; 
( ≈ 1.0000 $_7,97; 1.0109; 1.0220; 1.0444; 1.0909; 1.1902; 1.4166; 
2.0068; 4.0276; 16.2219) 

2 

Newton (second-order method) 
0.203044664702809; 4914490; 
( ≈ 1.0000 $_7,9i; 1.0105; 1.0212; 1.0428; 1.0876; 1.1829; 1.3993; 
1.9581) 

3 
Newton (second-order method) 
0.0267062905278361; 5343247; 
( ≈ 1.0000 $_7,9a; 1.0166; 1.0336; 1.0684; 1.1415; 1.3030) 

Result of algorithms used for optimization for function 3
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4 
Newton (second-order method) 
0.00668677461243312; 6510619; ( ≈ 1.0000 $_7,9n; 1.0173; 1.0349; 
1.0710; 1.1471) 

5 
Newton-Raphson (second-order method) 
0.00095164753562332; 6023236; ( ≈ 1.0000 $_7,9m; 1.0132; 1.0267; 
1.0542) 

6 
Newton-Raphson (second-order method) 
2.01752516177751×10Ia; 5957248; ( ≈ 1.0000 $_7,9m; 1.0019; 
1.0038; 1.0078) 

7 Newton-Raphson (second-order method) 
4.22645477506483×10I7<; 10004512; ( ≈ 1.0000 $_7,i<) 

When the function (3) is minimized from the initial point x< = (x$< = −16.0 + i, i =
1,2, … ,30) (the initial value of the function is f x< ≈ 1.27×107m) we obtained the 
minimization process protocol given in Table 4, where all the implemented optimization 
algorithms were used. 

TABLE 4. 

Cycle 
Method 
Function Value; Function Evaluation Count; Function Argument 

1 

Newton Modification (second-order method) 
0.386688225037339; 6625915; 
( ≈ 1.0000 $_7,99; 0.9889; 0.9779; 0.9564; 0.9147; 0.8368; 0.7002; 
0.4903; 0.2404) 

2 
Newton Modification (second-order method) 
0.0926635390824508; 6017008; 
( ≈ 1.0000 $_7,9]; 0.9815; 0.9634; 0.9281; 0.8614; 0.7421; 0.5507) 

3 
Newton Modification (second-order method) 
0.00226517847677732; 7411369; 
( ≈ 1.0000 $_7,9n; 0.9895; 0.9792; 0.9589; 0.9195) 

4 Newton Modification (second-order method) 
0.000282974896353102; 7984246; ( ≈ 1.0000 $_7,9l; 0.9854; 0.9711) 

5 Newton-Raphson (second-order method) 
7.35668971593544×10In; 4413862; ( ≈ 1.0000 $_7,i<) 

6 Newton-Raphson (second-order method) 
4.45892579296002×10Il; 4952764; ( ≈ 1.0000 $_7,i<) 

7 Newton-Raphson (second-order method) 
1.95412491898793×10I7<; 5429344; ( ≈ 1.0000 $_7,i<) 

 
4.   Conclusion 

In the paper, we proposed an approach to control of computational process for 

Result of algorithms used for optimization for function 3 in the initial point x0
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solving complex applied problems by an example of multivariate unconstrained 
optimization problems using appropriate software packages on multi-processor (multi-
core) computer systems. The proposed approaches essentially facilitate the end-
users’ work of using existing standard software packages. They require a different level 
of users’ knowledge of methods implemented in the software packages. 
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Figure 1. Block diagram of the procedure for finding the optimum point
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