Please use this identifier to cite or link to this item: http://dspace.azjhpc.org/xmlui/handle/123456789/69
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPagad, Naveen S-
dc.contributor.authorN, Pradeep-
dc.date.accessioned2023-04-28T22:52:55Z-
dc.date.available2023-04-28T22:52:55Z-
dc.date.issued2021-12-
dc.identifier.issn2616-6127-
dc.identifier.issn2617-4383-
dc.identifier.otherhttps://doi.org/10.32010/26166127.2021.4.2.232.241-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/69-
dc.description.abstractIn light of the increasing number of clinical narratives, a modern framework for assessing patient histories and carrying out clinical research has been developed. As a consequence of using existing approaches, the process for recognizing clinical entities and extracting relations from clinical narratives was subsequently error propagated. Thus, we propose an end-to-end clinical relation extraction model in this paper. Clinical XLNet has been used as the base model to address the discrepancy issue, and the proposed work has been tested with the N2C2 corpus.en_US
dc.language.isoenen_US
dc.publisherAzerbaijan Journal of High Performance Computingen_US
dc.subjectClinical entityen_US
dc.subjectRelation extractionen_US
dc.subjectError propagationen_US
dc.subjectEnd-to-end modelen_US
dc.titleEND-TO-END RELATION EXTRACTION ON CLINICAL TEXT DATA USING NATURAL LANGUAGE PROCESSINGen_US
dc.typeArticleen_US
dc.source.journaltitleAzerbaijan Journal of High Performance Computingen_US
dc.source.volume4en_US
dc.source.issue2en_US
dc.source.beginpage232en_US
dc.source.endpage241en_US
dc.source.numberofpages10en_US
Appears in Collections:Azerbaijan Journal of High Performance Computing

Files in This Item:
File Description SizeFormat 
doi.org.10.32010.26166127.2021.4.2.232.241.pdf2.1 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.