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Abstract
Wind speed/power has received increasing attention worldwide 
due to its renewable nature and environmental friendliness. 
Wind power capacity is rapidly increasing with the global 
installed, and the wind industry is growing into a large-scale 
business. We are looking for wind speed prediction to use 
wind power better. In this research, Long Short-Term Memory 
(LSTM), Gated Recurrent Unit (GRU), Simple Recurrent Neural 
Network (Simple RNN), and LSTM-GRU in the subset of artificial 
intelligence algorithms are used to predict wind speed. The data 
used in this study are related to the 10-minute wind speed data. 
In the first study on this dataset, we obtained significant results. 
To compare the deep recurrent models created, we implement 
four neural network models: Stacked Auto Encoder, Denoising 
Auto Encoder, Stacked Denoising Auto Encoder, and Feed-
Forward presented in the research of others on this dataset. 
According to the RMSE statistical index, the LSTM network is 
worth 0.0222 for a short time and performs better than others in 
this dataset.
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1. Introduction
An urgent issue is to prevent environmental degradation by producing renewable 

energy. Wind energy can be expressed as fast, clean, flexible, and high-potential 
energy among various renewable energy sources. A power transmission operator 
can efficiently control the turbine when a wind farm can accurately predict wind 
turbine reactions (such as output and load-carrying power). However, predicting 
wind reactions is challenging due to the airflow's random and nonlinear character-
istics and complex relationship with wind turbines. Designing and implementing 
an intelligent model for the accurate prediction of wind speed and power improves 
the performance of electrical systems. Although the widespread use of wind power 
is beneficial, wind farms still face challenges. For example, developing a compre-
hensive plan for balancing energy supply based on energy demand is a complex 
issue (Sun, S., Qiao, H., Wei, Y., & Wang, S., 2017). It is necessary to analyze the 
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factors influencing the changes in power and wind speed and effectively evaluate 
wind energy prediction at different periods. It is necessary to analyze the factors 
influencing the changes in power and wind speed and effectively evaluate wind en-
ergy prediction at different periods. In general, wind speed prediction methods are 
divided into five categories: In general, wind speed prediction methods are divided 
into five categories: 1) Persistence model: In this approach, the future wind speed 
is considered equal to the wind speed at the time of forecasting. The performance 
of the sustainability method has declined rapidly when the horizon of the forecast 
time increases, so this model is reliable only for ultra-short-term goals. 2) Physical 
Methods: This approach requires information such as temperature, pressure, ob-
stacles, and roughness to predict wind speed. These include numerical weather 
prediction (NWP). This approach was first introduced by (McCarthy, E. F., 1997). 
3) Statistical Methods: Find math correlations between wind time series data. 4) 
Artificial intelligence (A.I.) methods: including artificial neural networks (ANN) that 
use two feed-forward neural network architectures to estimate wind speed (Philip-
popoulos, K., & Deligiorgi, D., 2012) and use wavelet neural network for wind speed 
forecasting (Liu, H., Tian, H. Q., et al., 2013), support vectors regression (SVR) 
(Yang, L., He, M., Zhang, J., & Vittal, V., 2015) and fuzzy methods (Eseye, A. T., 
Zhang, J., et al., 2017, March) led to new methods for predicting wind speeds. The 
advantage of these methods is that to predict future data without any mathematical 
model predefined. ANNs represent a complex nonlinear relationship for the task of 
approximating a function. These models learn the relationship between inputs and 
outputs by non-statistical methods. In the relevant literature, ANNs use different 
weather variables to predict different weather variables and provide satisfactory 
results in comparison with traditional algorithms (Philippopoulos, K., & Deligiorgi, 
D., 2012). 5)Hybrid models: These models are based on a combination of several 
methodologies to predict wind speed. The purpose of using such models is to take 
advantage of each approach's features to achieve the system's best performance 
(Wu, Y. K., & Hong, J. S., 2007).

Neural network architecture presented in recent work can be seen in two cate-
gories: shallow architectures and deep learning models. 1) Shallow models include 
feed-forward neural networks (FFNN) (Lee, D., & Baldick, R., 2013) and recurrent neu-
ral networks (RNN) (Cao, Q., Ewing, B. T., & Thompson, M. A., 2012), which have a 
hidden layer that limits the ability to generalize the neural network. The main reason for 
this inefficiency is that a classical neural network with more than one hidden layer can-
not function efficiently using standard training methods due to the vanishing gradient. 
Unlike deep architectures, such models can not automatically learn the uncontrollable 
features of data. Deep learning algorithms such as deep belief network (DBN) neural 
networks and auto-encoder (A.E.) networks have recently been proposed to address 
this problem. 2) Deep learning architectures can teach multi-layers of high-capacity 
computing hidden units. In recent work, (Khodayar, M., & Teshnehlab, M., 2015, Sep-
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tember) proposed a stacked auto-encoder (SAE) to predict wind speed. In addition, 
using the Rough set theory, they introduced neurons into the regression layer, the 
neural network. The use of the theory of the Rough set is applied to deal with uncer-
tainty in wind data. Experimental results show that SAE has better generalizability than 
external networks, and there is no need for boring manual engineering approaches to 
select features. Reference (Khodayar, M., Kaynak, O., & Khodayar, M. E., 2017) pro-
vided a deep learning architecture using the SAE neural network Stacked Denoising 
Auto Encoder (SDAE) to predict wind speed. In order to improve prediction accuracy, 
Rough set theory was included in the proposed deep learning model to extend the 
development of SAE and SDAE. The DAE proposal has been corrupted to rebuild 
data. The DAE is capable of rebuilding data from input from corrupted data. This work 
introduces four architectures: SAE, SDAE, Rough stacked Auto Encoder (RSAE), and 
Rough Denoising stacked Auto Encoder (RSDAE). Experimental results show that the 
RSDAE has better predictive power than the low-power networks and the other three 
architectures introduced in this paper. Reference (Hu, Y. L., & Chen, L., 2018) pres-
ents a new nonlinear hybrid model for improving the performance of wind speed pre-
diction—long Short-Term Memory Differential Evolution-Hysteretic Extreme Learning 
Machine (LSTM-DE-HELM).

In recent years hybrid models have been operating well on the issue of wind speed 
prediction. Reference (Liu, H., Mi, X., & Li, Y., 2018) provided a new hybrid model that 
combines wavelet transformation and two types of recurrent neural networks to pre-
dict wind speed. In the proposed model, wavelet transformation is applied to several 
sub-layers to analyze raw wind data. The LSTM, a deep learning algorithm, predicts 
low frequencies below the layers. Elman neural network, a classic recursive neural net-
work, predicts the high frequencies below the underlying layers. Experimental results 
show that the LSTM is capable of nonlinear solid processing and is suitable for wind 
speed prediction. Elman also has good performance in memory and processing of 
nonlinear data. Reference (Khodayar, M., Wang, J., & Manthouri, M., 2018) presented 
a hybrid approach for predicting wind speed based on deep learning, rough set the-
ory, and fuzzy set theory.

A new interval probability distribution learning (IPDL) model has been proposed 
for learning the nonlinear characteristics of the time series data. The IPDL model is 
presented as a Richard Boltzmann machine (RBM) graphical learning method and 
rough set theory to capture the unwanted control features of the input series. Also, 
the interval deep belief network (IDBN) has been proposed to predict wind speed. 
Empirical results indicate a significant improvement in the proposed IPDL model and 
its new learning algorithm. They compared with recent shallow and deep architecture, 
including DBN and hybrid methods. In addition, the effect of the proposed method 
in managing uncertainty in data improves the performance of this model. Reference 
(Qin, Y., Li, K., et al., 2019) provided prediction training based on a prediction of wind 
turbine signals. The proposed model includes a convolutional neural network (CNN), 
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an LSTM network, and multi-task learning ideas in a frame of wind signals. In this 
method, CNN networks are used to exploit the spatial location of wind power. Also, 
LSTM is used to teach dynamic wind characteristics. Simulation results show that us-
ing a multivariate learning method to predict energy simultaneously with a neural net-
work method reduces the complexity of the method. Therefore, the proposed model 
has shown good performance in predicting wind speed in the short term. Reference 
(Vinothkumar, T., & Deeba, K., 2020) has also worked on wind speed prediction whit 
recurrent neural networks and support vector machines. Reference (Kushwah, A. K., & 
Wadhvani, R., 2019) worked on wind speed prediction with linear and nonlinear statis-
tical models, offering a powerful hybrid model. Reference (Kenarang, A., Farahani, M., 
& Manthouri, M., 2022) worked on BiGRU with the attention mechanism and CapsNet 
(BiGRUACaps) method. The GRU network outperforms LSTM because of fewer gates 
and, therefore, fewer parameters.

The first 660 kW pilot wind turbine in the LUTAK region, which shows good anomaly 
measurement, was commissioned in May 2006 with the assistance of Iran's New En-
ergy Organization. Compared to similar turbines elsewhere in the country, the extraor-
dinary situation with all its hassles generates over nine hundred thousand kWh (900 
MW/h). Also, this is the first research into Deep Learning in the region and this wind 
turbine. In this work, we implemented LSTM, GRU, and SimpleRNN on this dataset 
to predict short-term wind speeds and obtained good results. We also implemented 
stacked auto-encoder neural networks, Denoising auto-encoder, stacked Denoising 
auto-encoder (Khodayar, M., Kaynak, O., & Khodayar, M. E., 2017), and feed-forward 
presented in the work of others to compare with recurrent neural networks. The remind-
er is as follows: Section II proposes wind speed prediction, which is explained in this 
section. Section III explains the study area, data sets, simulations, and results. Also, 
Section IV is the overall conclusion of the work.

2. Proposed Wind Speed Forecasting Models
This section explains LSTM, GRU, Simple-RNN, and LSTM-GRU and their archi-

tecture. We also look at formulas and their relationships and see their architecture in 
forms.

A. Long Short-Term Memory (LSTM)
LSTM, usually just called "LSTM," are a special kind of RNN, capable of learning 

long-term dependencies. They were introduced by (Hochreiter, S., & Schmidhuber, 
J., 1997) and were refined and popularized by many people in the following work and 
popularized by many people in the following work. LSTM network has a stable and 
powerful ability to solve long-term and short-term dependency problems. They work 
tremendously well on many problems and are now widely used. Due to the three gates, 
i.e., input gates, output gates, and forget gates, the LSTM network can add or remove 
information to the cell state. Updating the state of the cell and calculating the output of 
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the LSTM network can be computed as follows:

9 

𝑖𝑖! = 𝜎𝜎(𝑥𝑥!𝑈𝑈" + ℎ!#$𝑊𝑊")                                                     (1) 
𝑓𝑓! = 𝜎𝜎(𝑥𝑥!𝑈𝑈% + ℎ!#$𝑊𝑊%)                                                   (2) 
𝑜𝑜! = 𝜎𝜎(𝑥𝑥!𝑈𝑈& + ℎ!#$𝑊𝑊&)                                                  (3) 

 	𝐶𝐶/ = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑥𝑥!𝑈𝑈' + ℎ!#$𝑊𝑊')                                             (4) 
 	𝐶𝐶! = 𝜎𝜎(𝑓𝑓! ∗ 𝐶𝐶!#$ + 𝑖𝑖! ∗ 𝐶𝐶/!)                                                (5) 
			𝑧𝑧! = 𝜎𝜎(𝑥𝑥!𝑈𝑈( + ℎ!#$𝑊𝑊()                                                   (6) 
			𝑟𝑟! = 𝜎𝜎(𝑥𝑥!𝑈𝑈) + ℎ!#$𝑊𝑊)                                                     (7) 

 			ℎ!6 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑥𝑥!𝑈𝑈* + (𝑟𝑟! ∗ ℎ!#$)𝑊𝑊*)                                 (8) 
 			ℎ! = (1 − 𝑧𝑧!) ∗ ℎ!#$ + 𝑧𝑧! ∗ ℎ9)                                         (9) 
ℎ(!) = 𝑓𝑓	(ℎ(!#$), 𝑥𝑥(!); 𝜃𝜃)                                                   (10) 

It says the current hidden state ℎ(!)  is a function f of the previous hidden 
state	ℎ(!#$) and the current input	𝑥𝑥(!). The theta is the parameter of the function f. The 
network typically learns to use as a loss summary of the task-relevant aspects of the 
past sequence of inputs up to t. Simple RNN architecture is shown in Figure. 3. 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = A$
-
	∑ 𝑒𝑒(𝑛𝑛).-

/0$                                              (11) 
Furthermore, the MAE is expressed as: 

𝑀𝑀𝑀𝑀𝑀𝑀 = $
-
∑ |𝑒𝑒(𝑛𝑛)|-
/0$                                                     (12) 

Here, e (n) = t (n) - y (n), and M is the number of samples in the testing set. t(n) and 
y(n) are the desired output and the actual output of the models for the nth sample, 
respectively. 
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Here i, f, and o are called the input, forget, and output gates. W is the recurrent 
connection between the previously hidden layer and the current hidden layer. U is the 
weight matrix connecting the inputs to the current hidden layer. C ̃ is a "candidate" hid-
den state computed based on the current input and the previously hidden state, and C 
is the unit's internal memory. LSTM architecture is shown in Figure. 1.

Fig. 1: The architecture of the LSTM model

B. Gated Recurrent Unit (GRU)
GRU is the newer Recurrent Neural network and is similar to an LSTM. Based on 

the LSTM gating mechanism, GRU, shown in Figure. 2, was first proposed by (Chung, 
J., Gulcehre, C., Cho, K., & Bengio, Y., 2014). The GRU cell is computed as follows:

Here r is a reset gate, and z is an update gate. Intuitively, the reset gate determines 
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how to combine the new input with the previous memory, and the update gate defines 
how much of the previous memory to keep around.1) Update Gate: The update gate 
acts similarly to forget and input gate of an LSTM. It decides what information to throw 
away and what new information to add.2) Reset Gate: The reset gate is another used 
to decide how much past information to forget. Moreover, that is a GRU. GRUs have 
fewer tensor operations; therefore, they train faster than LSTMs. There is not a clear 
winner which one is better. Researchers and engineers usually try both to determine 
which works better for their use case.

Fig. 2: The architecture of the GRU model

Fig. 3: Simple RNN architecture

C. Simple recurrent neural Network (Simple RNN) 
This state is one of the recurrent neural networks where the output is to be fed back 

to the input. RNNs are neural nets that can deal with variable-length sequences (unlike 
feed-forward nets). They can do this by defining a recurrence relation over time steps 
which is typically the following formula:
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D. Long Short-Term Memory and Gated Recurrent Unit (LATM-GRU)
The deep hybrid model is composed of an input layer, which in the first step is 

connected to an LSTM layer and, in the next step, to a GRU layer, and performs a pre-
diction step in the final step shown in Figure. 4.

Fig. 4: The architecture of the LSTM-GRU model

3. Simulation and Results
This section presents the data sets, the recurrent neural networks' outputs, and the 

benchmark networks' outputs analyzed. Four nonlinear models are presented to obtain 
highly accurate and stable wind speed prediction results based on LSTM, GRU, Sim-
ple-RNN, and LSTM-GRU mechanisms.

A. Dataset, Study Area and Simulation's Parameter
This study is focused on the Lutak region from the city of Zabol, one of the cities of 
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Sistan and Baluchestan province in Iran. This region has located at latitude 30˚ 46' 23" 
and longitude 61˚ 25' 22" with warm and dry weather. This region has the most wind 
blowing in Iran. In Figure. 5, the location of this region within Iran is marked. This data 
set includes annual wind speeds. 10-minute intervals for 2006-2010. At this station, the 
power of 660 kW / h and 660 volts is injected into the 20-kV network by trans-terrestri-
al power. Fig. 6 shows some wind speed values in the data set. As shown in Figure. 
6, wind time series are highly nonlinear and cannot be modeled with linear models; 
hence, we record the work of forecasting wind speed using deep neural networks that 
can model nonlinear data and models in the data set. In this process, the data are 
divided into two categories: training data and testing data; in this study, 80% of the 
total data belongs to the training, and the remaining 20% as test data to the model has 
been introduced. The training and testing set is shown in Figure. 7. There are 137000 
wind speed values measured in 10-min intervals; therefore, sufficient data is available 
for training and testing the proposed approach.

We will look into the model and implementation details ahead in the forecast dis-
cussion without knowing any details about the weather conditions predicting the wind 
speed using the pattern it has followed in a certain period. For prediction, we use a 
Univariate model with one dataset column.tn our work, we use a wind speed maximum 
40-meter parameter for short-term prediction.

Fig. 5: Map of Iran, including the case study area

Fig. 6: Original Wind Speed
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Fig. 7: Training and Testing for Forecasting
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/0$                                                     (12) 

Here, e (n) = t (n) - y (n), and M is the number of samples in the testing set. t(n) and 
y(n) are the desired output and the actual output of the models for the nth sample, 
respectively. 

 

B. Evaluation Criteria
The root means square error (RMSE) and means absolute error (MAE) are em-

ployed as two evaluation metrics:

Here, e (n) = t (n) - y (n), and M is the number of samples in the testing set. t(n) 
and y(n) are the desired output and the actual output of the models for the nth sample, 
respectively.

C. Numerical Result and Comparison for Prediction
In this study, the wind speed prediction model has been compared for the short 

term in order to evaluate general abilities. This work compares the performance of the 
LSTM, GRU, SimpleRNN, and LSTM-GRU algorithms with recent deep and shallow 
models as a benchmark for predicting Ultra-short-term and short-term wind speeds. 
Tables I and II show that the RMSE and MAE criteria are used to predict wind speed. 
Performance of our approach compared with deep and shallow methods. RMSE gen-
erally increases with predicted horizons. The SDAE (Khodayar, M., Kaynak, O., & Kho-
dayar, M. E., 2017) and DAE (Khodayar, M., Kaynak, O., & Khodayar, M. E., 2017) 
models on our dataset both work better than SAE (Khodayar, M., Kaynak, O., & Kho-
dayar, M. E., 2017) because noise cancellation is used in this method, and the noise 
factor applied to the RMSE of data sets is improved and compared to SDAE and DAE, 
the DSAE method is better Because it is stacked and deeper. The LSTM model works 
better than our other recursive models, which include GRU, SimpleRNN, and LSTM-
GRU, because this model solves the vanishing gradient problem in the first place, as 
well as memory, compared to other recursive networks.

Comparison of the all-recurrent neural network, with the FFNN as the benchmark, 
indicates a significant improvement in the RMSE value of this deep return structure 
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compared to the FFNN. The main reason behind this algorithm's best-known is its 
memory architecture, which can best represent the time series data, model, and rep-
resentation. Also, the combined model of the LSTM and GRU neural network, because 
it uses its memory state in the first layer of LSTM and output as input to the GRU, gen-
erates the output of the GRU end, the value of the RMSE criterion for LSTM network is 
different. As specified in the table, the RMSE of the LSTM network is 0.0222, and the 
combined network RMSE is 0.0224. It is known that this is very small due to the GRU 
network. Also, it was tested on this issue: that is, if GRU is in the first layer and produc-
es output LSTM, because of GRU, the RMSE value is different. Comparing LSTM with 
SDAE as the best auto encoder refinement indicates a significant improvement in the 
RMSE value of this deep return structure compared to the DSAE. Finally, Figures 8 and 
9, 10, 11, 12, and 1 show the actual wind speed and predicted values by all RNNs, 
FFNN models, and SDAe.
Table 1: RMSE of forecasting methods for different time horizons

Method
Time Steps

10 MIN 20 MIN 1h
FFNN 0.0310 0.0328 0.0532

SAE (Khodayar, M., Kaynak, O., & Khodayar, M. E., 
2017)

0.0271 0.0305 0.0509

DAE (Khodayar, M., Kaynak, O., & Khodayar, M. E., 
2017)

0.0253 0.0284 0.0487

SDAE (Khodayar, M., Kaynak, O., & Khodayar, M. 
E., 2017)

0.0234 0.0262 0.0466

Simple RNN 0.0224 0.0258 0.0453
LSTM-GRU 0.0224 0.0252 0.0445

GRU 0.0223 0.0253 0.0446
LSTM 0.0222 0.0251 0.0445

Table 2: MAE  of forecasting methods for different time horizons

Method
Time Steps

10 MIN 20 MIN 1h
FFNN 0.0243 0.0260 0.0411

SAE (Khodayar, M., Kaynak, O., & Khodayar, 
M. E., 2017)

0.0209 0.0238 0.0388

DAE (Khodayar, M., Kaynak, O., & Khodayar, 
M. E., 2017)

0.0189 0.0218 0.0367

SDAE (Khodayar, M., Kaynak, O., & Khodayar, 
M. E., 2017)

0.0170 0.0196 0.0346

Simple RNN 0.0159 0.0192 0.0333
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Method
Time Steps

10 MIN 20 MIN 1h
LSTM-GRU 0.0163 0.0181 0.0323

GRU 0.0159 0.0182 0.0324
LSTM 0.0156 0.0179 0.0320

Fig. 8: LSTM Output: 10 min forecasting

Fig. 10: SimpleRNN Output: 10 min 
forecasting

Fig. 12: SDAE Output: 10 min 
forecastingforecasting

Fig. 9: GRU Output: 10 min forecasting

Fig. 11: LSTM-GRU Output: 10 min 
forecasting

Fig. 13: FFNN Output: 
10 min forecasting
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Fig. 14: Zoomed 20 Sample in Output 
LSTM

Fig. 15: Zoomed 20 Sample in Output 
LSTM

IV. Conclusions
Accurate wind speed and wind energy prediction are essential in wind farms' op-

eration and risk management. Therefore, in order to evaluate the importance of the 
subject, in order to evaluate the performance of deep learning models, we examined 
four deep models in predicting wind speed for Sistan Wind Power Plant. Wind speed, 
air temperature, humidity, and sunlight were also recorded every 10 minutes during 
the statistical period (2006-2010). According to the results obtained in this study, the 
LSTM neural network at Sistan Pilot Wind Power Plant is a relatively efficient model 
for predicting wind speed using processed data. The LSTM model performs better 
than our other recursive models, including GRU, SimpleRNN, and LSTM-GRU, as it 
eliminates the slope and memory loss problem compared to other recursive networks. 
The most well-known reason for this algorithm is its memory architecture, which can 
best represent temporal data, models, and representations. We also run three autore-
gressive neural networks in addition to the feed-forward network presented in the work 
of others to compare with recurrent neural networks. However, none of them perform 
well on recurrent neural networks on wind time series data for future work, considering 
the capacities of the study area in this paper and the fact that this is the first turbine 
research in this field. LSTM neural network with regression layers can exist and use the 
attention mechanism to improve wind speed prediction accuracy.
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